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 49 

Abstract 50 
 51 
Myopia is the most common eye disorder, caused by heterogeneous genetic and 52 

environmental factors. Rare progressive and stationary inherited retinal disorders are often 53 

associated with high myopia. Genes implicated in myopia encode proteins involved in a 54 

variety of biological processes including eye morphogenesis, extracellular matrix 55 

organization, visual perception, circadian rhythms, and retinal signaling. Differentially 56 

expressed genes (DEGs) identified in animal models mimicking myopia are helpful in 57 

suggesting candidate genes implicated in human myopia. Complete congenital stationary 58 

night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal 59 

transmission defect and is also associated with high myopia. Thus, it represents also an 60 

interesting model to identify myopia-related genes, as well as disease mechanisms. While the 61 

origin of night blindness is molecularly well established, further research is needed to 62 

elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole 63 

transcriptome analysis on three different mouse models of cCSNB (in Gpr179
-/-

, Lrit3
-/-

 and 64 

Grm6
-/-

), we identified novel actors of the retinal signaling cascade, which are also novel 65 

candidate genes for myopia. Meta-analysis of our transcriptomic data with published 66 

transcriptomic databases and genome-wide association studies from myopia cases led us to 67 

propose new biological/cellular processes/mechanisms potentially at the origin of myopia in 68 

cCSNB subjects. The results provide a foundation to guide the development of 69 

pharmacological myopia therapies. 70 

 71 
 72 
 73 

 74 
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1. Introduction  141 

 142 

Myopia (short-sightedness) is the most common human eye disorder worldwide, in which the 143 

image is focused in front of the retina, resulting usually from an excessive growth of the eye 144 

posterior segment (increased axial length) (reviewed by e.g. (Goss and Wickham, 1995; 145 

McBrien and Gentle, 2003), generally as a consequence of accelerated post-natal eye growth 146 

(McBrien and Gentle, 2003) but also set by the optical power of the cornea and the lens 147 

(Iribarren, 2015). It can be due to structural abnormalities of the cornea as found in 148 

keratoconus or due to changes primarily in the lens power found e.g. in older people 149 

developing cataracts (reviewed by (Flitcroft et al., 2019; Iribarren, 2015)). Recent animal 150 

studies, combined with clinical studies, have revealed that the mechanisms of optically guided 151 

eye growth are influenced by the retina (Flitcroft, 2012).  152 

High axial myopia, defined as a refractive error of more than −6.0 diopters (D) or ocular 153 

axial length of more than 26–26.5 mm (Flitcroft et al., 2019), can lead to blinding 154 

complication such as myopic macular degeneration (MMD), retinal tears and retinal 155 

detachment, and predispose to other ocular diseases such as glaucoma and early onset 156 

cataracts (Hornbeak and Young, 2009). A subset of subjects with high myopia also 157 

demonstrate diffuse retinal changes beyond the macula, so-called “diffuse chorioretinal 158 

atrophy”, which is defined as pathologic myopia (Ohno-Matsui et al., 2016); pathologic 159 

myopia can be associated with fundus changes, regional retinal and choroidal thinning (Ohno-160 

Matsui and Jonas, 2019; Ye et al., 2019), and increased retinal complications, such as retinal 161 

detachment (Ohno-Matsui et al., 2016). Epidemiological studies estimated that half the 162 

world’s population will be myopic by 2050, with 10% showing high myopia (Holden et al., 163 

2016). Indeed, it was shown that the incidence of myopia is increasing, affecting now 20%-164 



40% of children at the age of 17-18  in developed western countries and up to 80% -90% in 165 

East and Southeast Asia (reviewed by (Morgan et al., 2018) (e.g.(Ang et al., 2020; 166 

Cumberland et al., 2015; Foster and Jiang, 2014; French et al., 2013; Holden et al., 2014; 167 

Holden et al., 2016; Hysi et al., 2014; Kempen et al., 2004; Lam et al., 2004; Lin et al., 2004; 168 

Morgan et al., 2018; Morgan et al., 2012; Pan et al., 2012; Vitale et al., 2009)). However, in 169 

less developed countries, with less developed education systems, the prevalence of myopia 170 

in young adults is estimated to be only 5% -10% (reviewed by (Morgan et al., 2018) (e.g. 171 

(Anera et al., 2009; Casson et al., 2012; Dandona et al., 2002a; Dandona et al., 2002b; Gao et 172 

al., 2012; Jimenez et al., 2004; Jimenez et al., 2012; Khandekar and Abdu-Helmi, 2004; 173 

Lewallen et al., 1995; Lindquist et al., 2011; Lithander, 1999; Pokharel et al., 2000). 174 

High myopia is a complex disorder, which is mediated by genetic and more importantly by 175 

environmental factors (Baird et al., 2010; Morgan and Rose, 2005; Morgan, 2003; Morgan et 176 

al., 2018; Wojciechowski, 2011; Young, 2009). More than 300 genes were associated with 177 

refractive error development in humans (Flitcroft et al., 2018; Hysi et al., 2020; Kiefer et al., 178 

2013; Tedja et al., 2019; Tedja et al., 2018; Verhoeven et al., 2013). They encode proteins of 179 

vastly different functions, including eye morphogenesis, extracellular matrix organization, 180 

visual perception, circadian rhythms, pigmentation and retinal signaling (Flitcroft et al., 181 

2018; Hysi et al., 2020; Tedja et al., 2018). The contribution of heritability to myopia is 182 

difficult to determine (Dirani et al., 2006; Hammond et al., 2001; Lopes et al., 2009; Lyhne et 183 

al., 2001; Peet et al., 2007; Tedja et al., 2019; Tedja et al., 2018; Teikari et al., 1988; 184 

Wojciechowski, 2011)  and estimated to be rather low (Morgan and Rose, 2005), since it was 185 

shown that environmental factors play a very important role in the occurrence of myopia, 186 

especially illumination conditions. This is underpinned by the increasing prevalence of 187 

myopia taking place in East and Southeast Asia, where children spend more time inside 188 

studying as compared to less developed countries (Morgan et al., 2018).  189 
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Indeed, the intensity of ambient light was found to influence the development of myopia. 190 

Outdoor activities have a protective effect against the development and progression of 191 

myopia (He et al., 2015; Rose et al., 2008; Wu et al., 2013; Xiong et al., 2017). Similarly for 192 

animal models raised under different lighting conditions, high illuminances have been found 193 

to slow the development of induced myopia (Smith et al., 2012). Interestingly, intermittent 194 

exposure to bright light was more efficient in suppressing myopia progression than 195 

continuous light exposure (Lan et al., 2014).  196 

The identification of differentially expressed genes (DEG) in animals with induced myopia 197 

has been helpful in suggesting candidate genes associated with the development of human 198 

myopia (Brand et al., 2007; Frost and Norton, 2012; Gao et al., 2011; McGlinn et al., 2007; 199 

Riddell et al., 2016; Schippert et al., 2008; Shelton et al., 2008; Siegwart and Norton, 2002; 200 

Tkatchenko et al., 2016; Tkatchenko et al., 2006).  201 

High myopia can also be syndromic. Pathogenic variants affecting proteins expressed in 202 

the retina, either in photoreceptors or in the downstream bipolar cells (BCs) can lead to 203 

progressive and non-progressive retinal monogenetic disorders, which can be also associated 204 

with other ocular disorders including myopia. One such disease is X-linked retinitis 205 

pigmentosa (RP) (MIM #300029), one of the most frequent and severe progressive form of 206 

RP, with symptoms of night blindness that occur during the first decade of life and progress to 207 

legal blindness by the third to fourth decade in most affected males (Flaxel et al., 1999). In 208 

this disease, high myopia is often observed from childhood in addition to retinal degeneration 209 

and electrophysiological abnormalities (Flaxel et al., 1999; Koenekoop et al., 2003). 210 

Mutations in RPGR (MIM #312610) account for the majority of X-linked RP, and these 211 

patients show high myopia in addition to RP (Sanchez Tocino et al., 2019). Similarly, 212 

mutations in ARR3 (e.g. (van Mazijk et al., 2022; Xiao et al., 2016) and OPN1LW, mainly 213 

expressed in cone-photoreceptors, were also associated with high myopia (reviewed by (Neitz 214 



and Neitz, 2021).  Other syndromic and non-syndromic eye disorders associated with high 215 

myopia include Marfan syndrome (MIM #154700) (Pyeritz and McKusick, 1979), with 216 

mutations in FBN1 (MIM #134797), Knobloch (MIM #267750) (summarized by (Aldahmesh 217 

et al., 2011), with mutations in COL18A1 (MIM #120328), Wagner (MIM #143200), with 218 

mutations in VCAN (MIM #118661), Stickler syndrome (MIM #108300), with mutations in 219 

COL2A1 (MIM #120140), Ehlers-Danlos syndrome (MIM#130000), with mutations in 220 

COL5A1 (MIM# 120215) and Donnai-Barrow syndrome (MIM #222448) (Ohlsson, 1963), 221 

with mutations in LRP2 (MIM #600073) (Kantarci et al., 2007). Based on these findings, it 222 

appears that disruption of the retinal signaling pathway from photoreceptors to the inner retina 223 

can lead to myopia. Interestingly, common genetic variants within or nearby genes that are 224 

associated with syndromic myopia are enriched for variants that cause non-syndromic, 225 

common myopia (Flitcroft et al., 2018). For most of the implicated genes, expression in the 226 

retina is documented. Reinforcing these findings, degeneration of photoreceptors and/or 227 

amacrine cells (ACs) in chicken retinas, has been associated with increased axial growth of 228 

the eye, leading to myopia (Ehrlich et al., 1990; Fischer et al., 1999). E.g. this was shown 229 

using colchicine to destroy amacrine cells, which normally suppress axial growth of the eye 230 

(Fischer et al., 1999).   231 

 232 

Studies in chicken and mice showed that light dependent ON-bipolar cell (BC) dopamine 233 

signaling is a major player in the development and protection of myopia (Boatright et al., 234 

1994; Boelen et al., 1998; Dumitrescu et al., 2009; Iuvone et al., 1978; Schaeffel and 235 

Feldkaemper, 2015; Stone et al., 2011). Retinal dopamine content is decreased in the absence 236 

of light and during myopia development (Schaeffel and Feldkaemper, 2015). It was shown, 237 

that intravitreal or topical application of levodopa, which is widely used in the treatment of 238 

neurological disorders involving dysregulation of the dopaminergic system, inhibits the 239 
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development of experimental myopia in chickens (Thomson et al., 2019). In addition, it has 240 

been demonstrated that non-myopic children treated for attention deficit hyperactivity 241 

disorder (ADHD) with dopaminergic agents have slower developmental myopic refraction 242 

than untreated peers, providing a more direct suggestion that dopamine plays a role in human 243 

refractive development (Gurlevik et al., 2021). 244 

Patients with complete congenital stationary night blindness (cCSNB), which represents a 245 

complete ON-BC dysfunction, with unaltered OFF-BC function present as well with high 246 

myopia (median error of -7.4 D) (Bijveld et al., 2013; Zeitz et al., 2015). Multiple mutations 247 

in cCSNB-associated genes such as NYX, GRM6, GPR179, TRPM1 and LRIT3 lead to this 248 

condition in patients and mouse models (Audo et al., 2012; Bech-Hansen et al., 2000; Dryja et 249 

al., 2005; Gregg et al., 2003; Koike et al., 2010; Li et al., 2009; Maddox et al., 2008; Masu et 250 

al., 1995; Morgans et al., 2009; Neuille et al., 2014; Orhan et al., 2021; Orlandi et al., 2012; 251 

Pardue and Peachey, 2014; Peachey et al., 2012; Pusch et al., 2000; Qian et al., 2015; van 252 

Genderen et al., 2009; Varin, 2020; Zeitz et al., 2013; Zeitz et al., 2015; Zeitz et al., 2005). 253 

cCSNB mouse models lacking Nyx (nob) and Grm6 with ON-BC dysfunction, showed 254 

increased susceptibility to myopia and decreased dopamine content  (Chakraborty et al., 255 

2015; Pardue et al., 2008). While human subjects with cCSNB and high myopia have no ON-256 

BC transmission, their OFF-BC transmission is largely intact (Miyake et al., 1986; Zeitz et 257 

al., 2015). By contrast, subjects with incomplete CSNB (iCSNB) show variable degrees of 258 

myopia (median refractive error of −4.8 D), associated with both reduced ON-and OFF-259 

pathway dysfunction (Bijveld et al., 2013; Miyake et al., 1986; Zeitz et al., 2015). We are not 260 

aware that high myopia has been reported with other forms of CSNB, leading to a rod 261 

dysfunction and a Riggs-ERG (Zeitz et al., 2015). Aleman et al showed that stimulation of the 262 

ON-pathway may thicken the choroid and thus perhaps inhibit myopia in humans (Aleman et 263 



al., 2018). Together, these findings suggest that ON-pathway disruption contributes to the 264 

development of myopia and that studies on cCSNB can be used to better understand myopia.  265 

In recent years, gene identification studies in CSNB patients led to the identification of key 266 

proteins mediating photoreceptor to ON-BC signal transmission. Because of the prevalence of 267 

myopia in CSNB patients, these ON-pathway genes are also candidate genes for myopia. 268 

Seeking new myopia genes through this purely genetic approach has its limitations since 269 

CSNB is a rare retinal condition (Zeitz et al., 2015); for example our data suggest that the 270 

prevalence of CSNB in France is ~1:400,000 (Varin, 2020), though it is likely to be under-271 

diagnosed since correct diagnosis requires the application of a specific clinical examination 272 

(e.g. electroretinography) and/or molecular genetic testing. Given these limitations, we 273 

followed an alternative approach using whole transcriptome sequencing to seek novel CSNB-274 

associated or CSNB-myopia related genes. This allowed us to add novel proteins to the 275 

retinal signaling pathway, identify new candidate genes for myopia, and strengthen the 276 

evidence for several previously proposed myopia-associated genes. These results provide a 277 

framework for the development of future therapeutic strategies to treat myopia. 278 

 279 

2. Phenotype in human cases and animal models with complete congenital 280 

stationary night blindness (cCSNB) and associated myopia 281 

2.1. Signal transmission from photoreceptors to ON-bipolar cells 282 

The clinical characterization of subjects with CSNB, and more specifically cCSNB, was 283 

recently reviewed (Zeitz et al., 2015). Electroretinography is crucial for a correct positive 284 

diagnosis of CSNB and distinguish its different forms, both in human subjects and animal 285 

models (Zeitz et al., 2015). A clear diagnostic electroretinogram (ERG) feature in cCSNB is 286 
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the absence of the b-wave in dark adapted conditions (DA 0.01) (Figure 1). In light-adapted 287 

conditions (LA 3.0 30 Hz and LA 3.0), ERGs are altered differently (see for details (Zeitz et 288 

al., 2015)) (Figure 1). ERG findings under scotopic conditions highlight similarities between 289 

cCSNB animal models and the human phenotype. In contrast, under photopic conditions, 290 

cCSNB animal models show more variability between species (Figure 1). The photopic ERG 291 

phenotype of cCSNB mouse models is generally more severe, including the absence of the b-292 

wave, compared to that of human cases or larger animal models (Figure 1) (e.g. (Neuille et al., 293 

2014; Orhan et al., 2021)). In contrast, cone-driven responses are comparable between CSNB 294 

dogs, horses and human cases, i.e. mildly reduced and delayed (reviewed in (Kondo et al., 295 

2015; Varin et al., 2021b; Witzel et al., 1978; Zeitz et al., 2015) (Figure 1). These differences 296 

may be a result of species-specific physiological differences, but could also be due to the use 297 

of different ERG protocols (Varin et al., 2021b). 298 

ERG features associated with myopia in human subjects and animal models are less well 299 

studied (Koh et al., 2014; Westall et al., 2001).. Some studies in myopic chicken suggested 300 

that the oscillatory potentials are altered (Fujikado et al., 1997). By performing multifocal 301 

ERG measurements Ho et al., showed that ERG responses originating from the human 302 

paracentral retina negative defocus are reduced compared to ERG responses originating from 303 

the central retina (Ho et al., 2012). This paracentral region of the retina is believed to 304 

predominately reflect the activity from ON- and OFF-BCs, with relatively small contributions 305 

from photoreceptors and other inner retina cells (Chu et al., 2008). Because genetic data are 306 

often unavailable for myopia subjects, it remains uncertain if myopia cases that present 307 

specific ERG-alterations represent syndromic myopia cases, as found e.g. in cCSNB. For 308 

those genes that have been implicated in myopia, they may also have roles in ON-pathway 309 

signaling. For example, a mouse model of myopia lacking Aplp2, coding for the amyloid beta 310 

precursor like protein 2, which is highly expressed in bipolar cells, revealed a reduction in the 311 



amplitude of the ERG b-wave and oscillatory potentials (Tkatchenko et al., 2015). A genome-312 

wide-association study (GWAS) revealed an association between APLP2 variants and myopia 313 

in humans; thus, the ERG defects in the Aplp2
-/-

 mouse were thought to be linked to myopia  314 

(Tkatchenko et al., 2015) (Figure 2). However, the electrophysiological properties of the 315 

retina of the Aplp2
-/-

 mouse model are also consistent with a role of APLP2 in synaptic 316 

transmission. It would be interesting to document ERGs of myopia cases linked to APLP2.  317 

 318 

 319 

2.2. Visual acuity in cCSNB and myopia 320 

Subjects with cCSNB have decreased visual acuity with a median of 0.30 log MAR 321 

(Minimum Angle of Resolution; about 20/40) (Zeitz et al., 2015). Relatively preserved mean 322 

best corrected visual acuity of 0.02 log MAR (about 20/20; (Ye et al., 2019)) and 0.88 323 

decimals (better than 20/25; (Liu et al., 2010)) is observed in myopic (including high myopic) 324 

subjects without underlying retinal changes. Pathologic myopia, however, is associated with a 325 

reduced mean best corrected visual acuity of 0.56 ± 0.35 decimals (about 20/35; (Liu et al., 326 

2010)) and 0.19 ± 0.20 log MAR (about 20/30; (Ye et al., 2019)). About 30% of cases with 327 

myopic retinal changes have visual acuity worse than 20/60. Hence, although cCSNB subjects 328 

demonstrate high axial myopia (Al-Hujaili et al., 2019) their visual acuity loss is generally 329 

more severe, due to cone ON-bipolar cell dysfunction, than in subjects with isolated myopia.    330 

Visual acuity in mice can be measured using an optomotor test (Jellali et al., 2005). All tested 331 

mouse models for cCSNB reveal severely reduced visual acuity under scotopic conditions 332 

(Neuille et al., 2014; Orhan et al., 2021; Pinto et al., 2007). Visual acuity under photopic 333 

conditions may be also altered (Neuille et al., 2014; Pinto et al., 2007; Varin et al., 2021b). A 334 

few studies have measured visual acuity in myopia mouse models; For example, in Aplp2 335 
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knock-outs visual acuity was normal in form-deprivation myopia, but contrast vision was 336 

reduced and correlated with myopia (Tkatchenko et al., 2015).  Similarly, patients with 337 

myopia exhibited reduced sensitivity to contrast in comparison to emmetropes and contrast 338 

sensitivity decreased with an increasing degree of myopia (Stoimenova, 2007). 339 

2.3. Retinal structure in cCSNB and myopia 340 

In contrast to progressive rod-cone dystrophy, the retinal structure is quite well preserved in 341 

human subjects with cCSNB. This is due to the stationary, functional, but not degenerative 342 

nature of disease of cCSNB. A few reports describe thinning of inner retinal layers (INLs) in 343 

cases with cCSNB as measured by spectral domain Optical Coherence Tomography (SD-344 

OCT). However, this thinning is different from that observed in subjects with progressive rod-345 

cone dystrophy (Al Oreany et al., 2016; Godara et al., 2012; Ivanova et al., 2019). SD-OCT 346 

measurements done in the Lrit3 mouse model of cCSNB also revealed thinning of the INL 347 

(Neuille et al., 2014). It is not clear if the INL thinning observed in human cCSNB subjects 348 

and in a few mouse models is related to the development of high myopia or if it is only caused 349 

by the mutated gene causing cCSNB. A systematic analysis of cCSNB cases compared to 350 

myopia control cohorts is needed to determine the exact cause of this thinning (Zeitz et al., 351 

2015). 352 

In subjects with myopia without outer retinal changes, regional changes in central retinal 353 

thickness have be described by SD-OCT; these include thinning of the INL and outer nuclear 354 

layer, and thickening of OPL and photoreceptor outer segments (Liu et al., 2015; Ye et al., 355 

2019). In subjects with pathologic myopia, additional changes described under the term of 356 

myopic maculopathy are observed (Ohno-Matsui et al., 2016).   357 

 358 



3. Studying myopia in mouse models 359 

Animal models have been increasingly used to investigate mechanisms of myopia. Myopia 360 

can be induced using negative lenses or form deprivation in a variety of species as diverse as 361 

monkeys (Qiao-Grider et al., 2007; Weinstein and Grether, 1940), tree shrews (Norton and 362 

McBrien, 1992; Petry et al., 1984), cats (Berkley and Watkins, 1973; Blake et al., 1974), 363 

guinea pigs (Buttery et al., 1991; Howlett and McFadden, 2007), chickens (Irving et al., 1996; 364 

Jarvis et al., 2009; Schmid and Wildsoet, 1998), and fish (Shen and Sivak, 2007). However, 365 

most these models are not well suited for genetic research.  366 

The mouse, has become a popular animal model for the myopia research (Barathi et al., 2014; 367 

Barathi et al., 2013; Beleggia et al., 2015; Cases et al., 2015; Hudson et al., 2015; Ma et al., 368 

2014; Miyake et al., 2015; Pardue et al., 2008; Song et al., 2016; Storm et al., 2014; Tekin et 369 

al., 2013; Tkatchenko et al., 2012; Tkatchenko et al., 2015; Tran-Viet et al., 2013; Wu et al., 370 

2015a; Wu et al., 2015b). The mouse offers a number of important advantages compared to 371 

other species, including well-established techniques allowing the alteration of its genome. 372 

Moreover, both genes and environment can be manipulated in the same mouse (Barathi et al., 373 

2008; Schaeffel et al., 2004; Tejedor and de la Villa, 2003a; Tkatchenko et al., 2010). 374 

Behavioral studies suggest that vision is critical for accurate spatial navigation in mice (Buhot 375 

et al., 2001; Cook et al., 2001; de la Cera et al., 2006; Faulstich et al., 2004). Although mice 376 

are classified as nocturnal animals they are also active during the day and have diurnal retinal 377 

features (Flores et al., 2007; Jacobs, 2013; Yang et al., 2009). Mice undergo emmetropization 378 

driven by photopic visual stimulation similar to humans (Tkatchenko et al., 2013). Basic 379 

spatial and temporal vision characteristics in mice are similar to those in humans (Histed et 380 

al., 2012; Umino et al., 2008) but with lower visual function compared to humans (Prusky and 381 

Douglas, 2004). Due to the above-mentioned differences, thresholds for rod-dominated 382 
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(scotopic) and cone-dominated (photopic) vision in mice, as well as the structure of the retinal 383 

scotopic and photopic pathways, maybe different but still show high  similarities to those in 384 

humans (Leamey et al., 2008; Umino et al., 2008). Although mice lack the fovea found in 385 

primates, the mouse retina has an area of increased density of photoreceptors and retinal 386 

ganglion cells (RGC) just temporal to the optic disc, which represents an anatomical and 387 

functional analog of the area centralis found in all non-primate mammals (Drager and Olsen, 388 

1981; Jeon et al., 1998; Leamey et al., 2008). Induced changes in genetic background and 389 

gene-targeted mutations affect refractive eye development and susceptibility to myopia in 390 

mice (Schippert et al., 2007; Tkatchenko et al., 2015; Tkatchenko et al., 2019; Troilo et al., 391 

2019; Wisard et al., 2011; Zhou et al., 2001; Zhou et al., 2010). Experimental myopia can be 392 

induced in mice using visual form deprivation (form deprivation myopia, FDM) or 393 

negative spectacle lenses (lens-induced myopia, LIM), similar to other animal models 394 

(Chakraborty et al., 2014a; Pardue et al., 2008; Pardue et al., 2013; Park et al., 2013; 395 

Schaeffel et al., 2004; Tejedor and de la Villa, 2003b; Tkatchenko et al., 2015) (Figure 3).  396 

Susceptibility to FDM was increased in mouse models with a defect in the ON-pathway 397 

(Chakraborty et al., 2015; Pardue et al., 2008), highlighting that ON-pathway disruption may 398 

be an important element in refractive error development. More specifically, cCSNB-399 

associated myopia as shown by myopic shifts in eyes with FDM was observed in mice 400 

lacking Nyx (nob) (Gregg et al., 2003) and Grm6 (Masu et al., 1995) (Chakraborty et al., 401 

2015; Pardue et al., 2008). We hypothesize that the cCSNB models used in the present study 402 

will similarly show a greater susceptibility to FDM- or LIM-induced myopia, although the 403 

genetic background of the mice must be considered, as this can strongly influence both the 404 

baseline and susceptibility to induced myopia. For example, wild-type mice in a “129 405 

background” show high baseline myopia (~ -20D) compared to those in a C57BL/6J 406 

background (Tkatchenko et al., 2019). Our cCSNB models lacking Gpr179 and Lrit3 are in a 407 



C57BL/6J background; in contrast, our cCSNB mouse model lacking Grm6 is in a different 408 

genetic background (129S6.129S(Cg)) than the one used by Chakraborty et al., 2015 409 

(Chakraborty et al., 2015). Thus, we estimate that the difference of the refractive error 410 

following FDM or LIM may not be measurable in our mice lacking Grm6. Recently we were 411 

indeed able to show that our cCSNB model lacking Gpr179 is more susceptible to LIM 412 

(Wilmet et al., 2022 under review). 413 

All cCSNB mouse models share the same gene defects as human subjects with cCSNB (Audo 414 

et al., 2012; Bech-Hansen et al., 2000; Dryja et al., 2005; Gregg et al., 2003; Pardue et al., 415 

1998; Peachey et al., 2012; Pusch et al., 2000; Zeitz et al., 2013; Zeitz et al., 2015; Zeitz et al., 416 

2005). All cCNSB genetic defects result in a defective ON-BC transmission. In contrast, 417 

disruption of mainly the OFF-pathway caused by a mutation in the Vsx1 gene did not 418 

significantly alter refractive eye development or the susceptibility to experimentally induced 419 

FDM (Chakraborty et al., 2014b). These findings lend further support to the selective 420 

contribution of the ON-pathway to myopia at least in animal models. Recently it was shown 421 

that Vsx1 is expressed in both cone ON- and OFF-BCs, but not in rod ON-BCs (Shekhar et 422 

al., 2016). We are not aware of studies showing myopia in mice with iCSNB, which affects 423 

both ON- and OFF-BCs. However, in a recent study, patients with a variant near GJD2 had 424 

high myopia, supporting a potential role for altered signaling in cone-driven OFF pathways in 425 

myopia development. Therefore, it is possible that multiple retinal pathways contribute to 426 

myopia (Jiang et al., 2022). 427 

 428 

Numerous retinal signaling pathways have been shown to be involved in refractive eye 429 

development and myopia in animal models (Summers et al., 2021; Tkatchenko and 430 

Tkatchenko, 2019; Troilo et al., 2019). Dopamine signaling plays an important role in these 431 
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processes and dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid 432 

(DOPAC) have been implicated in refractive error development in mice (Schaeffel and 433 

Feldkaemper, 2015). Stimulation of DA biosynthesis in light is due to the activation of 434 

tyrosine hydroxylase (TH) (Iuvone et al., 1978). Dopaminergic ACs receive excitatory 435 

glutamatergic input from ON-BCs (Boatright et al., 1994; Boelen et al., 1998; Dumitrescu et 436 

al., 2009; Stone et al., 2011) and transmit the signal further to RGCs in the retina. Retinal DA 437 

and DOPAC content drop during the development of FDM and remain at reduced levels 438 

(Schaeffel and Feldkaemper, 2015). Further support for the role of DA in myopia 439 

development comes from the cCSNB mouse models lacking Nyx (nob)  and Grm6, as they are 440 

characterized by not only an increased susceptibility to FDM but also by lower levels of 441 

DA and DOPAC (nob mice) and DOPAC (Grm6
-/-

) compared to wild-type animals 442 

(Chakraborty et al., 2015; Pardue et al., 2008). Compared to measuring the refractive error in 443 

animal models with FDM or LIM, measuring DA and DOPAC by ultra-performance liquid 444 

chromatography is less time consuming, since the induction of experimental myopia is not 445 

needed. Indeed, recent findings revealed that levels of DOPAC are reduced in genetic retinal 446 

disease mouse models and are not affected by myopia induction (Chakraborty et al., 2015; 447 

Park et al., 2013). As shown in Figure 4, we detected lower levels of DA and DOPAC after 448 

light adaptation in mice lacking Gpr179, Lrit3 and Grm6 compared to wild-type animals, 449 

further demonstrating that these cCSNB mouse models provide a valid basis to study myopia. 450 

 451 

 4. Differentially expressed genes in cCSNB 452 

4.1. RNA-Seq studies in mouse models for cCSNB 453 

Several studies have identified novel myopia-associated candidate genes by whole 454 

transcriptome sequencing in several animal models of myopia (Riddell and Crewther, 2017; 455 



Riddell et al., 2016; Tkatchenko et al., 2019; Tkatchenko and Tkatchenko, 2021a, b; 456 

Tkatchenko et al., 2018; Vocale et al., 2021; Wu et al., 2018). Here, we performed whole 457 

transcriptome sequencing (RNA-Seq) in three different adult mouse models of cCSNB 458 

(Gpr179
-/-

, Lrit3
-/-

 and Grm6
-/-

) and their age-matched littermates (each, n = 5) to investigate 459 

the molecular basis of myopia in cCSNB and to identify novel proteins involved in the retinal 460 

signaling cascade, including the ON-pathway. After identification and validation of 461 

differentially expressed genes (DEGs), a meta-analysis was performed by comparing our data 462 

with i) published transcriptomic data from purified retinal cells and single cell RNA-Seq data 463 

(Macosko et al., 2015; Shekhar et al., 2016; Siegert et al., 2012; Siegert et al., 2009; Woods et 464 

al., 2018) and ii) pathway analyses and myopia databases and/or publications concerning the 465 

role of identified DEGs in normal vision. Figure 5 shows DEGs with fold changes (FC) of at 466 

least 1.2, P-values of ≤ 0.01 and an expression value of at least 5 transcripts per million reads 467 

(TPM) from RNA-Seq data of adult Gpr179
-/-

, Lrit3
-/-

 and Grm6
-/- 

mice compared to data 468 

from age-matched wild-type littermates (Supplementary Table S1-S4). As expected, all three 469 

mouse models exhibited significantly lower expression of their respective “knocked out” 470 

genes (Gpr179, Lrit3, Grm6) compared to the corresponding wild-type strains 471 

(Supplementary Tables S1-S4). Overall, 155, 133, and 222 genes were differentially 472 

expressed in the Gpr179
-/-

, Lrit3
-/-

 and Grm6
-/-

 mouse strains, respectively (Supplementary 473 

Tables S1-S4 and Figure 5a). Differences in numbers and types of DEGs between the strains 474 

may be due in part to differences in genetic background, which may also influence differential 475 

regulation of the gene network (Tkatchenko et al., 2019). While cCSNB mouse models 476 

lacking Gpr179 and Lrit3 are on a C57BL/6J background, mice lacking Grm6 are on a 477 

129S6.129S(Cg) background. However, to minimize background related issues, for each 478 

knock-out strain, the respective littermate wild-type strain was used for comparison. DEGs, 479 

appearing in all three cCSNB mouse strains may be implicated in a common physiological 480 
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role, while DEGs appearing in only one cCSNB mouse strain may have a unique role 481 

important for the specific gene missing in the model. Here, we focused mainly on DEGs 482 

shared by at least two of the three mutant strains. 483 

4.2. Validation of RNA-Seq studies 484 

To identify genes playing a role in the cCSNB phenotype, DEGs with at least 1.2 FCs and P-485 

value ≤ 0.01 were investigated, including their expression in specific retinal cell-types and 486 

their association with the term “myopia”. Overall, there were 52 DEGs, that appeared in at 487 

least two cCSNB mouse strains (Supplementary Table S5 and S6) and 7 in all three 488 

(Supplementary Table S6, bold, Figure 5A and B). The Gpr179
-/-

 and Lritr3
-/-

 mouse strains 489 

shared the majority of the DEGs (38), followed by Gpr179
-/-

 and Grm6
-/-

 (16) and Grm6
-/- 

and 490 

Lrit3
-/- 

mouse strains (12) (Figure 5A). The 52 DEGs present in at least two mouse strains 491 

could be sorted into 10 clusters (Figure 5B). The largest cluster consisted of genes down-492 

regulated in the cCSNB models (cluster 1, Figure 5B). Quantitative RT-PCR (RT-qPCR) 493 

performed for 24 of those genes confirmed that all 24 were differentially expressed in the 494 

retina of knock-out mouse strains compared to the corresponding wild-type mice (Figure 6 495 

shows some of the validated genes, Supplementary data). Of note, some genes were found to 496 

be differentially expressed only in mice lacking either Lrit3 or Gpr179 genes by RNA-Seq, 497 

but were found to be significantly differentially expressed in all three knock-outs by RT-498 

qPCR (e.g. Prkca and Tpbg, Figure 6). Although not all differences observed with RNA-Seq 499 

were validated by RT-qPCR, which may be explained by the lesser sensitivity of RT-qPCR 500 

experiments (Costa et al., 2013), the trend was the same for the majority of the 24 DEGs, thus 501 

validating the transcriptome sequencing approach.  502 

 503 

4.3. Known genes implicated in CSNB 504 



Mutations in NYX, GRM6, GPR179, TRPM1 and LRIT3 that cause cCSNB affect protein 505 

localization in retinal ON-BCs (Audo et al., 2012; Bech-Hansen et al., 2000; Dryja et al., 506 

2005; Li et al., 2009; Peachey et al., 2012; Pusch et al., 2000; van Genderen et al., 2009; 507 

Varin, 2020; Zeitz et al., 2013; Zeitz et al., 2005). The proteins localize in the outer plexiform 508 

layer (OPL) and in most cases in the dendritic tips of ON-BCs (Zeitz et al., 2015). Similar to 509 

human subjects, ON-BC function is affected in cCSNB mouse models (Gregg et al., 2003; 510 

Koike et al., 2010; Masu et al., 1995; Morgans et al., 2009; Neuille et al., 2014; Peachey et 511 

al., 2012; Zeitz et al., 2015). Proteins involved in cCSNB often show an interdependency in 512 

their localization, and may or may not show correlated changes in expression levels (Neuille 513 

et al., 2015). For example, nyctalopin (encoded by Nyx) and TRPM1 interact. Localization of 514 

TRPM1 at the ON-BC dendritic tips is dependent on the presence of nyctalopin, mGluR6 and 515 

LRIT3 (Cao et al., 2011; Hasan et al., 2020; Neuille et al., 2015; Pearring et al., 2011; Zeitz et 516 

al., 2015). Using RNA-Seq, we showed that Trpm1 mRNA levels are dependent on the 517 

expression of Gpr179, Lrit3, and Grm6, and that expression levels of Grm6 are dependent on 518 

the expression of Lrit3 (Figure 7). However, although Trpm1 expression levels seems to be 519 

dependent on Gpr179 expression, the localization of TRPM1 at the dendritic tips of BCs does 520 

not appear to be affected in Gpr179
-/-

 mice (Orhan et al., 2021; Orlandi et al., 2012). Aside 521 

from the targeted gene in each knock-out strain, most of the other known genes underlying 522 

cCSNB, are not strongly differentially expressed (Supplementary Tables S1 and S6), 523 

suggesting that the 52 DEGs in the cCSNB mouse models are not necessarily candidate genes 524 

for cCSNB. 525 

 526 

 527 

4.4. Transcriptome analyses of DEGs in cCSNB 528 



21 
 

All 52 DEGs that we identified are expressed in the human retina (Supplementary Table S6, 529 

Figure 8) (Farkas et al., 2013). Most of them were already reported in retina transcriptome 530 

databases (Blond and Leveillard, 2019; Farkas et al., 2013; Kalathur et al., 2008; Macosko et 531 

al., 2015; Shekhar et al., 2016; Siegert et al., 2012; Siegert et al., 2009). Here, we mainly 532 

focus either on genes expressed in ON-BCs or in downstream ACs and RGCs. Twenty genes 533 

(5730419F03Rik, Cxcr7, Ampd3, Arc, Bdnf, Cacna1s, Car8, Lect1, Edn2, Eomes, Gabrr1, 534 

Ldb2, Lrp2bp, Olfm3, Plekhf1, Rgs16, Slco5a1, Syn2, Tgbf2 and Tpbg) showed an age-535 

dependent relative increase in expression in the rd1-transcriptome database, as a result of the 536 

age-dependent photoreceptor degeneration (Blond and Leveillard, 2019; Kalathur et al., 537 

2008). These genes are expressed in the INL or ganglion cell layer (GCL) and they seem to be 538 

important for BC, AC and RGC function and maintenance (Supplementary Table S6). In 539 

addition, a number of novel candidate genes absent in the current transcriptome databases 540 

were also identified. Several of these genes were found in rod (Col5a1 and Vgll4), cone 541 

(Cxcr7, Car8, Casp7, Gabrr1, Ptprr, Spred3, Tac2 and Tpbg), rod-cone (Lect1, Gng4, Tgfb2 542 

and Trpc1), BC (Cxcr7, Bdnf, Cacna1s, Car8, Casp7, Ccnjl, Cdc25c, Lect1, Col5a1, Dusp4, 543 

Gabrr1, Gng4, Grm6, Ldb2, Lrp2bp, Plekhf1, Prkca, Ptprr, Rgs16, Slco5a1, Spred3, 544 

St6galnac5, Tac2, Tpbg, Tgfb2), AC (Arc, Cxcr7, Car8, Lect1, Fbxo32, Gabrr1, Gng4, 545 

Ldb2, Olfm3, Plekhf1, Ptprr, Tac2, Tgfb2, Tpbg and Vgll4) and RGC (Cxcr7, Car8, Lect1, 546 

Eomes, Gabrr1, Gng4, Plekhf1, Ptprr, Tgfb2, Trpc1, Tpbg and Vgll4) databases (Figure 8). 547 

Interestingly, 5730419F03Rik, Ampd3, Car8, Casp7, Ccnjl, Lect1, Dusp4, Gabrr1, 548 

Gm20754, Lrp2bp, Prkca, Ptprr, Rgs16, Slco5a1 and Tpbg were also shown to be 549 

differentially expressed in mice lacking the BC-specific basic helix-loop-helix (bHLH) 550 

transcription factor, Bhlhe23, alias Bhlhb4
 
(Bramblett et al., 2004; Woods et al., 2018). This 551 

transcription factor was found to be expressed in rod bipolar cells (RB). ERGs in the adult 552 

Bhlhb4 knockout mice, in a C57Bl6 strain, showed that the loss of BHLBH4 resulted in 553 



disrupted rod signaling and profound retinal dysfunction resembling CSNB, characterized by 554 

the loss of the scotopic ERG b-wave. A depletion of INL cells in the adult Bhlhb4 knockout 555 

has been ascribed to the abolishment of the RB cell population during postnatal development. 556 

Other retinal cell populations including photoreceptors were unaltered. In the absence of 557 

information from these databases, our data was completed using expression data available 558 

from the literature and single cell RNA-Seq analyses (https://www.proteinatlas.org) 559 

(Supplementary Table S6, Figure 8).  560 

Strikingly, Lect1 (Cnmd) was up-regulated in Gpr179
-/- 

and Lrit3
-/- 

mice and slightly down-561 

regulated in Grm6
-/-

 mice compared to wild-type mice. These findings were validated by RT-562 

qPCR (Figure 5B, cluster 2, Figure 6). In contrast, Etv4 was down-regulated in Gpr179
-/-

 and 563 

Lrit3
-/- 

mice and up-regulated in Grm6
-/-

 mice compared to wild-type animals (Figure 5B, 564 

cluster 9).  565 

 566 

LECT1 (MIM# 605147), coding for the leukocyte cell-derived chemotaxin 1 protein (also 567 

called chondromodulin 1) is an angiogenesis inhibitor first isolated from fetal bovine 568 

cartilage. Although confined to cartilage and the eye at later stages of development, fetal 569 

whole-mount in situ hybridization revealed expression of Lect1 mRNA in somites, heart, 570 

bronchial arches, roof plate, retina and limb buds. LECT1 expression pattern suggested a role 571 

in morphogenesis during embryonic development (Shukunami et al., 1999). In adult retina, 572 

LECT1 was found in the GCL and INL as revealed by RNA in situ hybridization and 573 

immunohistochemistry studies (Funaki et al., 2001). A knock-out mouse model showed no 574 

overt abnormality during embryogenesis (Brandau et al., 2002; Nakamichi et al., 2003). 575 

Analysis of expression databases revealed that LECT1 is expressed in the inner retina, 576 
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photoreceptors, BCs, ACs and RGCs and that its expression appears to be reduced in 577 

Bhlhe23
−/−

 mice (Woods et al., 2018).  578 

4.4.1. Single cell analyses of DEGs in subpopulation of bipolar cells 579 

To investigate in which BCs (rod BCs, cone ON- or OFF-BCs) the more abundant DEGs 580 

were expressed, our data was compared to a single-cell BC-specific transcriptome database 581 

(Shekhar et al., 2016). We found that most genes were enriched in rod BCs and cone ON-582 

BCs, but some were also expressed in OFF-BCs (BC1-4 = OFF-BCs, BC5-BC7 = ON-BCs 583 

(Figure 9). These data are further explored below for genes where additional functional 584 

information has been described previously.   585 

4.5. Pathway analyses of DEGs involved in CSNB and correlation with 586 

myopia 587 

In rare cases, subjects with mutations in NYX (Yip et al., 2013; Zhang et al., 2007; Zhou et al., 588 

2015), TRPM1 (Zhou et al., 2016) and GRM6 (Jin et al., 2017; Xu et al., 2009) present with 589 

early-onset high myopia despite the absence of documented cCSNB diagnosis. However, it is 590 

believed that most mutations in NYX, LRIT3, TRPM1, GRM6 and GPR179 are not directly 591 

responsible for high myopia. Instead, it is hypothesized that myopia in cCSNB is caused by a 592 

disruption of the ON-pathway (Chakraborty et al., 2015). Our analysis revealed that mitogen-593 

activated protein kinase (MAPK) pathways, synaptic signaling, G protein-coupled 594 

receptor ligand binding pathways, and proteins implicated in eye, endoderm and 595 

connective tissue development were affected in cCSNB (Figure 10A). Some of the genes 596 

appeared in multiple pathways (Figure 10B). In the following paragraphs we detail these 597 

genes and pathways and describe correlations between cCSNB and associated ocular 598 

alterations, focusing on myopia. When genes appeared in multiple pathways, they are 599 

described only once. In addition, we focus on genes with additional data available in the 600 

literature. These genes are highlighted in bold. A detailed description of all DEGs, their 601 



expression pattern in different cell types of the retina, their roles and putative involvement in 602 

myopia development can be found in the supplementary data and supplementary Tables S6 603 

and S7).  604 

4.5.1. MAPK pathway 605 

To our knowledge, the MAPK signaling pathway has not previously been implicated in 606 

cCSNB. In the normal retina, phosphorylated MAPKs are barely detectable. However, 607 

subjects and mice lacking functional retinoschisin (RS1) exhibit decreased ERG b-wave 608 

amplitudes and increased MAPK activation (Gehrig et al., 2007; Plossl et al., 2017). In 609 

addition, under certain pathological conditions, such as induced retinal ischemia, MAPKs are 610 

activated by phosphorylation in several retinal layers, including in the INL with a concomitant 611 

reduction of the b-wave amplitude (Zeitz et al., 2015). Interestingly, inhibitors of MAPK 612 

phosphorylation significantly normalized the b-wave amplitude after ischemia (Roth et al., 613 

2003). Although MAPK signaling in the retina has been investigated, its role in cCSNB and 614 

accompanying ocular manifestations are poorly understood. Fifteen DEGs associated with the 615 

MAPK pathway were identified: Ackr3/Cxcr7, Bdnf, Cacna1s, Casp7, Ccnjl, Cdc25c, 616 

Dusp4, Ldb2, Prkca, Ptprr, Spred3, Synj2, Tgfb2, Tpbg and Vgll4 (Figures 10 and 11).  617 

 618 

LRIT3 (MIM# 615004) encoding leucine-rich repeat, immunoglobulin-like, and 619 

transmembrane domain-containing protein 3 (LRIT3) is mutated in human subjects with 620 

cCSNB (MIM# 615058) and mice (Neuille et al., 2014). Interestingly, LRIT3 is itself a 621 

modulator of the fibroblast growth factor receptor 1 (FGFR1) (Kim et al., 2012), which also 622 

plays an important role in the MAPK signaling pathway, though not identified as such in 623 

pathway analyses. Phosphorylated FGFR1 regulates different signaling pathways including 624 

MAPK.  625 
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 626 

TGFB2 (MIM# 190220) encodes the transforming growth factor beta 2 (Supplementary 627 

Table S6 and S7, Figures 8-11). Mice lacking Tgfb2 exhibit perinatal mortality and a wide 628 

range of developmental defects, including congenital heart defects, skeletal defects and eye 629 

defects (Sanford et al., 1997), which suggests that TGFB2 also plays a role in eye 630 

development, albeit with a different outcome dependent on the species tested. Studies in tree 631 

shrews revealed that expression of Tgfb2 was reduced in animals with experimentally 632 

induced myopia (Jobling et al., 2004) but increased in the experimentally-induced myopia 633 

guinea pig model (Chen et al., 2013). Studies of human aqueous humor also found that 634 

levels of TGFB2 positively correlated with axial length in cases with myopia (Jia et al., 635 

2014). In addition, a genetic variant in TGFB2 (Lin et al., 2009) and the myopia Harmonize 636 

GAD database (Rouillard et al., 2016) linked TGFB2 to myopia (Supplementary Tables S6 637 

and S7). To our knowledge, a connection between down-regulation of TGFB2 in inner retinal 638 

cells, including rod BCs and cone ON-BCs, and myopia has not been previously established.  639 

 640 

BDNF (MIM# 113505) encoding brain-derived neurotrophic factor (B)DNF (Supplementary 641 

Table S6 and S7, Figures 8-11) serves as a survival, mitogenic, and differentiation factor in 642 

both the developing and adult central and peripheral nervous systems (reviewed in (Klocker et 643 

al., 2000)). The cellular effects of neurotrophins are mediated by the activation of Trk tyrosine 644 

kinase receptors and the p75 receptor. Upon binding to these receptors, neurotrophins are 645 

known to activate various intracellular signal transduction pathways, including the MAPK 646 

pathway (Figure 11), which affect cell survival and cell death mechanisms. BDNF is 647 

expressed in the inner retina (Herzog and von Bartheld, 1998) including all bipolar cells 648 

(Supplementary Table S6, Figures 8 and 9). Its neuroprotective and healing properties in these 649 



cells are well known (Afarid et al., 2016). Several polymorphisms in BDNF have been 650 

associated with myopia (Musolf et al., 2017). In addition, BDNF appeared in the myopia 651 

Harmonize GAD database (Rouillard et al., 2016) (Supplementary Table S6 and S7, Figure 652 

8).  653 

 654 

ACKR3 (MIM# 610376), also known as CXCR7, and located on chromosome 2q37.3, 655 

encodes the atypical chemokine receptor 3. It is expressed in several regions of the CNS, in 656 

endothelial and various immune cells (Salazar et al., 2014), as well as in retina 657 

(Supplementary Table S6, Figures 8-11). ACKR3 is able to heterodimerize with CXCR4, 658 

which increases ligand stimulated membrane recruitment of β-arrestin, thus causing 659 

sustained activation of the ERK1/2 and p38 MAPK signaling pathways (Quinn et al., 2018) 660 

(Figure 11). Interestingly, ACKR3/ CXCR7 was linked to myopia in a mapped region on 661 

chromosome 2q37 (Figure 8) (Schache et al., 2009). A few mutations in ACKR3 have been 662 

shown to cause oculomotor synkinesis, characterized by involuntary eye movements in 663 

mouse and humans (Whitman et al., 2019).  664 

 665 

CACNA1S (MIM# 114208), coding for the L-type voltage-dependent calcium channel, alpha-666 

1S subunit, is required for normal skeletal and cardiac muscle function (Elbaz et al., 1995)). 667 

CACNA1S is homologous to other calcium channel alpha-1 subunits, such as CACNA1F 668 

(Cav1.4), which is mutated in subjects with incomplete CSNB (Bech-Hansen et al., 1998; 669 

Strom et al., 1998). In the retina, Cacna1s was found to be expressed in BCs and more 670 

recently in cones and rods (Supplementary Table S6, Figures 8-11). Initially, it was thought to 671 

localize in dendritic tips of ON-BCs, similar to other genes implicated in cCSNB (Specht et 672 

al., 2009; Tummala et al., 2014) but its exact protein localization in the retina remains 673 



27 
 

unclear, since commercially available CACNA1S antibodies have been shown to cross-react 674 

with GPR179 (Hasan et al., 2016), which is localized at the dendritic tips of ON-BCs. 675 

Calcium channels and their subunits in general have been linked to MAPK signaling (Ikeda, 676 

2001) (Figure 11). L-type voltage-gated calcium channels in both retinal photoreceptors and 677 

bipolar neurons are under circadian control (Hull et al., 2006; Ko et al., 2009; Ko et al., 678 

2007).  679 

 680 

PRKCA (MIM# 176960) encodes protein kinase C, alpha (PKCalpha, PRKCA), which is a 681 

calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-682 

protein kinase (Supplementary Table S6, Figures 8-11). It is involved in regulation of cell 683 

proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac 684 

hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating 685 

targets or activating signaling cascades involving ERK1/2 (Figure 11). In the retina, PRKCA 686 

present at glutamatergic rod-BC synapses could act as a molecular switch to trigger 687 

intracellular signaling cascades in response to the activation of G-protein-coupled receptors 688 

(Woods et al., 2018). Its role in activating MAPK pathways or in cCSNB have not been 689 

studied. We found reduced expression of Prkca in cCSNB models by RNA-Seq and validated 690 

it by RT-qPCR (Figure 6). In addition, we showed a trend for reduced PRKCA protein levels 691 

in Gpr179
-/-

 and Lrit3
-/-

 mice (Figure 12). PRKCA expression at both transcript and protein 692 

levels in Grm6
-/-

 mice was more variable (compare Figure 6 and Figures 12). A reduced 693 

PRKCA immunofluorescent labeling was also seen in Gpr179
-/- 

and Lrit3
-/-

 mice (Figure 13).  694 

 695 

PTPRR (MIM: 602853) encoding protein-tyrosine phosphatase receptor type R, (PTPRR) 696 

was found to be expressed in many different retinal cells including in rod BCs and cone ON-697 



BCs (Supplementary Table S6 and S7, Figures 8-11). PTPRR has been implicated in MAPK 698 

deactivation in the brain (for review (Chirivi et al., 2007)). Mice lacking Ptprr showed 699 

increased phosphorylation of ERK1/2 in Purkinje cells and impaired motor coordination 700 

(Chirivi et al., 2007). In the retina, PTPRR was suggested to play an important role in 701 

neuronal development and maintenance of the mature retina (Horvat-Brocker et al., 2008). 702 

Mutations in PTPRR could be involved in the development of myopia by a change in the 703 

enzyme’s ability to bind to, or dephosphorylate MAPK, leading to increased MAPK growth 704 

signals. Increased expression of PTPRR in rapidly growing fetal retina and choroid may be 705 

the result of normal developmental or growth regulation, suggesting that PTPRR plays a role 706 

in controlling ocular growth. Disruption of this protein’s function may account for the rapid 707 

eye growth seen in highly myopic individuals during early childhood, which slows in 708 

adulthood. As growth decreases, the need for this protein would be reduced (Hawthorne et al., 709 

2013). In addition, PTPRR was identified by GWAS as linked to myopia (Supplementary 710 

Table S6 and S7).  711 

 712 

TPBG (MIM# 190920), encoding trophoblast glycoprotein (Supplementary Table S6 and S7, 713 

Figures 8-11), was found to activate MAPK signaling in smooth muscle cells and adventitial 714 

pericyte-like cells (Spencer et al., 2019). TPBG is directly connected to ACKR3 (CXCR7; 715 

see above). Indeed, TPBG silencing downregulated phosphorylated ERK and ACKR3. In the 716 

retina, TPBG is highly expressed by rod-BCs, where it has been shown to exhibit PRKCA-717 

dependent phosphorylation (Wakeham et al., 2020; Wakeham et al., 2019). TPBG 718 

phosphorylation was decreased in Prkca
-/-

 compared to wild-type mice. Our studies revealed 719 

lower expression of Tpbg at the mRNA level, and a trend of lower protein levels in all cCSNB 720 

mouse strains (Figures 7 and 12). In addition, TPBG immunofluorescence was severely 721 
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reduced in the OPL and inner part of the IPL representing the dendritic tips and synaptic 722 

terminals of rod-BCs, in mice lacking Lrit3 and Gpr179 (Figure 13).  723 

 724 

VGLL4 (MIM# 6186962) encodes vestigial-like family member 4 (Supplementary Table S6 725 

and Figures 8-11). Studies in zebrafish (Xue et al., 2018), xenopus (Barrionuevo et al., 2014; 726 

Faucheux et al., 2010) and mice suggested that VGLL4 takes part in early embryonic 727 

development, including eye development. Interestingly, this gene is a part of the Hippo 728 

signaling pathway, which has also been implicated in myopia (Zhu et al., 2018).  729 

 730 

DUSP4 (MIM# 602747 alias MKP-2), located on chromosome 8p12, codes for dual-731 

specificity phosphatase 4 (Guan and Butch, 1995). It belongs to the DUSP protein family that 732 

inactivates their target kinases, namely MAPKs, by dephosphorylating both 733 

phosphoserine/threonine and phosphotyrosine residues. Expression of DUSP proteins is 734 

induced by various extracellular stimuli, and has diverse tissue distribution and subcellular 735 

localization (Dickinson and Keyse, 2006; Patterson et al., 2009). In melanocytes, DUSP4 736 

expression may be regulated by the microphthalmia-associated transcription factor (MITF), 737 

which is a melanocytic lineage-specific transcription factor with a role in the development of 738 

malignant melanoma. Similarly, MITF regulates TRPM1 expression, which is implicated in 739 

both cCSNB and melanoma-associated retinopathy (MAR) (Hoek et al., 2008; Li et al., 2009; 740 

van Genderen et al., 2009; Varin et al., 2020; Xiong et al., 2013). Targeting the MAPK 741 

signaling pathway has transformed the treatment of metastatic melanoma. It has been recently 742 

shown that the genetic inactivation of DUSP4 reduced the proliferation of melanoma cells, 743 

thus making DUSP4 an interesting therapeutic target (Christodoulou et al., 2021). DUSP4 is 744 

expressed in different tissues, including the eye, and more importantly in retinal BCs 745 



(Supplementary Table S6, Figures 8-11). In tissues other than the retina, DUSP4 was mainly 746 

localized to the nucleus and found to be induced by multiple agents, including serum, growth 747 

factors, UV-light, and oxidative stress. Depending on the tissue, it dephosphorylates 748 

MAPKs, such as ERK, JNK or p38 (Figure 11). In addition, DUSP4 was shown to play a role 749 

in innate and adaptive immunity, in cancer, and in brain function (Lawan et al., 2012; 750 

Seternes et al., 2019). Supporting our RNA-Seq findings, a significant downregulation of 751 

Dusp4 expression was found in Lrit3
-/-

 and Gpr179
-/-

 mice by RT-qPCR and a trend was noted 752 

in Grm6
-/-

 mice (Supplementary Figure 1). In Trpm1
-/-

 mice, significantly reduced expression 753 

of Dusp4 was also observed (Supplementary Figure 1). These findings were confirmed at the 754 

protein level, but with more variability (Figure 12). Western blot analyses of retinal extracts 755 

from wild-type mice revealed a band at 43 kDa, the calculated molecular weight of DUSP4. 756 

This band was absent in Dusp4
-/- 

mice (data not shown). The role of DUSP4 in the retina is 757 

largely unknown. Transcriptional profiling of endogenous germ layer precursor cells 758 

identified Dusp4 as an essential gene in zebrafish endoderm specification (Brown et al., 759 

2008). Although most of the vertebrate eye is derived from the ectoderm (Bassnett and Sikic, 760 

2017), zebrafish Dusp4 morphants had small necrotic heads, suggesting an essential role of 761 

DUSP4 in anterior development (Brown et al., 2008). However, the role of DUSP4 in eye 762 

development was not further described. Interestingly, in well-established models of refractive 763 

error induction, Dusp4 appeared to be down-regulated in the eye upon inductions of both 764 

FDM and LIM in chicks and mice (McGlinn et al., 2007; Stone et al., 2011; Tkatchenko et al., 765 

2016). Subjects with an 8p deletion, which includes the 8p12 DUSP4, often present with eye 766 

defects including nystagmus, strabismus and myopia, among other clinical syndromes 767 

(https://www.rarechromo.org/media/information/Chromosome%20%208/8p%20interstitial%2768 

0deletions%20including%208p12%20FTNP.pdf) (e.g. (Beighle et al., 1977; Chilcote et al., 769 

1987; Devriendt et al., 1999; Klopocki et al., 2006)). Such defects are also found in cCSNB 770 
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cases. Together, these findings suggest that DUPS4 may be one of the genes that underlies 771 

cCSNB-related high myopia (Supplementary Table S6, Figure 8). 772 

 773 

4.5.2. Synapse  774 

Several signaling pathways involved in synaptic transmission were strongly associated with 775 

cCSNB (Figure 10A), including glutamatergic, serotonergic, cholinergic and GABAergic 776 

(gamma-aminobutyric acid) signaling. GABA is one of the major inhibitory neurotransmitters 777 

of the retina and central nervous system (Cheng et al., 2011). Twelve DEGs were associated 778 

with GABAergic signaling: Ackr3/Cxcr7, Cacna1s, Car8, Edn2, Gabrr1, Gng4, Grm6, 779 

Prkca, Ptprr, Rgs16, Tac2 and Trpc1 (Figure 10A). A detailed description of their expression 780 

in the different cell types of the retina, focusing on the inner retina, as well as their function 781 

and possible involvement in myopia can be found in the supplementary data (Supplementary 782 

Tables S6 and S7) and Figure 8).  783 

 784 

GABRR1 (MIM# 137161), coding for the gamma-aminobutyric acid receptor, rho-1 785 

(GABRR1) (alternatively named GABA-C Receptor, rho-1 subunit), is a member of a family 786 

of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in 787 

the central nervous system (Cutting et al., 1991). It represents one of the subunits of the 788 

GABA-C receptor (rho1-rho3) (e.g. (Enz, 2001)) expressed in the inner retina in cone 789 

photoreceptors, bipolar cells and horizontal cells (Supplementary Table S6, Figures 8 and 9). 790 

In addition, GABRR1 was found to be differentially expressed in bipolar cell-deficient 791 

Bhlhe23
−/−

 mice (Woods et al., 2018). Mice deficient for the Gabrr1 subunit lacked GABA-C 792 

receptor-mediated GABA-evoked responses, and signaling from rod BCs to third order cells 793 

was altered (McCall et al., 2002). The elimination of GABRR1 was demonstrated to result in 794 



the absence of GABA-C receptors in the retina. While global retinal morphology was not 795 

affected and the scotopic electroretinogram revealed a normal shape of the a-wave (rod-796 

function) and b-wave (mainly rod-BC function), the implicit time of the b-wave was shorter 797 

and more oscillatory potentials (OPs) were found in mice lacking Gabrr1 (McCall et al., 798 

2002). It has been suggested that some of the OPs are generated by a negative feedback loop 799 

in the IPL between the GABAergic ACs and the axon terminals of rod BCs (Kolb and Nelson, 800 

1981), which may indicate that the altered ERG is due to a transmission defect between ACs 801 

and rod BCs. Together, these findings confirm that GABRR1 has an important function in 802 

normal visual processing. Several studies identified an association between GABRR1 and 803 

myopia (Supplementary Table S6 and Figure 8). A genome-wide association study identified 804 

GABRR1 as one of the genes associated with refractive error in Asian populations (Fan et al., 805 

2016; Lin et al., 2020). TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid)), a 806 

GABA-C antagonist has been shown to inhibit synaptic transmission in rat spinal cord (Rozzo 807 

et al., 1999), modulate sleep-waking behavior in rats (Arnaud et al., 2001), enhance memory 808 

in chicks (Gibbs and Johnston, 2005) and most importantly, inhibit myopia development in 809 

chicks and guinea pigs (Chebib et al., 2009; Cheng et al., 2014; Stone et al., 2003), indicating 810 

possible roles for GABA-C receptors in memory, circadian rhythms, and myopia (Cheng et 811 

al., 2011). Although GABA-C receptors are pentameric structures formed from three possible 812 

subunits, the rho1 subunit, encoded by Gabrr1, was found to be the primary target of GABA-813 

C antagonists (cis- and trans-(3-aminocyclopentanyl)butylphosphinic acid (cis- and trans-3-814 

ACPBPA) inhibiting myopia (Chebib et al., 2009). In addition to its expression in the retina, 815 

Gabrr1 is also expressed in the fibrous and cartilaginous layers of the chick sclera, where it is 816 

localized to the sclera fibroblasts and chondrocytes, which have been previously connected to 817 

myopia (Cheng et al., 2011). Together, these findings are consistent with reduced levels of 818 
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Gabrr1 expression in cCSNB (Figure 6), as a possible cause for the development of high 819 

myopia in cCSNB.  820 

 821 

CA8 (MIM# 114815) and its mouse orthologue Car8, encoding carbonic anhydrase VIII 822 

(CA8), has been found to be important for GABAergic synaptic transmission. Car8 is mainly 823 

expressed in the inner retina, with some expression in cone photoreceptors (Supplementary 824 

Table S6, Figures 8 and 9). In addition, it was found to be differentially expressed in 825 

Bhlhe23
−/−

 mice (Woods et al., 2018). Car8 has been mostly studied in the brain, where it is 826 

highly expressed in cerebellar Purkinje neurons (Jiao et al., 2005; Kato, 1990) and other parts 827 

of the brain (Lakkis et al., 1997). Mice lacking functional Car8 (Jiao et al., 2005) show gait 828 

ataxia and dystonia with some ultrastructural differences in synapses between Purkinje cell 829 

dendritic spines, indicating a role for carbonic anhydrase VIII in synapse formation and/or 830 

maintenance. Similarly, subjects with mutations in CA8 exhibit ataxia and mild mental 831 

retardation (Turkmen et al., 2009). Recent studies in mouse retina showed CAR8 832 

immunolabelling in rod BCs co-labelled for PRKCA, with particular bright staining in the 833 

axon terminal regions and weaker staining in the cytoplasmic compartments (Puthussery et 834 

al., 2011). In addition, some labelling was observed in a subset of cone BCs and GABAergic 835 

ACs (Puthussery et al., 2011). Mice lacking Car8 do not have a CSNB phenotype, as 836 

measured by electroretinography, but light-evoked current responses from AII-ACs were 837 

significantly larger and more prolonged than in control mice, suggesting that CAR8 is 838 

important for modulating retinal neurotransmission (Puthussery et al., 2011). Interestingly, 839 

genome-wide association studies found a potential association between CA8 and myopia 840 

(Kiefer et al., 2013) (Supplementary Table S6 and Figure 8). The reduced expression of Car8 841 

in Gpr179
-/-

 and Lrit3
-/-

 mice, as identified by RNA-Seq studies, was confirmed by RT-qPCR 842 

and at the protein level (Figures 6 and 12).  843 



 844 

GRM6 (MIM# 604096) encodes metabotropic glutamate receptor 6 (GRM6 or mGluR6), 845 

which has been well described as causing cCSNB when mutated (Dryja et al., 2005; Zeitz et 846 

al., 2005) and which we used here as a mouse model (Masu et al., 1995) to identify DEGs in 847 

cCSNB. Grm6 seems to be the only “cCSNB gene” with a significantly reduced expression in 848 

other cCSNB models (here Lrit3
-/-

), indicating that the expression of Lritr3 may influence 849 

Grm6 transcript levels. Grm6 is uniquely expressed in ON-BCs, where the ON-visual 850 

pathway originates (Supplementary Table S6) (Zeitz et al., 2015). As mentioned above, 851 

several studies have described mutations in GRM6 (Jin et al., 2017; Xu et al., 2009) that have 852 

been associated with early-onset high myopia despite undocumented cCSNB (Supplementary 853 

Table S7, Figure 8).  854 

 855 

RGS16 (MIM# 602514) encodes regulator of G-protein signaling 16, which is expressed in 856 

the inner retina (Dhingra et al., 2008) (Supplementary Table S6 and Figures 8 and 9) and 857 

differentially expressed in Bhlhe23
−/−

 mice (Woods et al., 2018). While other regulatory 858 

proteins such as GNB5 (GTP-binding protein beta 5), RGS9 and RGS11 are known to be 859 

implicated in ON-BC signal transduction, the role of RGS16 in this signaling cascade remains 860 

to be elucidated. Further, we are not aware of a link between RGS16 and retinal disorders, 861 

including myopia. Genome-wide association studies revealed a variant in this gene associated 862 

with circadian rhythms in individuals claiming to be morning persons (Hu et al., 2016). 863 

Interestingly, Rgs16
-/-

 mice were shown to have a longer circadian period (Doi et al., 2011).  864 

 865 

EDN2 (MIM# 131241) encodes endothelin2 (EDN2). Edn2 is one the few genes expressed at 866 

higher levels in cCSNB mouse strains compared to the wild-type mice (Supplementary Table 867 
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S6, Figures 5 and 10A). It was found to be a potent vasoconstrictor that binds to two G 868 

protein-coupled receptors, i.e., EDNRA (which resides on bipolar dendrites) and EDNRB 869 

(which is present on Mueller and horizontal cells). Both receptors are also present on 870 

choroidal vessels (Prasanna et al., 2003). Interestingly, it has been shown that Edn2 was also 871 

up-regulated in the retina of several models of photoreceptor degeneration (Chen et al., 2004; 872 

Cottet et al., 2006; Rattner and Nathans, 2005; Van Schil et al., 2016), as well as following 873 

retinal damage, such as retinal detachment (Rattner and Nathans, 2005; Zacks et al., 2006). 874 

These observations suggest that increased expression of Edn2 may be a general response to 875 

retinal insult (reviewed in (Bramall et al., 2013)). EDN2 was linked to myopia by a recent 876 

genome-wide association study (Tedja et al., 2018), suggesting its increased expression as a 877 

potential cause of cCSNB-related myopia (Supplementary Table S6 and Figure 8).  878 

 879 

LRP2BP (MIM# 619020) encodes low density lipoprotein receptor-related protein 2b 880 

(LRP2B). We are including it here among BC synaptic proteins because of its apparent retinal 881 

localization  (Woods et al., 2018) (Supplementary Table S6 and Figure 8). LRP2BP is a 882 

scaffold protein, known to bind and recruit proteins to the megalin receptor (LRP2), which 883 

participates in endocytosis and signal transduction (Petersen et al., 2003). Interestingly, 884 

mutations in LRP2 cause the Donnai-Barrow/Facio-Oculo-Acoustico-Renal syndrome, which 885 

is partially characterized by high-grade myopia (Kantarci et al., 2007; Stora et al., 2009). 886 

Histological investigations of ocular mouse tissues also identified a severe myopia phenotype 887 

in megalin-deficient mice (Storm et al., 2014) and suggested that LRP2 is required for normal 888 

eye growth (Cases et al., 2015). Similarly, a zebrafish model for Lrp2 developed myopia 889 

(Veth et al., 2011). Even more importantly, LRP2BP is located on chromosome 4q35.1, a 890 

region deleted in cases with high myopia, among other disorders (Manolakos et al., 2013; 891 

Rossi et al., 2009) (Figure 8).  892 



 893 

SLCO5A1 (MIM# 613543) encoding solute carrier organic anion transport family, member 894 

5A1 (SLCO5A1), was also included in this section, because of a recent finding suggesting 895 

that this protein is an important component of retinal synapses and appears to be localized in 896 

the OPL (Woods et al., 2018). It is not clear if it is also located elsewhere in the retina 897 

(Supplementary Tables S6 and Figure 8). Subjects with the mesomelia-synostoses syndrome 898 

have many extraocular disorders but may also present with myopia. This syndrome is due to a 899 

non-recurrent microdeletion on chromosome 8q13 encompassing SULF1 and SLCO5A1 900 

(Isidor et al., 2010) (Figure 8). 901 

 902 

4.5.3. GPCR ligand binding 903 

Signaling related to G protein-coupled receptor ligand binding was also overrepresented in 904 

our database. Twelve different genes were associated with G protein-coupled receptor ligand 905 

binding, i.e., Ackr3/Cxcr7, Bdnf, Edn2, Gng4, Grm6, Plekhf1, Prkca, Tac2, Tgfb2, Tpbg, 906 

Trpc1 and Umodl1 (Figure 10). A description of their expression patterns in different cell 907 

types of the retina, focusing on the inner retina, and their putative role in myopia can be found 908 

in the supplementary data (Supplementary Tables S6 and S7 and Figure 8).  909 

 910 

One of these genes, UMODL1 (MIM# 613859) encodes an extracellular matrix adhesion and 911 

cellular migration uromodulin-like 1 protein (UMODL1) (Di Schiavi et al., 2005; Shibuya et 912 

al., 2004). It is known to be expressed in olfactory and vomeronasal sensory neurons (Di 913 

Schiavi et al., 2005). It is also present in retina gene expression databases, but the specific cell 914 

types expressing Umodl1 remain unknown. UMODL1 was found to be associated with 915 



37 
 

myopia in a genome-wide association study (Nishizaki et al., 2009) (Supplementary Tables 916 

S6, S7 and Figure 8).  917 

  918 

4.5.4 Eye, endoderm, and connective tissue development  919 

The vertebrate eye is a complex organ. Its development is guided by highly organized 920 

processes that take place during embryonic development, and mutations in key genes involved 921 

in these processes lead to severe congenital disorders as well as myopia (Graw, 2010). Several 922 

DEGs identified in cCSNB mouse models were associated with eye, endoderm and 923 

connective tissue development, including Arc, Bdnf, Cacna1s, Cnmd/Lect1, Col5a1, Eomes, 924 

Etv4, Dusp4, Grm6, Olfm3, Prkca, Spred3, Tgfb2, Unmodl1 and Vgll4 (Supplementary 925 

Tables S6 and S7, Figures 7 and Figure 10).  926 

 927 

ARC (MIM# 612461) encodes the activity-regulated cytoskeleton-associated protein (ARC) 928 

(Supplementary Table S6 and Figure 8). ARC mRNA is rapidly produced and delivered into 929 

dendrites following synaptic activity in neurons (Dynes and Steward, 2007). Interestingly, its 930 

expression in rodent brains is robustly induced by prolonged wakefulness (Cirelli and 931 

Tononi, 2000). Converging evidence has led to the hypothesis that wakefulness potentiates, 932 

and sleep reduces, synaptic strength. Recently, ARC was demonstrated to be important for 933 

the induction of multiple behavioral and molecular responses associated with sleep 934 

homeostasis (Suzuki et al., 2020).  935 

 936 

COL5A1 (MIM# 120215) encodes the type V collagen alpha-1 (COL5A1) protein, which 937 

belongs to group V and XI collagens. These collagens control fibrillogenesis, probably by 938 



forming a core within the fibrils. Another characteristic of these collagens is the partial 939 

retention of their N-propeptide extensions (Fichard et al., 1995).  Collagen V was found to be 940 

expressed in the human placenta and skin, but later studies showed that it is also present in 941 

other organs. Our transcriptome meta-analyses revealed that Col5a1 is expressed in rods and 942 

in BCs in the retina (Supplementary Table S6 and Figure 8). Mutations in COL5A1 were 943 

found in subjects with the classic type 1 Ehlers-Danlos syndrome (MIM#130000). Ehlers-944 

Danlos syndromes (EDS) are a group of heritable connective tissue disorders that share the 945 

common features of skin hyperextensibility, articular hypermobility, and tissue fragility. The 946 

main features of classic Ehlers-Danlos syndrome are loose-jointedness and fragile, bruisable 947 

skin that heals with peculiar 'cigarette-paper' scars (Beighton, 1970). Ophthalmic clinical 948 

features have also been described, including retinal detachment (Pemberton et al., 1966) and 949 

high pathologic myopia (Gharbiya et al., 2012; Perez-Roustit et al., 2019). 950 

 951 

EOMES (MIM# 604615) encodes eomesodermin (EOMES), also called Tbr2. It is directly 952 

regulated by Brn3b and is important for RGC development (Mao et al., 2008). In agreement 953 

with these observations, our gene expression data revealed that Eomes is mainly expressed in 954 

the inner retina and more specifically, in RGCs (Supplementary Table S6 and Figure 8). 955 

Homozygous silencing of EOMES leads to microcephaly with polymicrogyria and corpus 956 

callosum agenesis (Baala et al., 2007). We are not aware of a retinal phenotype in subjects 957 

with this gene defect; however, mice lacking Eomes (alias Trpb2) have reduced retinal 958 

projections to non-image-forming brain nuclei and an attenuated pupillary light reflex 959 

(Sweeney et al., 2014). Interestingly, subjects with CSNB have a reduced redilation and 960 

smaller baseline pupil diameters, suggesting a disinhibition of intrinsically photosensitive 961 

RGCs due to affected post-photoreceptor transduction via BCs (Schatz et al., 2019).  962 
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 963 

OLFM3 (MIM# 607567), encoding olfactomedin 3, is a downstream target of PAX6, which 964 

plays a critical role in eye development (Grinchuk et al., 2005). Although the function of 965 

OLFM3 is not yet understood, it may be involved in cell-cell adhesion and cell attachment to 966 

the extracellular matrix, and affect cell migration and axon growth (Grinchuk et al., 2005). 967 

Our gene expression data revealed that Olfm3 is expressed in ACs in the retina 968 

(Supplementary Table S6 and Figure 9). OLFM3 was also implicated in glaucoma and 969 

myopia (Supplementary Table S6 and Figure 8) (Podkolodnaya et al., 2011). 970 

 971 

4.5.5. Genes not associated with any pathway, unknown function and limited amount of 972 

expression in the retina 973 

Several not confirmed but annotated mouse genes (5730419F03Rik, Dbhos (dopamine beta 974 

hydroxylase, opposite strand, long coding RNA), Gm20754, Gm40477, Gm49760 and 975 

Gm5478) of unknown function and only limited information about their retinal expression 976 

patterns were differentially expressed in several cCSNB mouse lines (Supplementary Table 977 

S6). Two genes (5730419F03Rik and Gm20754) appeared to be also differentially expressed 978 

in mice lacking Bhlhe23. In addition, 5730419F03Rik is most likely expressed in the inner 979 

retina, suggesting that it may have a role in inner retinal signaling. Interestingly, Dbhos was 980 

also differentially expressed in mice exposed to blue light (Ouyang et al., 2020). Future 981 

studies aimed at investigating the exact cellular expression patterns of these genes and their 982 

roles in the retina, as well as identification of the human orthologs will shed light on their 983 

contribution to retinal pathophysiology.  984 

Although some information is available about the expression in the retina of the following 985 

DEGs, AFAP1L1 (MIMI# 614410), Pdzph1, PLEKHF1 (MIM# 615200), ST6GALNAC5 986 



(MIMI# 610134) and MAST2 (MIM# 612257) (Supplementary Table S6, supporting 987 

material), their roles in retinal physiology and possible pathologies remains to be elucidated. 988 

 989 

4.5.6 Other genes from myopia databases that are differentially regulated in at least one 990 

mouse model with cCSNB 991 

Several other genes identified in myopia databases appear to be significantly differentially 992 

expressed as determined by RNA-Seq analyses in at least one mouse model of cCSNB 993 

(Supplementary Tables S6 and S7 and Figure 8).  994 

 995 

 996 

5. Cause of reduced expression of many DEGs in cCSNB 997 

Reduced expression of DEGs and their respective proteins in cCSNB may be due to reduced 998 

expression levels or a lower number of cells expressing the DEGs. Genes implicated in 999 

cCSNB share a common phenotype, namely an ON-BC signaling defect. Although the 1000 

morphology of the retina in human subjects and animal models with cCSNB is believed to be 1001 

non-degenerative and stable, subtle cellular changes have been described in mice lacking 1002 

Lrit3 and Trpm1 (Neuille et al., 2014; Takeuchi et al., 2018). SD-OCT revealed thinning of 1003 

the INL, IPL, GCL, and nerve fiber layer in Lrit3
-/-

 mice 
 
(Neuille et al., 2014). This was not 1004 

found in Gpr179
-/- 

mice (Orhan et al., 2021). Interestingly, rod BC terminals were 1005 

significantly smaller in Trpm1
-/-

 retinas than in Grm6
-/-

 retinas, suggesting that deficiency of 1006 

TRPM1, but not GRM6 affects rod BC synaptic terminal maturation and alter signaling 1007 

between rod BCs and ACs (Kozuka et al., 2017). 1008 
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Notably, we found that Prkca transcripts were reduced in cCSNB retinas, and that, similar to 1009 

TPBG, the level of PRKCA protein, which is specifically localized to rod BCs, was greatly 1010 

reduced in Gpr179
-/-

 and Lrit3
-/-

 mice, but not in Grm6
-/-

 mice (Figure 13), while the numbers 1011 

of nuclei present in the INL were unaffected (Figure 14). Visualizing synapses with a protein-1012 

independent marker needs to be performed to evaluate if the lower amounts of PRKCA and 1013 

TPBG are due to morphological changes in rod BCs, particularly their synaptic terminals. 1014 

Similarly, we found that levels of DA and DOPAC were also reduced in cCSNB retinas. 1015 

Since the number of nuclei in the INL (Figure 14), remained unchanged in the cCSNB mouse 1016 

models, and reduction of TH-positive dopaminergic amacrine cells was not significantly 1017 

different in cCSNB compared to wild-type mice (tested for Gpr179
-/-

 versus Gpr179
+/+

) 1018 

(Figure 15), we conclude that the reduced expression of some genes in cCSNB, as well as the 1019 

reduction in DA and DOPAC levels are not due to degeneration of retinal cells, but may be 1020 

linked to altered synapse morphology and/or lower RNA expression and/or reduced protein 1021 

levels. We speculate that the absence of cCSNB genes such as Gpr179 and Lrit3, leads to the 1022 

classical ERG-defect but that other differentially regulated genes may contribute to myopia in 1023 

those subjects with cCSNB. Similarly, exposure to reduced light levels in genetically 1024 

unaffected individuals may also lead to lower expression of these genes and thus to myopia.  1025 

 1026 

6. Future perspectives 1027 

6.1. Identification of differentially expressed genes in cCSNB models using a whole 1028 

transcriptomic approach may yield novel proteins important for retinal signaling, as 1029 

well as novel myopia-related genes 1030 

Mutations in NYX, GRM6, GPR179, TRPM1 and LRIT3 likely lead to cCSNB because the 1031 

encoded proteins are necessary for ON-BC signaling (Audo et al., 2012; Bech-Hansen et al., 1032 



2000; Dryja et al., 2005; Li et al., 2009; Peachey et al., 2012; Pusch et al., 2000; van 1033 

Genderen et al., 2009; Varin, 2020; Zeitz et al., 2013; Zeitz et al., 2005). The retina of cCSNB 1034 

human subjects is generally well preserved and the disease course is non-progressive. The 1035 

proteins are localized in the outer plexiform layer and, in most cases, in the dendritic tips of 1036 

rod BCs and cone ON-BCs (Zeitz et al., 2015). Mouse models of cCSNB show a similar ON-1037 

BC transmission defect as human cases. The diagnosis is confirmed by an electronegative 1038 

waveform at the full-field electroretinogram with severely reduced or absent b-wave under 1039 

scotopic and photopic conditions, reflecting defective ON-pathway signaling (Zeitz et al., 1040 

2015). Candidate genes causing this disorder have been identified by linkage analyses in 1041 

humans, using animal models, and more recently, by next-generation sequencing approaches 1042 

(e.g.(Audo et al., 2012; Pusch et al., 2000; Varin, 2020; Zeitz et al., 2013; Zeitz et al., 2005)), 1043 

with the help of transcriptomic data-bases to reinforce candidate genes (Zeitz et al., 2015). 1044 

Recently, Woods et al. used comparative transcriptomic analyses in a mouse model lacking 1045 

the rod BC transcription factor Bhlhe23 (also known as BHLHB4 or basic helix-loop-helix 1046 

family member, b4), to identify potential genes implicated in CSNB (Woods et al., 2018). The 1047 

phenotype of Bhlhe23
-/-

 mice is slightly different than that of cCSNB. Although both 1048 

phenotypes are stationary, rod BCs are almost completely absent in mice lacking Bhlhe23, 1049 

resulting in a thinner INL but the cone pathway is not affected; thus Bhlhe23
-/-

 mice have an 1050 

isolated rod BC defect, while both, rod BC and cone ON-BC functions are affected in 1051 

cCSNB. This is also reflected by the b-wave amplitude only being affected under scotopic, 1052 

but not photopic conditions in Bhlhe23
-/-

 mice (Bramblett et al., 2004). While the phenotype 1053 

of Bhlhe23
-/-

 mice is different from cCSNB, night vision may indeed be affected. To date, 1054 

however subjects with mutations in BHLHE23 and a similar phenotype have not been 1055 

described (Woods et al., 2018). This might be due to the fact that only scotopic vision is 1056 

affected, and ERG recordings are required to detect such a phenotype in affected subjects. 1057 
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Because of the absence of rod BCs, one might expect that some of the genes differentially 1058 

expressed in Bhlhe23
−/−

 mice may be important for night vision. However, expression of only 1059 

a few of the “cCSNB-genes” was significantly reduced in Bhlhe23
−/−

 mice compared to wild-1060 

type mice. Furthermore, mice deficient for genes expressed at lower levels, such as mice 1061 

lacking Car8, did not exhibit a typical cCSNB phenotype (Puthussery et al., 2011). This is 1062 

consistent with our findings, indicating that while these approaches may identify novel 1063 

candidates for cCSNB this is not necessarily the case. 1064 

It is important to note that cCSNB is characterized not only by night blindness, but also by 1065 

high myopia, nystagmus and often strabismus. Strikingly, since cCSNB is present from birth 1066 

and young subjects are often not aware of their vision defects in dim light conditions, they are 1067 

often first diagnosed due to their high myopia and/or infantile nystagmus. Thus, a main goal 1068 

of this work was to identify other genes implicated in the same pathway as proteins 1069 

underlying cCSNB and in that way identify additional candidates for the other associated 1070 

ocular abnormalities associated with cCSNB. Since myopia represents one of the most 1071 

common eye diseases worldwide, with increasing numbers of affected persons expected in 1072 

coming years, we focused our study on DEGs implicated in cCSNB and associated with 1073 

myopia.   1074 

 1075 

 1076 

 1077 

6.2. Retinal expression of DEGs, pathway analyses and correlation to eye phenotypes 1078 

To understand in which retinal cell types the 52 DEGs are expressed, we queried several 1079 

retina expression databases, including single cell transcriptome databases, as well as PubMed 1080 



(https://pubmed.ncbi.nlm.nih.gov/) and search tools such as “Google” 1081 

(https://www.google.com/) (Macosko et al., 2015; Shekhar et al., 2016; Siegert et al., 2012; 1082 

Siegert et al., 2009; Woods et al., 2018). These data showed that almost all 52 DEGs are 1083 

expressed in the human retina, including in photoreceptors, BCs, ACs and RGCs, but for only 1084 

a few of them was their retinal function described in the scientific literature (Supplementary 1085 

Table S6 and Figure 8). Several DEGs, expressed in various retinal cell types were found to 1086 

be associated with retinal disorders. For example, genes expressed in rods photoreceptors 1087 

have been implicated in rod-cone dystrophies. Another example are genes expressed in ON-1088 

BCs, for which the encoded proteins are localized at the dendritic tips, which have been 1089 

implicated in cCSNB (Zeitz et al., 2015). Variants in FRMD7 (MIM # 300628), coding for 1090 

Ferm domain-containing protein 7, which is expressed in ACs (Yonehara et al., 2016), are 1091 

associated with idiopathic nystagmus in mice and human subjects (MIM #310700) (Tarpey et 1092 

al., 2006). Thus, other genes expressed in ACs may also be linked to nystagmus. The 1093 

contribution of genes expressed in ACs to nystagmus was further substantiated in a study 1094 

with cCSNB humans and mice lacking functional nyctalopin (Winkelman et al., 2019). Thus, 1095 

DEGs described herein and expressed in ACs may contribute to nystagmus observed in 1096 

subjects with cCSNB (Figure 8). Recently, Bui Quoc and Milleret suggested that an abnormal 1097 

routing of the RGC axons at the level of the optic chiasm might cause an imbalance between 1098 

contra-lateral and ipsi-lateral projections and thus lead to strabismus (Bui Quoc and Milleret, 1099 

2014). This might occur due to an abnormal expression of genes controlling RGCs axonal 1100 

projections, and which may be differentially expressed in cCSNB. Further experiments and 1101 

database analyses will be needed to determine if DEGs expressed in ACs and RGCs (Figure 1102 

9) contribute to nystagmus and strabismus observed in human subjects with cCSNB. In 1103 

addition, these genes may also represent candidate genes in cases of isolated nystagmus and 1104 

strabismus.  1105 
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Our meta-analysis examined the expression of DEGs and their correlation with myopia using 1106 

published literature and database analyses. About 50% of the 52 DEGs expressed in the 1107 

retina, have been already linked to myopia (Figure 8), reinforcing our hypothesis that genes 1108 

differentially expressed in cCSNB may cause the myopia phenotype observed in cCSNB. 1109 

Indeed, GWAS studies showed that several genes expressed in various retinal cell types 1110 

contribute to the development of myopia (Verhoeven et al., 2013). Some of the genes 1111 

implicated in myopia are functionally involved in processes that facilitate communication 1112 

between cells in the retina or control the ability of photoreceptors to respond to light. Some 1113 

others are involved in pre-natal eye growth and development (Verhoeven et al., 2013). There 1114 

is some overlap between genes previously described as being involved in myopia and those 1115 

described here. We assume that some of the others may represent novel myopia-related genes 1116 

(Hysi et al., 2020; Tedja et al., 2018; Verhoeven et al., 2013). Interestingly, many DEGs 1117 

described here, when deleted or part of deleted chromosomal regions, lead to severe 1118 

phenotypes that often include myopia. Our hypothesis is that the expression levels of these 1119 

genes are associated with high myopia observed in cCSNB which makes cCSNB a more 1120 

complex disorder than previously recognized. In addition, DEGs may also produce the 1121 

cCSNB-associated ocular alterations nystagmus and strabismus. Our results combined with 1122 

GWAS findings highlight the light-dependent retina-to-sclera signaling cascade that can cause 1123 

myopia if disrupted and outline potential pathobiological molecular drivers (Tedja et al., 1124 

2018). It is unlikely that signals from the retina control scleral growth directly. Instead, it is 1125 

suggested that retinal signals are relayed by the RPE, choroid and ciliary body, which in turn 1126 

release signaling molecules to directly affect scleral growth (Wallman and Winawer, 2004). 1127 

Our findings using cCSNB models suggest that due to an altered ON-pathway the expression 1128 

of several genes becomes insufficient, which may result in myopia. We hypothesize, that 1129 



exposure to insufficient light levels, as found in children with not enough outdoor activities 1130 

similarly leads to alterations of the ON pathway and myopia.  1131 

Not surprisingly, the cCSNB DEGs included genes that are important for synapse formation 1132 

and signaling. In addition, MAPK pathways and developmental genes were identified by our 1133 

study, and to our knowledge, their association with cCSNB is novel. These same genes, 1134 

however, are well known to be involved in the development of myopia (Li and Zhang, 2017), 1135 

further reinforcing our predictions that genes differentially expressed in cCSNB are indeed 1136 

good candidates for cCSNB-associated high myopia, as well as serving as candidates for non-1137 

syndromic myopia. Other DEGs identified here were not associated with specific myopia-1138 

related search terms or pathways, but, because of their expression in the retina and described 1139 

physiological function, may be nevertheless be associated with myopia. Interestingly, a few 1140 

DEGs have been implicated in circadian rhythms. Circadian clocks are cellular oscillators that 1141 

generate daily rhythms even in the absence of external timing cues (Dunlap, 1999; 1142 

Pittendrigh, 1993) and have also been associated with eye growth and refractive error 1143 

development (Chakraborty et al., 2018).  1144 

 1145 

6.3 Novel candidate genes important for vision 1146 

The following DEGs represent genes not previously associated with myopia and may 1147 

represent novel candidate genes underlying high myopia in cCSNB or other retinal disorders: 1148 

Adgra3/Gpr125, Afap1l1, Ampd3, Arc, Cacna1s, Ccnjl, Cdc25c, Dbhos, Eomes, Etv4, 1149 

Fbox32, Frem3, Gm20754, Gm40477, Gm49760, Gm5478/Krt6c, Gng4, Insyn2b, Ldb2, 1150 

Mast2, Mir670hg, Myh7b, Olfm3, Pdzph1, Plekhf1, Prkca, Rgs16, Shroom4, Spred3, 1151 

St6galnac5, Synj2, Tac2, Tpbg, Trpc1 and Umodl1. More analyses are needed to validate 1152 

their putative functional roles in vison. For a few of them, highlighted in bold, animal models 1153 
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or more functional analyses are available and may thus represent the best candidates to be 1154 

analyzed in the future.  1155 

 1156 

6.4 Treatment of cCSNB and myopia 1157 

Although cCSNB is believed to be a relatively mild non-degenerative stationary retinal 1158 

disease, this study shows that gene defects causing cCSNB impact the expression of other 1159 

genes important for the correct development of the retina and eye. Treatment efficacy may 1160 

also be impacted. Indeed, at least in mice, cCSNB treatment was more successful in immature 1161 

retina, and only under scotopic conditions (Hasan et al., 2019; Scalabrino et al., 2015; Varin 1162 

et al., 2021a; Varin et al., 2021b), suggesting that the development of the retinal structure, 1163 

e.g., synapse formation, is irreversibly impaired in cCSNB. These subtle changes of the retina 1164 

may only be visible with sensitive methods such as immunohistochemistry or electron 1165 

microscopy. Such developmental defects may be regulated by the genes differentially 1166 

expressed in cCSNB identified in this study. Replacing the missing gene implicated in 1167 

cCSNB, such as GRM6 or LRIT3, by an AAV-approach may restore the correct localization 1168 

of the corresponding protein and its function, but it is not clear if this will also restore the 1169 

normal expression of the cCSNB-associated DEGs. Defects in developmental processes, such 1170 

as synapse formation, may lead to the observed failure to rescue photopic vision in adult mice. 1171 

Furthermore, whether an AAV-based therapeutic approach can cure myopia remains unclear. 1172 

Although refractive errors associated with myopia can be corrected using optical correction, 1173 

myopic subjects may still develop a number of other vision-threatening complications such as 1174 

myopic macular degeneration, retinal tears, retinal detachment and glaucoma (Hornbeak and 1175 

Young, 2009). Therefore, identifying therapeutic approaches to prevent the development of 1176 

myopia would be beneficial. Pharmacological treatments may become important means to 1177 



prevent and/or slow the progression of myopia, but they are unlikely to be able to revert or 1178 

cure established myopia.  1179 

 1180 

6.4.1 Pharmacological myopia treatment  1181 

A signaling cascade, which begins in the retina, via photoreceptors, BCs and dopaminergic, 1182 

GABAergic, and glycinergic ACs, and propagate across all ocular tissues to the sclera is 1183 

likely to contribute to human myopia development and progression (reviewed by (Tkatchenko 1184 

and Tkatchenko, 2019)). This signaling cascade is triggered by optical blur, which plays a 1185 

critical role in this process. Here, we suggest that cCSNB is an additional valuable model to 1186 

study myopia, because the disruption of inner retinal signaling in cCSNB has a significant 1187 

impact on refractive eye development, potentially similar to a low light environment. As 1188 

discussed above, the neurotransmitter DA and its metabolite DOPAC have been proposed to 1189 

regulate refractive eye development and their retinal concentrations are reduced in myopia 1190 

models (Chakraborty et al., 2015; Pardue et al., 2008; Stone et al., 1989; Zhou et al., 2017). 1191 

Here, we have shown that DA and DOPAC levels are also reduced in the retina of cCSNB 1192 

mice. Intravitreal injections of DA in rabbits (Gao et al., 2006) and intraperitoneal 1193 

injections of DA in guinea pigs (Mao et al., 2010) and mice (Landis et al., 2020) inhibit FDM 1194 

myopia induction. Enhancing DA signaling by daily intraperitoneal injections of non-selective 1195 

DA receptor agonists prevented FDM in chicken, guinea pig, monkey and mice (reviewed by 1196 

(Zhou et al., 2017). More studies are needed, however, to define the cellular mechanisms of 1197 

DA action, a requirement for the development of an effective myopia treatment. Bright light 1198 

has also been shown to protect against the development of myopia and to increase DA release 1199 

in a number of studies with animal models and in children (reviewed by (Zhou et al., 2017). 1200 

It has been suggested that retinal DA may induce choroidal thickening and inhibit ocular 1201 
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growth by triggering the release of other transmitters such as nitric oxide (NO) from the 1202 

retina or choroid (reviewed by (Zhou et al., 2017). Clinical trials testing the use of 1203 

dopaminergic agents to treat amblyopia, myopia and attention deficit disorders revealed 1204 

negative side effects of systemic activation of DA signaling (reviewed by (Zhou et al., 1205 

2017)). In contrast, local delivery of DA by APO eye drops given to infant rhesus monkeys 1206 

reduced development of FDM in the absence of systemic toxicity and other negative side 1207 

effects (Iuvone et al., 1991). Despite these promising findings, we are not aware of further 1208 

studies in non-human primates or clinical trials using dopaminergic compounds to inhibit 1209 

myopia progression.  1210 

A few other pharmacological agents targeting neurotransmitter receptors have been shown to 1211 

suppress the development of experimental myopia in animals, such as the muscarinic 1212 

acetylcholine receptor (mAChR) antagonists pirenzepine and atropine, which are expected 1213 

to act on muscarinic receptors, expressed in the sclera and in the inner retina. Further long-1214 

term clinical studies with large samples sizes are needed to validate the efficacy of this 1215 

potential anti-myopia therapy (reviewed (Tkatchenko and Tkatchenko, 2019; Wang et al., 1216 

2021)). Today, however, atropine, a nonselective muscarinic receptor antagonist, is the 1217 

most widely used anti-myopia drug, although the exact mechanism of atropine’s inhibitory 1218 

effect on myopia is not well understood. Several clinical trials using atropine eye drops in 1219 

combination with optical devices such as multifocal lenses that impose a peripheral positive 1220 

defocus, showed positive outcomes, albeit with low efficacy (reviewed (Tkatchenko and 1221 

Tkatchenko, 2019)). It would be interesting to investigate if atropine, potentially together with 1222 

optical devices would also inhibit myopia development in CSNB patients and animal models.  1223 

The recent identification of signaling pathways, identified by us here and others (Tkatchenko 1224 

and Tkatchenko, 2019)), that control the response of the eye to optical defocus and 1225 

susceptibility to myopia may be helpful for the development of new myopia therapies. 1226 



Interestingly, many of those pathways play important roles in multiple retinal cell types and in 1227 

multiple ocular tissues. For example, the MAPK pathway and GABA receptor signaling 1228 

influence myopia development via multiple retinal cell types as well as the RPE/choroid 1229 

(reviewed (Tkatchenko and Tkatchenko, 2019)). Our study found that genes implicated in the 1230 

MAPK pathway are differentially regulated in cCSNB, suggesting they may contribute to 1231 

myopia in these subjects. Inhibitors of MAPK phosphorylation have been shown to inhibit 1232 

myopia (She et al., 2021), but we are not aware of clinical trials testing this target. 1233 

Inhibition of GABA activity, such as with GABA receptor antagonists, may prevent 1234 

excessive myopia (reviewed (Wang et al., 2021)). Schmid et al. suggested that the 1235 

GABAergic pathway may interact with the dopaminergic pathway and that the balance 1236 

between excitatory and inhibitory signaling is important for normal eye growth (Schmid et al., 1237 

2013). This is in line with our findings. Interestingly, we found that Gabrr1, coding for the 1238 

rho-1 GABA receptor subunit, and expressed in rod BC synaptic terminals (McCall et al., 1239 

2002) is significantly downregulated in mice lacking Gpr179 and Lrit3. It is possible that this 1240 

decrease in GABA receptors is a consequence of an increased release of GABA from 1241 

amacrine cells, leading in turn to myopia in cCSNB. Moreover, abnormal visual processing 1242 

was observed in mice lacking Gabrr1 (McCall et al., 2002) and several studies linked the 1243 

human orthologue with myopia (Supplementary Table S6 and Figure 9) (Fan et al., 2016; Lin 1244 

et al., 2020). We are not aware of clinical trials testing GABA receptor antagonists for myopia 1245 

prevention, most likely because such drugs would be expected to have dangerous side effects.   1246 

Further understanding of additional signaling pathways and ocular tissues implicated in 1247 

myopia and their interactions with various environmental factors will lead to the development 1248 

of anti-myopia therapies (Tkatchenko and Tkatchenko, 2019)). Considering the complexities 1249 

of the signaling cascades underlying myopia development, an ideal anti-myopia drug (or a 1250 

drug combination) would target multiple pathways. Although cCSNB appears to be a good 1251 
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myopia model, refractive errors are only measured following experimental myopia inductions. 1252 

Alternatively, treatment efficacy could be evaluated by measuring the restoration of 1253 

neurotransmitter and other metabolite levels or by experimentally assessing the normalization 1254 

of gene expression within the gene regulatory networks involved in myopia development. 1255 

Together, we and others showed that myopia is a complex disorder influenced by many 1256 

genetic and environmental factors. Future studies are needed to develop therapies targeting 1257 

these signaling cascades and determine the efficacy of potential treatment approaches 1258 

(Brennan et al., 2021).  1259 

 1260 
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 11 

Figures legends: 12 

Figure 1: Schematic representation of ERG recordings of five different species known to 13 

display a cCSNB phenotype. This figure was taken from the PhD thesis of Juliette Varin 14 

(Varin, 2020), which in turn was adapted from Audo et al., 2009 (for human CSNB, subject 15 

with mutations in TRPM1) from Sandmeyer et al., 2007 (for the TRPM1
-/-

 Appaloosa horse 16 

ERG), from Kondo et al., 2015 (for the LRIT3
-/- 

Beagle dog ERG), from Pardue et al., 1998 17 

(for the Nyx
-/-

 mouse ERG) and from Peachey et al., 2012 (for the MO-gpr179 zebrafish 18 

ERG). 19 

 20 

Figure 2: Example of scotopic electroretinograms in mice lacking Aplp2, a gene associated 21 

with myopia in humans. Lack of Aplp2 causes a dose-dependent decrease in the b-wave 22 

amplitude (A). The b-wave implicit time was increased in mice lacking Aplp2. Lack of Aplp2 23 

did not have a significant impact on either a-wave amplitude or a-wave implicit time. Lack of 24 

Aplp2 caused a decrease in amplitude and an increase of the implicit time of the oscillatory 25 

potentials (B). Figure was taken from Tkatchenko et al., 2015 (Tkatchenko et al., 2015) with 26 

permission. 27 



 1 

Figure 3: Lens-induced myopia in wild-type mice measured after three weeks of goggling. 2 

Myopia can be induced in mice using in-house-made goggles with negative spectacle lenses 3 

and induced refractive error can be measured using an automated photorefractor (Schaeffel et 4 

al., 2004). Wild-type mice (n=12) were goggled at P21 for three weeks. The goggles were 5 

fitted with -25.00 D lenses for the right eyes (RE) and no lens for the left eyes (LE), which 6 

were used as controls. The interocular differences between treated and control eyes was 7 

measured at P21 before goggle application and after goggle application at P42. Statistical 8 

significance was obtained with p-values, where p ≤ 0.05=*, p≤0.01 = ** and p. ≤0.001 = ***. 9 

 10 

Figure 4: Reduced retinal DOPAC and DA in light adapted cCSNB mouse models lacking 11 

Gpr179, Lrit3 and Grm6 statistically analyzed using the Mann-Withney test. Values are 12 

reported as standard deviations. Statistical significance was obtained with p-values, where p ≤ 13 

0.05=*, p ≤ 0.01 = ** and p  ≤ 0.001 = ***. 14 

 15 

Figure 5: A, Venn diagram of differentially expressed genes (DEGs) in the retina of three 16 

cCSNB mouse lines identified by RNA-Seq analysis. This revealed 155 (green), 133 (red), 17 

and 222 (blue) DEGs for Gpr179, Lrit3 and Grm6 mice, respectively. Of those, 7 DEGs were 18 

common to all three cCSNB mice, and 38 DEGs were shared by the Gpr179 and Lrit3 mice. 19 

B, Hierarchical clustering analysis of the 52 DEGs present in at least two mouse lines 20 

identified 10 clusters (different colors left column). The z-score was derived from the average 21 

of the replicates for each experimental group. Blue: low expression; orange: high expression. 22 

The largest cluster consists of genes less expressed in the cCSNB models (cluster 1).    23 
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 1 

Figure 6: Examples of genes found to be differentially expressed in three (red) and two 2 

(green) cCSNB mouse lines by RNA-Seq studies and validated by RT-qPCR experiments. 3 

Green boxes indicate the genes differentially expressed in two cCSNB mouse lines. Some 4 

genes appeared to be significantly differentially expressed only in two cCSNB mouse lines by 5 

RNA-Seq investigations, but were significantly differentially expressed in all three mouse 6 

lines by RT-qPCR studies (e.g. Prkca and Tpbg). Other genes appeared to be significantly 7 

differentially expressed in three cCSNB mouse lines by RNA-Seq investigations, but were 8 

statistically significantly differentially expressed only in two mouse lines by RT-qPCR 9 

studies (e.g. Frem3 and Ptprr). Data were tested for normality and analyzed using the 10 

nonparametric Mann-Whitney test to compare expression. Values are reported as standard 11 

deviations. Statistical significance was obtained with p-values, where p ≤ 0.05=* and p ≤ 0.01 12 

= **. NRQ = Normalized relative quantity.  13 

 14 

Figure 7: Interdependence of expression between genes implicated in cCSNB at the 15 

transcriptional level. There was a trend that Trpm1 expression is dependent on the expression 16 

of Gpr179, Lrit3 and Grm6, and that Grm6 expression is dependent on the expression of 17 

Lrit3. 18 

 19 

Figure 8: Schematic drawing (created with BioRender.com) of differentially expressed genes 20 

(DEGs), localization of their expression in the retina and their association with myopia. Genes 21 

in the white box, also appeared in myopia databases and were found to be differentially 22 

expressed in at least one cCSNB mouse line. They show expression in the retina although in 23 

which cell type remains uncharacterized.   24 



 1 

Figure 9: Schematic representation of the DEG expression in the different types of BCs. 2 

BC1-4 = OFF-BCs, BC5-BC7 = ON-BCs (generated using the data from Shekhar et al., 2016 3 

(Shekhar et al., 2016) . 4 

 5 

Figure 10: A, DEGs were enriched in different pathways, including the MAPK signaling 6 

pathway, synapse, GPCR ligand binding, eye development, endoderm and connective tissue 7 

pathways. B, Circle presentation showed that most of the DEGs appeared in multiple 8 

pathways.  9 

 10 

Figure 11: Schematic drawing of DEGs (shown in brown) enriched in the MAPK signaling 11 

pathway (created with BioRender.com). 12 

 13 

Figure 12: Quantification of western blot analyses for proteins for which RNA-Seq studies 14 

showed differential expression by RNA-Seq and RT-qPCR studies in Gpr179
-/-

, Lrit3
-/-

 and 15 

Grm6
-/- 

cCSNB mouse models (n ≥ 4). The protein amounts were normalized against 16 

GAPDH, visualized with Image J and statistically analyzed using the Mann-Withney test. 17 

Values are reported as standard deviations. Statistical significance was obtained with p-18 

values, where p ≤ 0.05 = * and p ≤ 0.01 = **.  19 

 20 

Figure 13: Immunostaining in Gpr179
-/-

, Lrit3
-/-

 and Grm6
-/-

 cCSNB mouse models showed a 21 

reduction of TPBG and PRKCA immunofluorescence in mice lacking Gpr179 and Lrit3 but 22 
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not in mice lacking Grm6. This was most obvious in the OPL and IPL (bar = 20 µm). Phr = 1 

photoreceptor layer; ONL = outer nuclear layer; OPL = outer plexiform layer; inner nuclear 2 

layer; IPL = inner plexiform layer; GCL = ganglion cell layer. 3 

 4 

Figure 14: Quantification of all cell nuclei stained with DAPI revealed an equal number of 5 

cell nuclei in the inner nuclear layer (INL) in the mutant versus wild-type cCSNB mouse 6 

models (n = 3-8). 7 

 8 

Figure 15: Quantification of all TH-positive cells revealed no significant differences between 9 

Gpr179
+/+ 

and Gpr179
-/-

 (n=4 mice). 10 
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