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Key points 24 

Question What is the detailed clinical picture and underlying gene defect in patients with a peculiar 25 

form of congenital stationary night blindness (CSNB)? 26 

Findings We report three patients of two families with CSNB, anterior segment abnormalities (ciliary 27 

body hypoplasia and lens luxation), and all-bipolar cell dysfunction. We identified two genetic 28 

variants in VSX2, a major gene important for ocular development and bipolar cell fate in those CSNB 29 

families.  30 

Meaning This genetic defect of an inherited ocular disease had both functional and anatomical eye 31 

defects. 32 

Abstract  33 

Importance Congenital stationary night blindness (CSNB) is an inherited stationary retinal disorder, 34 

which is clinically and genetically heterogeneous. To date, some cases with CSNB and an unusual 35 

complex clinical picture are still genetically unsolved.  36 

Objective To describe an unreported CSNB phenotype and the associated gene defect in three patients 37 

from two unrelated families. 38 

Design Retrospective case-series conducted in 2021-2022.  39 

Setting Single-institution study in a national referral center for rare ocular diseases. 40 

Participants Three patients from our cohort of 140 genetically unsolved CSNB cases have been 41 

clinically and genetically explored. 42 

Exposures Complete ocular examination including full-field electroretinography and multimodal 43 

fundus imagining (spectral-domain optical coherence tomography, color, infrared reflectance and 44 

short-wavelength autofluorescence photographs) were performed. The gene defect was identified by 45 

exome sequencing, confirmed by Sanger sequencing and co-segregation analysis in one family. 46 

Additionally, screening of our genetically unsolved CSNB cases for VSX2 variants was performed by 47 

direct Sanger sequencing. 48 
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Main outcome measures Ocular and molecular biology findings. 49 

Results Patients had nystagmus, low stable visual acuity and myopia from birth and complained of 50 

night blindness. Two older patients had bilateral lens luxation and underwent lens extraction. Full-51 

field electroretinography revealed an electronegative Schubert-Bornschein appearance, combining 52 

characteristics of incomplete and complete CSNB, affecting the function of rod and cone ON- and 53 

OFF-bipolar cells. Exome sequencing and co-segregation analysis in a consanguineous family with 54 

two affected members identified a  homozygous variant in VSX2. Subsequently, screening of our 55 

CSNB cohort identified another unrelated patient harboring a distinct VSX2 variant.    56 

Conclusion and Relevance We reported a peculiar pan-bipolar cell retinopathy with lens luxation 57 

associated with variants in VSX2. Clinicians should be aware of this peculiar association. We 58 

recommend that VSX2 might be added to CSNB diagnostic gene panels.  59 

 60 

Main text  61 

Introduction 62 

Congenital stationary night blindness (CSNB) with largely normal fundus appearance is a vast group 63 

of genetically and clinically heterogeneous congenital retinal disorders. The most common form 64 

manifests with infantile nystagmus, reduced visual acuity, variable degree of myopia, poor visual 65 

behavior in dim lightning and/or photophobia
1
. The diagnosis is ascertained by full-field 66 

electroretinography (ffERG), displaying characteristic waveform changes.  67 

Under dark adaptation, the stimulation with a dim flash (DA 0.01 ERG, dark adapted 0.01 cd/m
2
) 68 

generates a positive going b-wave reflecting the rod ON-bipolar cell depolarization
2
. In the same dark-69 

adapted conditions, the stimulations with brighter flashes (DA 3.0 ERG, DA 10.0 ERG) produce a 70 

negative a-wave, reflecting the hyperpolarization of photoreceptors, mainly dominated by rods in this 71 

adaptation state
3,4

, followed by a positive b-wave, which ascending limb is dominated by ON-bipolar 72 

cell depolarization
5
. Under light adapted conditions, the stimulations with bright flashes (LA 3.0 ERG, 73 
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light adapted 3.0 cd/m
2
) lead to a negative a-wave generated by the hyperpolarization of cones and 74 

then of OFF-bipolar cells. The second deflection is a positive b-wave which ascending limb is 75 

dominated by cone ON-bipolar cell depolarization and descending limb by OFF-bipolar cell 76 

hyperpolarization
6,7

. Long-duration stimulations allow the separation of responses generated by cone 77 

ON- and OFF- bipolar pathway
6,8

. 78 

Most of the patients with CSNB have a distinct Schubert-Bornschein electronegative waveform (b/a 79 

amplitude ratio < 1) under dark-adapted conditions
9
, in relation with a signaling defect from 80 

photoreceptors to adjacent bipolar cells. Two subtypes of Schubert-Bornschein CSNB can be 81 

distinguished on the basis of additional ffERG features: the incomplete (icCSNB) and complete 82 

(cCSNB)
10

. In icCSNB, there is a preserved but reduced and delayed b-wave to the DA0.01 ERG
10

. 83 

Light-adapted responses are markedly reduced and delayed, reflecting a cone to cone ON- and OFF-84 

bipolar cell transmission defect which can be documented using long duration stimulations
10,11

. 85 

Patients have variable degrees of night blindness, strabismus, nystagmus, a wide range of refractive 86 

errors
12

 and a normal fundus, apart from myopic changes. Photophobia may be the main complaint for 87 

some patients who also experience difficulties in dimly lighted environment. Pathogenic variants in 88 

CACNA1F (MIM #300110)
13(p),14

 and CABP4 (MIM# 608965)
15

 lead to icCSNB. Variants were also 89 

identified in CACNA2D4 (MIM# 608171)
16

 in patients initially diagnosed with icCSNB but later 90 

associated with a cone dystrophy
17

. Proteins encoded by these genes are localized at the presynaptic 91 

membrane of both rods and cones. They play a role in glutamate release into the synaptic cleft. 92 

icCSNB represents thus a photoreceptor to ON- and OFF-bipolar cell transmission defect
1
. Light 93 

sensitivity present in icCSNB patients may be explained by the worse dysfunction in cone bipolar 94 

circuitry unlike in other forms of CSNB
12

. In cCSNB, the b-wave is typically absent on the DA 0.01 95 

ERG. The a-wave has typically a square shape with a sharply arising b-wave and a reduced b/a 96 

amplitude ratio at the LA 3.0 ERG
10

, with absence of ON-bipolar responses but preserved OFF-97 

responses to long duration stimulations
18

. Patients with cCSNB present consistently with high myopia, 98 

nystagmus, night blindness and low visual acuity
12

. Variants in NYX (MIM# 300278)
13,19

, GRM6 99 

(MIM# 604096)
20,21

, TRPM1 (MIM# 603576)
22–24

, GPR179 (MIM# 614515)
25

 and LRIT3 (MIM# 100 
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615004)
26

 lead to cCSNB. Genes listed above code for proteins localized mainly in the dendritic tips 101 

of the ON-bipolar cells. They are important for glutamate-induced signaling. cCSNB represents thus a 102 

photoreceptor to ON-bipolar cell transmission defect
1
.  103 

Other rare forms of CSNB with a different ERG and clinical phenotype have been associated with 104 

SAG (MIM# 181031), GNAT1 (MIM# 139330), RHO (MIM# 180380), PDE6B (MIM# 180072), 105 

GRK1 (MIM# 180381) and SLC24A1 (MIM# 603617)
1
. 106 

The goal of this study was to report an unusual CSNB phenotype and associated gene defects in three 107 

patients from two unrelated Turkish families.  108 

Material and Methods  109 

Research procedures adhered to the tenets of the Declaration of Helsinki and were approved by the 110 

local Ethics Committee (CPP, Ile de France V, Project number 06693, N◦EUDRACT 2006-A00347-111 

44, 11 December 2006 and CPP, Ile de France II). Prior to testing, written informed consent was 112 

obtained from adult participants and the parents of the subject IPP 1889196 who was under 18. No 113 

compensation or incentive was offered to patients to participate in the study. Relevant reporting 114 

guideline has been followed. 115 

Clinical studies. The cases were clinically investigated at the national reference center for rare ocular 116 

diseases REFERET of the Centre Hospitalier National d’Ophtalmologie (CHNO) des Quinze-Vingts 117 

as previously described
27

. Patient IPP1889196 was also assessed at the national reference center for 118 

rare ocular diseases OPHTARA of Necker-Enfants Malades Hospital at the age of 5 months. 119 

Genetic analysis. Blood samples from cases and all available family members were collected for 120 

genetic research and genomic DNA was extracted as previously reported
28

. These DNA samples were 121 

collected within the NeuroSensCol DNA bank, for research in neuroscience (PI: JA Sahel, co-PI I 122 

Audo, partner with CHNO des Quinze-Vingts, Inserm and CNRS). 123 

Direct Sanger sequencing was performed for patient CIC00257 for all exons and exon-intron 124 

boundaries of the following genes: CACNA1F, NYX, TRPM1, LRIT3, GRM6, GPR179, CABP4, 125 
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CACNA2D4 and for some other genes associated with inner retinal dysfunctions: RIMS2, GNB3 and 126 

GNB5. The amplification and sequencing conditions can be obtained on request. 127 

IPP1889196 was analyzed on a next generation sequencing (NGS) molecular diagnostic panel 128 

including CSNB- and pediatric retinal degeneration-associated genes (eTable 1 in Supplements). 129 

Subsequently, exome sequencing was performed in the patient and both parents. Genomic DNA 130 

libraries were generated from DNA sheared with a Covaris S2 Ultrasonicator via SureSelectXT 131 

Library Prep Kit (Agilent). Regions of interest (ROIs) were captured with the SureSelect All Exon V5 132 

kit (Agilent) and sequenced on an Illumina HiSeq2500 HT system (Illumina). Data analysis was 133 

performed with a homemade pipeline (POLYWEB)
29

 created by the Imagine Institute Bioinformatics 134 

core facilities of Paris University. Considering that pathogenic variants are uncommon, we searched 135 

for recessive variants absent in the dbSNP, 1000Genomes, EVS, ExAC, GnomAD and all in-house 136 

databases and for variants with minor allele frequency up to 0.01. We searched in priority for 137 

homozygous consensus splice-site changes, nonsense variants, insertions and deletions in coding 138 

regions. After this stringent filtering, variants in four candidate genes (ITIH2, PRDM10, VSX2 and 139 

BCR) were identified. All variants were classified using Human Genome Variation Society 140 

nomenclature (http://www.hgvs.org/) and their pathogenicity was assessed in accordance with the 141 

American College of Medical Genetics and Genomics recommendations (ACMG)
30

. Validation of 142 

putative pathogenic variants and co-segregation study were performed by direct Sanger sequencing of 143 

exons of interest (conditions and primer sequence will be delivered on request) in all available family 144 

members. 145 

In a second step, a cohort of 140 unsolved CSNB cases was screened for VSX2 variants. One 146 

additional patient (CIC12548) was identified. He previously tested negative on a NGS panel
31

 147 

including all known-to-date CSNB-associated genes.  148 

 149 

 150 

Results 151 

http://www.hgvs.org/
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All three patients clinically investigated at 30, 4 and 45 years of age (CIC00257, IPP1889196 and 152 

CIC12548, respectively), presented infantile nystagmus, low visual acuity, myopia and night blindness 153 

complaints from birth, but did not report changes in their symptoms or vision since childhood. Clinical 154 

data of patients are summarized in Table 1. 155 

Their ffERG recordings (Fig.1) under dark adapted (DA) conditions showed no detectable responses 156 

to a dim 0.01 cd.s.m
-2

 flash (DA 0.01 ERG), a normal a-wave but a severely reduced b-wave leading 157 

to an electronegative waveform to bright flashes (DA 3.0 and DA 10.0 ERG). These alterations 158 

resembled ON-bipolar dysfunction in cCSNB. However, light-adapted responses to a 3 cd.s.m
-2

 single 159 

flash and to a 30 Hz 3 cd.s.m
-2

 flicker (LA 3.0 ERG and LA 3.0 flicker) were reduced and delayed, 160 

unlike patients with cCSNB but resembling functional alterations in icCSNB
1
.  161 

The female patient CIC00257, was referred to our clinic at 30 years of age. Best corrected visual 162 

acuity (BCVA) was 20/200 both eyes (OU). Color vision was normal. Goldmann visual field was 163 

flattened in the superior part on all target sizes. Static visual field found a diffuse reduction of retinal 164 

sensitivity and reduction of foveal threshold. Both lenses were subluxated superiorly and showed 165 

cataract. Ophthalmoscopic evaluation revealed typical myopic changes including oval tilted optic discs 166 

surrounded with peripapillary chorio-retinal atrophy, thin retinas with increased visibility of choroidal 167 

vasculature and narrowed retinal vessels (Fig.2, A). Numerous glistening white crystals and atrophic 168 

chorio-retinal patches were visible in the peripheral retina (Fig.2, B). Infrared reflectance (IRR) 169 

(eFig.1, B in the Supplement) and short-wave length fundus autofluorescence (SW-FAF) (eFig.1, C in 170 

the Supplement) were unremarkable. Spectral domain optical coherence tomography (SD-OCT) was 171 

not performed at the first visit. The patient underwent intracapsular cataract extraction without 172 

intraocular lens implantation. BCVA improved to 20/63 both eyes.  173 

The male patient IPP1889196, a nephew of CIC00257, was referred to the clinic at 4 years old. 174 

Convergent squint and infantile nystagmus syndrome with an initial intermittent and transient upbeat 175 

component were present at the age of 5 months. Slit lamp examination was unremarkable. Fundus 176 

examination revealed similar myopic changes as reported in the aunt (Fig.2, C). In the peripheral 177 

retina there was a 360° white-without-pressure. SD-OCT (Fig.2, D) showed preserved outer retina and 178 
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thinned inner retinal layers. Multimodal retinal imaging was difficult due to nystagmus, with 179 

unremarkable IRR and SW-FAF (eFig.1, E in the Supplement). 180 

The male patient CIC12548, from an unrelated family, was referred to the clinic at the age of 45 years. 181 

He had infantile nystagmus and poor vision since birth. At the age of 42 years he underwent 182 

intracapsular lens extraction for bilateral subluxated cataract. Ultrasound biomicroscopy (UBM) 183 

revealed hypoplastic ciliary body and posterior iris bowing (eFig.2 in the Supplement). 184 

Ophthalmoscopic examination revealed triangular atrophic chorio-retinal lesions inferior to the macula 185 

and white-without-pressure in peripheral retina (Fig.3, A). Atrophic chorio-retinal lesions were 186 

hypoautofluorescent with hyperautofluorescent edges on SW-FAF (Fig.3, B), were bright on IRR 187 

(Fig.3, C) with outer retinal disruption on SD-OCT. Grade 3 foveal hypoplasia
32

 as well as a thin 188 

epimacular membrane could be seen on SD-OCT (Fig.3, D). 189 

Genetic assessment.  Patients CIC00257 and IPP1889196 were members of a family (F178) with 190 

North Turkish ancestry and were born from consanguineous unions (Fig.4A). Patient CIC12548 191 

(F7248) was also of Turkish ancestry (Fig.4A). He did not report parental consanguinity.  192 

Sanger sequencing and targeted NGS revealed the absence of disease-causing variants in CIC00257 193 

and IPP1889196, respectively. Exome sequencing (ES) performed in IPP1889196 and his parents 194 

revealed homozygous putative disease-causing variants in the following genes, ITIH2 (MIM 195 

#146640), PRDM10 (MIM #618319), BCR (MIM #151410) and VSX2 (MIM #142993), consistent 196 

with autosomal-recessive inheritance (eTable 2 in Supplement). However only the missense variant in 197 

VSX2 (NM_182894.3): c.595C>T p.(Arg199Cys) (Fig. 4A and B) co-segregated with the disease. This 198 

variant,is rare in population databases (minor allele frequency 8x10
-6

 in gnomAD; not present in 199 

ExAC database) is predicted to be damaging by 25 out of 40 prediction algorithms available at 200 

https://varsome.com. Thus this variant is considered likely pathogenic (PM1, PM2, PP1-M, PP3) by 201 

ACMG standards
30

. VSX2 Sanger sequencing in CIC12548 revealed another missense homozygous 202 

variant: c.698C>T p.(Pro233Leu) (Fig. 4A and B). This variant is absent in population databases and 203 

predicted damaging by all prediction algorithms available at https://varsome.com. It is considered as 204 

https://varsome.com/
https://varsome.com/
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variant of unknown significance (PM2, PM1, PP3) by ACMG standards. Unfortunately, other 205 

members of the family were not available for co-segregation analyses.  206 

 Discussion.  207 

The clinical picture of the patients presented herein that included infantile nystagmus, low stable 208 

BCVA and myopia was suggestive of CSNB. The upbeat component of nystagmus, present in patient 209 

IPP1889196, has also been reported as an early and transient feature of infantile nystagmus in 210 

CSNB
33

. Regarding functional alteration, the ffERG revealed an electronegative dark-adapted 211 

response in keeping with a Schubert-Bornschein type of CSNB. However, both dark- and light adapted 212 

response alterations were different than in cCSNB or icCSNB 
10

. On one hand, dark-adapted responses 213 

were in line with cCSNB with absent b-wave and on the other hand, severely reduced light-adapted 214 

responses were suggestive for icCSNB. These ffERG alterations would reflect generalized both rod 215 

and cone post-phototransduction disorder. Since - in contrast to c and icCSNB- the herein presented 216 

patients had absent rod and cone ON- and OFF-bipolar cell responses, we propose to call this finding a 217 

“pan-bipolar” cell dysfunction. 218 

In general, VSX2 (Visual System Homeobox 2, 14q24.3, formerly described as HOX10/CHX10) 219 

recessive gene defects have been reported in association with isolated microphthalmia/anophthalmia 220 

(MIM #610093)
34

, microphthalmia with coloboma (MIM #610092)
35

, microphthalmia with cataracts 221 

and iris abnormalities 
36–40

 (Fig.4, B). The adult patients, CIC00257 and CIC12548, presented lens 222 

subluxations and cataracts. All patients assessed in this study had no microphthalmia. One report 223 

mentions lens ectopia without microphthalmia in a patient with a c.456-6C>G r.(?) change in VSX2 224 

but detailed data are lacking
41

.  225 

Our patients presented a peculiar retinal dysfunction, between cCSNB and icCSNB, in keeping with 226 

generalized rod and cone post-phototransduction disorder. Only few data on retinal dysfunction in 227 

both heterozygous and homozygous pathogenic variants in VSX2 are available
42,43

 as discussed in the 228 

Supplementary Materials.  229 

 230 
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VSX2 is a five-exon gene (Fig.4, B) located on chromosome 14q24.3
44

 with a conserved sequence 231 

across vertebrates
34

. It is abundantly expressed in retinal progenitor cells during embryonic and foetal 232 

eye development
45,46

. This abundant expression is transient: in adult vertebrate retina the protein is 233 

found only in the nuclei of bipolar cells
45,47,48,34,49

. According to available retinal gene expression 234 

databases, VSX2 is present in all types of bipolar cells and thus it is considered as a pan-bipolar cell 235 

marker
50–53

. VSX2 encodes a 361 amino-acid residue protein (Fig.4, B) with transcription factor 236 

activity. VSX2 is composed of several domains: residues 149-205 constitute the homeobox domain 237 

(HOX), residues 208 to 261 - CVC domain (standing for CHX10, VSX1 and CEH10) and residues 238 

300 to 318 - OAR domain (OTP, aristaless and RAX). HOX or homeodomain has a helix-turn-helix 239 

structure binding directly regulatory DNA sequences of target genes
54

 (Fig.4,B). Disease causing 240 

truncating or missense VSX2 variants were identified all over the gene (Fig.4,B). VSX2 presence 241 

defines bipolar cell fate of retinal precursor cells
55

. Several retinal targets of VSX2 have been 242 

identified. VSX2 acts as a transcriptional repressor of RHO, cone opsin locus control region and SAG 243 

(S-antigen visual arrestin), thus suppressing photoreceptor gene expression in bipolar cell 244 

precursors
56,57

.  245 

HOX is a common peptide found in transcription factors
58

. Within the HOX peptide, residue 50 and its 246 

surrounding amino acids are important for DNA binding
59

. Residue 50 binds the DNA backbone, 247 

while the surrounding residues bind to neighbor DNA bases. These important residues would 248 

correspond to residue 200 and its surrounding amino acids in VSX2 that would explain the pathogenic 249 

mechanism associated with Arg200 missense variants leading to severe ocular malformations (micro- 250 

and anophthalmia)
34,60

. Computational structure-based evaluation of p.(Arg199Cys) variant predicts a 251 

modification of VSX2 binding to a neighbor base of targeted DNA sequence
61

. We hypothesize that 252 

Arg199 residue is probably less crucial for protein function as a regulator of ocular morphogenesis but 253 

is still required for correct bipolar cell differentiation and function. Indeed, in patients from family 254 

F178 we are reporting that the p.(Arg199Cys) substitution leads to the CSNB phenotype without 255 

microphthalmia. The CVC domain and OAR domain, both less commonly found in the structure of 256 

transcription factors and found in proteins involved in neural tube and ocular development, are 257 
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supposed to be involved in the specificity of DNA recognition, protein-protein interactions and 258 

stability
62–64

. The p.(Pro233Leu) variant found in CIC12548 is in the CVC domain. The pathogenic 259 

variant described by Khan A. et al. c.773delA p.(Lys258Serfs*44)
43

 is also located in the CVC domain 260 

and leads to an ocular phenotype close to the phenotype of the subjects presented herein. Missense 261 

variants in CVC domain could change the pattern of gene interactions due to impairment of specific 262 

DNA-binding activity and lead to severe ocular phenotypes in mice
65

 and humans
37–39

. It is unclear, 263 

why mutations in this region lead either to micropthalmia/anophthalmia or the CSNB-like phenotype. 264 

The 3D-structures of different VSX2 mutants were similar (data not shown). Different variants may 265 

influence gene interactions differently leading to the variability of the VSX-associated phenotypes.  266 

A naturally occurring mouse model carrying a nonsense variant in VSX2, p.Tyr176* (in the HOX 267 

domain) is known under the term of ocular retardation phenotype (Or). Or mice are blind with 268 

microphthalmia, congenital cataracts, and underdeveloped iris, retina and optic nerve
66–68

. They have 269 

abnormal retinal development with reduced retinal progenitor proliferations and a complete absence of 270 

bipolar cells
68

. Dependent on the genetic background of the mice, the ocular phenotype could be 271 

milder. In modified Or mice
69

 with only mild microphthalmia and better visual behavior there was 272 

evidence of underdeveloped ciliary body
69

. Lenses became cataractous by 6 months of age. The retina 273 

extended less in the periphery and did not reach the ciliary body root. Bipolar cells were present but 274 

their number was severely reduced compared to wild-type mice. Bipolar cell connections were 275 

abnormal: their dendrites extended into the outer nuclear layer, whereas the axons were not found in 276 

the inner plexiform layer. ERG recordings of modified Or mice showed an electronegative response to 277 

a bright flash (DA 5.0) in dark-adapted animals, resembling the ffERGs alteration of the patients 278 

presented herein. We hypothesize that the underdeveloped ciliary body might be a cause for lens 279 

subluxation. Peripheral retinal underdevelopment might be a cause of peripheral retinal alterations in 280 

our patients. The depletion of the bipolar cell population and abnormal bipolar cell wiring might be 281 

linked to a peculiar ffERG waveform, which combines features of incomplete and complete CSNB. 282 

Future studies need to be performed to better understand the different phenotypes associated with 283 
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VSX2 variants. This study is limited to only two families, making it difficult to determine the 284 

frequency or clinical relevance of this genetic defect.     285 

Conclusion.  286 

While only identified in three patients of two distinct families, the clinical phenotype of our patients 287 

harboring  missense variants in VSX2 is in accordance with retinal VSX2 expression/localization data 288 

and resembles the phenotype reported in a Vsx2 knock-out animal model. Here we describe a  “pan-289 

bipolar cell” CSNB phenotype which might be due to the global lack and/or dysfunction of bipolar 290 

cells 291 
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Table 1. Clinical characteristics of patients. 

Patient, 

age at 1
st
 

assessment 

BCVA, 

Snellen 

Refraction Axial 

lengt

h, 

mm 

Colour 

vision 

(15 hue 

Lantho

ny) 

Visual field ffERG Anterior 

segment 

Fundus SW-FAF OCT 

Family F178, VSX2: c.595C>T, p.(Arg199Cys) 

CIC00257,  

30 y.o.  

RE : 

20/200 

LE : 

20/200 

*** 

RE : 

20/63  

LE : 

20/63af

ter 

cataract 

surgery 

RE: -15.0 

LE: -15.0 

RE: 

28.76 

LE: 

28.23 

Normal  GP: superior 

flattening at all 

target sizes 

SP: diffuse 

reduction of retinal 

sensitivity,  

MD : RE - 6.6dB,  

LE - 10.2dB 

FT : OU 25dB 

DA 0.01: undetectable 

DA 3.0, DA 10.0: 

electronegative 

Schubert-Bornschein 

configuration 

LA 3.0, LA 3.0 

flicker: severely  

Superior lens 

subluxation 

OU 

Cataract OU 

Phaco- and 

iridodonesis 

Oval pale tilted discs, 

peripapillary chorio-

retinal atrophy, vascular 

narrowing, 

increased visibility of 

choroidal vasculature 

White glistening crystals, 

atrophic patches and 

retinal tears in peripheral 

retina 

Normal NA 
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IPP1889196,  

4 y.o. 

20/200 

OU 

RE:-10.50 

(-1.50) 

175° 

LE: -8.75 

(-1.50) 

155° 

cycloplegi

c 

RE: 

24.77

LE: 

24.43 

NA NA DA 0.01: undetectable 

DA 3.0, DA 10.0: 

electronegative 

Schubert-Bornschein 

configuration 

LA 3.0, LA 3.0 

flicker: reduced and 

delayed 

Normal Oval pale tilted discs, 

peripapillary chorio-

retinal atrophy, vascular 

narrowing, increased 

visibility of choroidal 

vasculature 

White-without- pressure 

in peripheral retina 

Normal Preserved 

outer 

retina 

Thinned 

inner 

retinal 

layers 

Family F7248, VSX2: c.698C>T, p.(Pro233Leu) 

CIC12548, 

45 y.o. 

RE: 

20/50  

LE: 

20/100  

RE: +2.0 

LE: +3.50 

(-0.50) 90° 

after 

cataract 

surgery; 

*** 

RE: -2.75 

(-3.0)0° 

LE: -3.0 (-

RE: 

22.3 

LE: 

21.94 

NA SP: diffuse 

reduction of retinal 

sensitivity 

DA 0.01: undetectable 

DA 3.0, DA 10.0: 

electronegative 

Schubert-Bornschein 

configuration 

LA 3.0, LA 3.0 

flicker: reduced  

Pseudophakic 

OU 

*** 

UBM: 

hypoplastic 

ciliary body 

*** 

Surgery for 

lens 

subluxation 

Normal discs, mild 

vascular narrowing, 

vessels crossing fovea, 

increased visibility of 

choroidal vasculature, 

triangular zone of chorio-

retinal atrophy pointing 

macula inferiorly 

Tringular 

hypoAF 

lesion 

with 

hyperAF 

edges 

Grade 3 

foveal 

hypoplasia 

Disappeara

nce of 

outer 

reflective 

layers 

(ONL, EZ, 

RPE) 
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3.5) 25° 

before 

surgery 

and cataracts 

at 42 y.o. OU 

correspond

ing to 

atrophic 

fundus 

lesion  

BCVA – best corrected visual acuity, OU – oculi utriusque, both eyes, RE – right eye, LE – left eye, GP – Goldman perimetry, SP – automated static 

perimetry, MD – mean deficit, FT – foveal threshold, NA – not available, UBM – ultrasound biomicroscopy
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Figure1. Full field ISCEV-standard ERG. A, adult patients CIC00257 and CIC12548, B, patient 

IPP1889196. Undetectable responses to a dim flash under dark adapted condition (DA 0.01). 

Electronegative waveform (b/a amplitude ratio < 1) to bright flashes under dark-adapted conditions 

(DA 3.0 and DA10.0). Severely reduced light adapted responses (LA 3.0 and LA 3.0 flicker). 

Figure 2. Retinal findings in patients from family F178. Top, patient CIC00257. A-B, fundus 

photos. Myopic fundus abnormalities with oval tilted optic discs, temporal pallor and peripapillary 

chorio-retinal atrophy, narrowed retinal vessels and thinned retina with increased choroidal visibility. 

Peripheral snowflake degeneration and patches of chorio-retinal atrophy. . Bottom, patient 

IPP1889196. C, fundus photo. Myopic fundus abnormalities with oval titled optic disc, temporal 

pallor, narrowed retinal vessels, retinal thinning. D. SD-OCT, horizontal scans passing through fovea. 

Preserved outer retina with inner retinal thinning.  

Figure 3, Retinal findings in patient from family F7248. Patient CIC12548. A, fundus photo. 

Normal optic disc, narrowed retinal vessels, a triangular zone of chorio-retinal atrophy inferior to the 

macula. B, Short-wavelength fundus autofluorescence. Zone of extinguished autofluorescence with 

hyperautofluorescent edges inferior to the macula. C, Infrared reflectance. Increased reflectance 

inferior to the macula. Vessels crossing fovea. D, SD-OCT, vertical  scan passing through fovea. 

Grade 3 foveal hypoplasia. Epirteinal membrane. Loss of outer reflective layers in scan passing 

through the zone of chorioretinal atrophy.  

Figure 4. A, pedigrees. Top, family F178. The c.595C>T variant in VSX2 co-segregated with disease 

in this consanguineous Turkish family. Bottom, family F7248. The c.698C>T variant was identified in 

one affected member for whom other family members were unavailable for co-segregation analyses.  

B, schematic VSX2 gene (top) and protein (bottom) structure. Microphthalmia/anophthalmia-

associated variants are listed above and retinal dysfunction associated variants are listed below the 

schematic gene structure. In addition, the consequences on protein levels are depicted and the 

schematic protein structure given. Variants identified by us are highlighted in red. The different 
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domains of VSX2 are indicated as following: HOX – homeobox domain, CVC - CHX10, VSX1 and 

CEH10 domain, OAR - OTP, aristaless and RAX domain. Amino acid residue positions of each 

domain are depicted in green, light-blue and red, respectively.  
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