
HAL Id: hal-03966327
https://hal.science/hal-03966327

Preprint submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporally connected components
Stefan Balev, Yoann Pigné, Eric Sanlaville, Jason Schoeters

To cite this version:
Stefan Balev, Yoann Pigné, Eric Sanlaville, Jason Schoeters. Temporally connected components. 2023.
�hal-03966327�

https://hal.science/hal-03966327
https://hal.archives-ouvertes.fr

Temporally connected components1

Stefan Balev �2

Normandie Univ, UNIHAVRE, LITIS, 76600 Le Havre, France3

Yoann Pigné �Â4

Normandie Univ, UNIHAVRE, LITIS, 76600 Le Havre, France5

Eric Sanlaville �Â6

Normandie Univ, UNIHAVRE, LITIS, 76600 Le Havre, France7

Jason Schoeters � Â8

University of Cambridge, United Kingdom9

Abstract10

We discuss a variety of extensions of connected components in temporal graphs, focusing on extensions11

using connectivity over time through temporal paths (or journeys). Starting with components induced12

by temporal sources or sinks, we build up to components induced by multiple sources or sinks,13

and eventually components where all vertices are sources and sinks, i.e. temporally connected14

components. Our contributions mainly include structural results on the number of components, and15

algorithmic and complexity results of corresponding decision problems.16

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness;17

Networks → Network components; Mathematics of computing → Graph algorithms; Mathematics18

of computing → Paths and connectivity problems19

Keywords and phrases temporal graph theory, NP-complete problem, polynomial-time reduction,20

algorithm, connected component, temporal connectivity21

Funding Eric Sanlaville: DyNet RIN Tremplin Région Normandie 2020-202222

Jason Schoeters: DyNet RIN Tremplin Région Normandie 2020-202223

1 Introduction24

Temporal graphs have become increasingly more popular in the literature over the years,25

and with good reason. Dynamic settings, whether failure-prone systems or highly mobile26

entities, which static graphs fail to model, can be modeled naturally with temporal graphs27

[9, 24, 48]. Many problems in temporal graphs can be solved by extending static graph28

structures and related problems and algorithms into the dimension of time, resulting in29

various more complicated extensions. The structures considered in this paper use journeys30

(also called temporal paths) which allow for connectivity over time through increasing time31

labels on successive edges of the path [12,25,28,33,35]. Concerning the problems, often these32

become harder in terms of time and/or space complexity [1,4, 40]. Naturally, this leads to33

results considering specific classes of temporal graphs, often restraining the underlying graph34

(or footprint), approximation results, and/or fixed-parameter tractability results (or, in the35

negative case, W [1] or even W [2] hardness results) [11, 15, 16, 19, 29, 50]. Temporal graph36

theory has also natural links with gossip theory [3,21,22], and with rainbow structures in37

edge-colored static graphs [7, 13,38].38

mailto:stefan.balev@univ-lehavre.fr
mailto:yoann.pigne@univ-lehavre.fr
https://pigne.org/
mailto:eric.sanlaville@univ-lehavre.fr
https://litis.univ-lehavre.fr/~sanlaville/
mailto:jason.schoeters.cs@gmail.com
https://jschoete.github.io/

2 Temporally connected components

The aim of this paper is to present a comprehensive study of the fundamental question39

“What is a connected component in temporal graphs?” Some works have appeared over the40

years offering answers to this question, in one way or another. Here, we wish to regroup41

these results, not unlike a survey, and add or complete missing pieces of information relevant42

to this central question. We choose to consider a well-established hierarchy of temporal43

connectivity properties proposed by Casteigts et al. in [9], and recently revisited in [8], as44

a basis for all sorts of connectivity which may arise or exist in temporal graphs. For some45

of these properties defined through journeys, we define the corresponding component and46

present results on computational complexity, algorithms, and the number of components.47

In Section 2, we present the main concepts regarding temporal graphs, different types of48

connectivity such as journeys, and components in such graphs. In Section 3, we state results49

regarding temporal components in which one vertex connects to/from all others. Then, in50

Section 4, we present results regarding temporal components in which all vertices connect51

to/from all others. Finally, in Section 5, we conclude by giving a summary of this paper and52

discuss some open questions and future works.53

Note that as the paper presents a number of new results, for ease of reading, most of the54

technical proofs are moved to the appendices. The concerned results are marked with a ?.55

2 Main concepts of temporal graph connectivity56

2.1 Temporal graphs57

We use standard notation and terminology from graph theory [17]. Temporal graphs can be58

defined in a number of (more or less) equivalent ways, and as a result exist under a multitude59

of distinct names, including dynamic graphs, stream graphs, link streams, time-varying60

graphs and evolving graphs [2, 9, 18, 39]. We choose the following, often referred to as the61

compact representation.62

A temporal graph G = (G,λ) is defined by a static graph G = (V,E) with vertex set V (G)63

and edge set E(G) ⊆ V (G)× V (G), and a labelling of the edges λ : E → 2N \ ∅ determining64

at which discrete times edges are present. G is commonly called the underlying graph (or65

footprint) of G, sometimes denoted as G↓(G) or simply G↓. In this paper, we consider66

only finite-time temporal graphs, with the largest label, or lifetime, of G being denoted67

as T (G). When there is no ambiguity, we denote V (G), E(G) and T (G) as simply V , E68

and T respectively, and n = |V | and m = |E|. We use the notation Gt(G) (or simply Gt)69

for the static graph corresponding to temporal graph G at time t, i.e. Gt = (V,Et ⊆ E)70

with e ∈ Et ⇐⇒ t ∈ λ(e). Gt is called a snapshot of G. It is sometimes useful to71

represent temporal graphs as sequences of snapshots, e.g. G = (G1, G2, ..., GT). Let the72

restriction of G on time window [t1, t2] for some t1 ≤ t2 ≤ T be the temporal graph denoted73

G[t1,t2] = (Gt1 , Gt1+1, ..., Gt2), and G[t1,t2] denote its footprint. Finally, let the subgraph of74

G induced by vertex set V ′ ⊆ V be the temporal graph denoted G[V ′] = (G′ = (V ′, E′), λ),75

with {u, v} ∈ E′ ⇐⇒ u, v ∈ V ′ and {u, v} ∈ E.76

Size of a temporal graph77

Whether one considers the compact representation, or the sequence of snapshots represent-78

ation, in both cases the size of a temporal graph is O(n + mT). In specific cases, more79

resourceful representations exist, such as to store only the differences from a snapshot to80

another (added and removed edges), which is specially effective for temporal graphs with few81

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 3

changes between snapshots, or low dynamics. In this paper however, we do not specifically82

consider temporal graphs with low dynamics. Without loss of generality, we assume m ≥ n.183

In this setting, an algorithm on temporal graphs is polynomial if and only if it runs in84

polynomial time regarding n,m, and T .85

2.2 Journeys and temporal connectivity86

In static graphs, including snapshots of temporal graphs, vertices s, t are adjacent if they are87

connected by edge {s, t}, and edges {u, v}, {v, w} are said to be incident. An (elementary)88

path is defined as a (non-repeating) sequence of adjacent vertices. We denote a path from89

u to v as u→ v or, since we consider undirected graphs, u↔ v. If for all pairs of vertices90

in G there exists a path including both vertices, then G is said to be connected. If G isn’t91

connected, then G can be partitioned into subgraphs such that each subgraph is connected.92

Such subgraphs, and equivalently the associated vertex sets, are referred to as the connected93

components of G.94

In temporal graphs, a natural extension of paths exists, in which even though two vertices95

may admit no path in any of the snapshots, over time they might still be connected thanks96

to some structures called temporal paths or journeys. More formally, a journey from s to t97

in G is a path from s to t in the footprint G with non-decreasing labels on successive edges98

(see Figure 1). We then say s can reach t and t can be reached by s. We denote a journey,99

or the existence of a journey, from u to v, as u v. Journeys, as opposed to paths, are100

neither symmetrical nor transitive, i.e. u v and v w does not necessarily imply u w.101

The notation u v w implies that journey v w takes place later in time than journey102

u v (which also implies u w). When a temporal graph G admits journeys from all103

vertices to all other vertices, the graph is said to be temporally connected, or T C. We use104

the notation u 	 v for a round-trip journey u v u105

1

5

4,7

2

5
4

3

2

1,3,5

s t 1

5

4,7

2

5
4

3

2

1,3,5

s t

Figure 1 Example of temporal graph G1 (presented in the compact representation), with two
journeys (in red) but no static path from vertex s to vertex t in any of the snapshots.

Besides the footprint, another useful structure concerning temporal graphs is the transitive106

closure, which represents the reachability (through journeys) of all vertices of the graph.107

Formally, the transitive closure of a temporal graph G corresponds to the directed graph108

H(G) = (V,A ⊆ V × V), with A = {(v, v′) : v v′}. Note that this definition introduced by109

[6] uses the notion of closure in a temporal sense: as stated previously, u v and v w110

implies u w only if the second journey takes place later than the first one. So H(G) is not,111

as usual, the transitive closure of some relation, for instance the relation associated to the112

existence of journeys between vertex couples, but precisely the graph of this relation. When113

clear from the context, we simply denote H(G) as H.114

1 If for some temporal graph G we have m < n, i.e. the footprint admits multiple connected components
V ′, precomputation allows us to reduce to O(n) cases of temporal graphs G′ = G[V ′] where m′ ≥ n′.

4 Temporally connected components

For example, the transitive closure of the temporal graph G1 from Figure 1 corresponds to a115

complete bidirectional graph (all arcs in both directions exist) except for arc (t, s) which is116

missing, meaning the only journey missing for G1 to be temporally connected is from t to s.117

Constructing the transitive closure can be done in time O(n(m log T + n logn)) through n118

calls of an adaptation of Dijkstra’s algorithm [46], or in time O(max(|Ei|)nT) through an119

online algorithm gradually building the transitive closure snapshot by snapshot [5]. The latter120

is more efficient in specific cases when the lifetime T = O(n) and when the snapshot density121

max(|Ei|) = o(m). For simplicity, we will consider the former time complexity throughout this122

paper, and we will refer to the adaptation of Dijkstra’s algorithm as the temporal Dijkstra123

algorithm.124

2.3 Hierarchy of connectivity properties for temporal graphs125

In [9], and recently revisited in [8], Casteigts et al. introduce a hierarchy of temporal126

properties, including among others temporal connectivity, T C. The properties are given127

mnemonic names using key concepts e.g. J for “journey”, and T C for “temporal connectivity”.128

Superscript adds restraints, for example B meaning “in each bounded time window”, and129

∀1 meaning “from all vertices to one”. This gives rise to properties such as J 1∀, having a130

vertex which is connected through journeys to all other vertices, and T CB, each window of131

some given size ∆2 being temporally connected. The properties of interest for this paper132

are formally defined in Sections 3 and 4 when we define their corresponding components.133

For clarity, we’ve opted to change some mnemonic names of the hierarchy for shorter ones134

without superscript (so we may add superscript later on). S for “source” will replace J 1∀,135

and since “sink” unfortunately also starts with an S, T for “target” will replace J ∀1. By136

slight abuse of notation, we will often use the mnemonic names to denote the property as137

well as the set of graphs admitting the property.138

2.4 From connectivity properties to temporal components139

The rest of the paper is organized to define and study, for every journey-based temporal140

property X , the analogue of a connected component corresponding to this property, which141

we will simply refer to as a X component.142

I Definition 1 (X component). Given a temporal graph G, a X component is a maximal143

subset V ′ ⊆ V such that X is respected by V ′ in G.144

Note the maximality requirement for V ′, which mimics the maximality requirement for static145

connected components. It is natural to look for largest components also in the temporal case.146

Theorem 1 can be ambiguous concerning the latter part, since technically X is a property147

of temporal graphs, not of a set of vertices in a temporal graph. For now, it is sufficient148

to say that we simply aim to present the difference between X components and closed X149

components, Theorem 1 and Theorem 2 resp. Also, these definitions are formal and clear150

when presented using concrete properties in Sections 3 and 4.151

Using terminology from [6,23,44], we say a X component V’ is closed if journeys between152

vertices u, v ∈ V ′ necessary for property X , do not use vertices from V \ V ′. In other words,153

2 In this paper, ∆ will by default be used to denote the size of a time window, and ∆(G) for the maximum
degree of a static graph G.

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 5

to verify if V ′ is a closed X component, it suffices to verify the X property on G[V ′], and154

this verification does not depend on the rest of G.155

I Definition 2 (Closed X component). Given a temporal graph G, a closed X component is156

a maximal subset V ′ ⊆ V such that X is respected by G[V ′].157

Open X components are defined as X components in which there exists at least one journey158

necessary for X which goes outside of the component. Most of the components studied in159

static graphs are closed (an exception being k-connected components [45] which may be160

open). We give the following results for X components, and if applicable, also for closed X161

components.162

For each property X , we start by studying the worst-case number of X components, i.e. the163

maximum number of X components which may exist in a given temporal graph. This can be164

useful for enumeration and partition problems.165

For each property X , the corresponding decision problem X Component is defined as166

follows.167

I Definition 3 (X Component decision problem).168

Input: temporal graph G, integer k (and integer ∆ if X is a windowed property).169

Question: does G admit a X component of size at least k?170

Algorithms and complexity results for X Component are presented. As stated in Section 1,171

depending on property X , some results may already exist in the literature. However we172

additionally determine the boundary (if one exists) between polynomial-time solvability and173

NP -hardness depending on the lifetime of the graph. To obtain such results, we modify174

reductions from the literature or use different reductions altogether.175

Regarding hardness implications, Bhadra et al. [6] give the following argument for T C176

components and closed T C components, which we generalize for any temporal properties177

X1, X2. Although X1 components are a special case of X2 components, the NP -hardness178

of X1 Component does not directly imply that X2 Component is NP -hard as well. This179

is because a possible polynomial time algorithm for X2 Component need only answer the180

decision problem and not identify the components of size at least k, thus potentially making it181

difficult to verify if at least one such a component is a X1 component. Also, the same temporal182

graph may contain both a X1 component (of indeterminate size) and a X2 component of size183

k, so the decision problem for the latter would always return “yes”, ignoring the presence184

or absence of a X1 component of size k, thereby leaving its decision problem unsolved. Of185

course, the other way around, since X1 components are a special case of X2 components, if186

X2 Component is NP -hard, then X1 Component is not necessarily NP -hard either. Since187

hardness results do not transfer one way or the other, note that this implies that neither do188

results on polynomial-time solvability.189

Regarding hardness proofs, i.e. reductions, we do however use a trick from [6] making one190

reduction work for both X Component and Closed X Component, which is to make191

sure all X components in the transformed instance are closed.192

3 One to/from all (S, SB, SD, T , T B, T D)193

A temporal source is a vertex u such that all other vertices v in the temporal graph admit194

a journey u v. The concept is mainly useful to model a network over which one agent,195

6 Temporally connected components

say the leader, can control the entire network, diffusing information, messages or influence196

throughout the network using peer-to-peer broadcasting [14,31, 49]. The property of having197

a temporal source is denoted by S.198

I Definition 4 (S component). An S component of a temporal graph G is a maximal subset199

V ′ ⊆ V such that ∃u ∈ V ′, ∀v ∈ V ′, u v in G.200

Adding the natural constraint of time windows has mainly two advantages, first a time bound201

after which one is ensured all other vertices can be reached from the source, and second202

the possibility for the source to reach other vertices multiple times over the lifetime of the203

network. The property of having a vertex which is a temporal source for each time window204

is denoted by SB.205

I Definition 5 (SB component). An SB component of duration ∆ of a temporal graph G is206

a maximal subset V ′ ⊆ V such that ∃u ∈ V ′, ∀t ≤ T −∆ + 1, ∀v ∈ V ′, u v in G[t,t+∆−1].207

A natural relaxation of the latter allows for any vertex to be the source in a time window,208

not necessarily the same vertex for all time windows. In other words, the source may be209

dynamic and change over time. This property is denoted by SD.210

I Definition 6 (SD component). An SD component of duration ∆ of a temporal graph G is211

a maximal subset V ′ ⊆ V such that ∀t ≤ T −∆ + 1, ∃u ∈ V ′, ∀v ∈ V ′, u v in G[t,t+∆−1].212

Closely related to source vertices are sink vertices, where other vertices are able to reach213

such a vertex, leading to properties T , T B, and T D. While often studied independently and214

having its own specific applications such as collecting and analysing data (e.g. [30,34,47]),215

we simplify this paper through the following observation.216

I Lemma 7. T (resp. S, T B, SB, T D, SD) components in temporal graph G = (G,λ)217

of lifetime T correspond to S (resp. T , SB, T B, SD, T D) components in temporal graph218

G′ = (G,λ′) of lifetime T , where ∀e ∈ E(G), λ′(e) =
⋃

`∈λ(e)
T − `.219

Proof. Any journey in G from vertex u to v is reversed in G′. Thus, a vertex able to reach220

all vertices in G (or in some G[t,t+∆−1]) can be reached by all vertices in G′ (or in some221

G′[t′,t′+∆−1]) and vice versa. J222

Theorem 7 allows us to focus only on S components, since any structural result transfers to223

T components, and algorithmic results transfer too, with a polynomial overhead of O(mT)224

to build the reversed graph (but they can be adapted easily without any overhead). The225

same holds for SB components and T B components, as well as for SD components and T D226

components.227

3.1 S components228

I Lemma 8. S components are necessarily closed.229

Proof. In an S component, all vertices on a journey from the source to some other vertex230

also admit a journey from the source, and are thus by maximality included in the component231

as well. J232

I Lemma 9. A vertex can only be a source for one S component.233

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 7

Proof. If a vertex was a source for two distinct S components, then at least one wouldn’t be234

maximal since their union would result in a larger S component. J235

I Observation 10. An isolated vertex in the footprint is an S component.236

I Theorem 11 (?). The worst-case number of S components is n.237

I Theorem 12 (?). The worst-case number of S components is n
2 in temporal graphs without238

isolated vertices.239

I Theorem 13 (?). S Component is solvable in polynomial time O(n(m log T + n logn)).240

3.2 SB components241

I Observation 14. Contrary to S components, SB components can be open, as shown in242

Figure 2.243

...

...

2

43

3 3 3

2

2

2 2

s t

3

2

Figure 2 A graph family admitting an open SB component for ∆ = 2 (in dashed and red with
vertex s as source) and an open T B component for ∆ = 2 (in dashed and red with vertex t as sink).

I Lemma 15. A vertex can only be a source for one SB component.244

Proof. If a vertex was a source for two distinct SB components, then at least one wouldn’t245

be maximal since their union would result in a larger SB component. J246

I Theorem 16 (?). The worst-case number of SB components is n.247

I Theorem 17 (?). SB Component is solvable in polynomial time O((T −∆)n(m log ∆ +248

n logn)).249

I Theorem 18 (?). The worst-case number of closed SB components is n.250

I Theorem 19 (?). Closed SB Component is solvable in polynomial time O(n(n−k)(T −251

∆)(m log ∆ + n logn)).252

3.3 SD components253

Some results from SB components transfer for SD components, or give bounds, since SB254

components are SD components in which the source for every window is the same vertex.255

I Observation 20. Even SD components where sources change between successive windows256

can be open, such as shown in Figure 3.257

8 Temporally connected components

s

1 3 3

t

2 2 4

...

2

2 3

3

T − 1

...

T

...

4

4

T

T

Figure 3 A graph family admitting an open SD component for ∆ = 2 (in dashed and red with
vertex s as source for windows [odd, even] and t as source for windows [even, odd]).

I Lemma 21. An ordered set of vertices (one source per window possibly with repetitions)258

corresponds to sources of at most one SD component.259

Proof. If such a set of vertices were sources for two distinct SD components, then at least260

one wouldn’t be maximal since their union would result in a larger SD component. J261

I Theorem 22 (?). The worst-case number of SD components is at least n, and at most262

min(2n, nT−∆+1).263

I Theorem 23 (?). SD Component is solvable in time O(nmin(k,T−∆+2)(T −∆)k(m log ∆+264

n logn)).265

I Theorem 24 (?). SD Component is NP-complete.266

I Theorem 25 (?). The worst-case number of closed SD components is at least n, and at267

most min(2n, nT−∆+1).268

I Theorem 26 (?). Closed SD Component is solvable in time O(min(2n, nT−∆+1)(T −269

∆)n(m log ∆ + n logn)).270

I Theorem 27 (?). Closed SD Component is NP-complete.271

4 All to/from all (T C, T CB, T C)272

A graph is said to be temporally connected if there exists a journey from each vertex to every273

other vertex. In other words, over time, each vertex is able to connect to the whole temporal274

graph, and is used for example in contexts with multi-hop message passing, distributed275

mobile agents, or social communication networks [26,36,37].276

I Definition 28 (T C component). A T C component of a temporal graph G is a maximal277

subset V ′ ⊆ V such that ∀u, v ∈ V ′, u v.278

Similar to SB, time windows add multiple advantages to temporal connectivity. Gomez et279

al. suppose a T CB component exists in their work on agreement in dynamic systems in [23].280

In [10], Casteigts et al. present a general framework for computing parameters in temporal281

graphs, one of which being ∆ for which the given graph is T CB. Closed T CB components282

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 9

are studied by Huyghues-Despointes et al. in [27]. They propose polynomial-time algorithms283

for computing lower and upper bounds on the maximum component size.284

I Definition 29 (T CB component). A T CB component of duration ∆ of a temporal graph285

G is a maximal subset V ′ ⊆ V such that ∀v, v′ ∈ V ′, ∀t ≤ T −∆ + 1, v v′ in temporal286

graphs G[t,t+∆−1].287

Another parameter Casteigts et al. are interested in is the round trip temporal diameter,288

being the shortest duration for which there exist round trip journeys between every pair of289

vertices. More generally, round-trip connectivity can represent systems in which feedback290

or acknowledgements are needed in a connection, such as Transmission Control Protocol291

(TCP).292

I Definition 30 (T C	 component). A T C	 component of a temporal graph G is a maximal293

subset V ′ ⊆ V such that ∀u, v ∈ V ′, u 	 v in G.294

4.1 T C components295

I Observation 31. T C components can be open such as shown in Figure 4.296

n+ 1

1 3, n− 4

n

...2, n− 3
1, n− 22, n− 3

Figure 4 A graph family admitting an open T C component (in dashed and red).

I Theorem 32 (?). The worst-case number of T C components is at least 20.52
√
n, and at297

most 20.53n.298

Note (see appendix) that the exact bounds are 3(
√
n+1+1)/3 and 3n/3 respectively. We used299

20.52k < 3k/3 < 20.53k so that results are comparable with results using powers of 2.300

An algorithm is mentioned by Bhadra et al. [6] and implemented and experimented on by301

Nicosia et al. [42]. To the best of our knowledge, no complexity analysis of this algorithm302

has been performed.303

I Theorem 33 (?). T C Component is solvable in time O(nm log T + min(nkk2, 20.25n)).304

Bhadra et al. prove that T C Component is NP-complete. They use a reduction from305

Clique in which they produce a temporal graph with a lifetime T = 4 (so using labels306

between 1 and 4 included). This leaves the NP -hardness question open for lifetimes 1 < T < 4307

(T = 1 being polynomial-time solvable). We treat the case of T = 2, filling the gap and308

proving general NP -hardness for T > 1.309

I Theorem 34 (?). T C Component is NP -complete, for all constant lifetimes T > 1.310

I Theorem 35 (?). The worst-case number of closed T C components is at least 20.52
√
n, and311

at most 20.53n.312

I Theorem 36 (?). Closed T C Component is solvable in time O(2nn(m log T +n logn)).313

10 Temporally connected components

Bhadra et al. also prove Closed T C Component is NP -complete through the same314

reduction as for T C Component. We use the same trick to show Closed T C Component315

is NP-complete for all constant lifetimes T > 1.316

I Theorem 37 (?). Closed T C Component is NP -complete, for all constant lifetimes317

T > 1.318

4.2 T CB components319

I Lemma 38. T CB components can be open.320

Proof. Since T C components are T CB components for the specific setting of ∆ = T , The-321

orem 32 transfers directly. J322

I Theorem 39 (?). The worst-case number of T CB components is at least 20.52
√
n and at323

most 20.53n.324

I Theorem 40 (?). T CB Component is solvable in time O((T −∆)n(m log ∆ + n logn) +325

min(nkk2, 20.25n)).326

Again, since T C components are T CB components by setting window size ∆ = T , NP-hardness327

transfers. We however prove a more general hardness for T CB Component regarding any328

constant lifetime and window size.329

I Theorem 41 (?). T CB Component is NP -complete, for all constant lifetimes T > 1 and330

window sizes ∆ > 1.331

I Theorem 42 (?). The worst-case number of closed T CB components is at least 20.52
√
n

332

and at most 20.53n.333

I Theorem 43 (?). Closed T CB Component is solvable in time O(2n(T −∆)n(m log ∆ +334

n logn)).335

I Theorem 44 (?). Closed T CB Component is NP -complete, for all constant lifetimes336

T > 1 and window sizes ∆ > 1.337

4.3 T C	 components338

I Observation 45. T C	 components can be open, such as shown in Figure 5.339

4n+1 4n+ 2

...

1,
2n− 1,
2n+ 1

2,
2n− 2,
2n+ 2

3,
2n− 3,
2n+ 3

n− 2,
n+ 2,
3n− 2

n− 1,
n+ 1

Figure 5 Graph family admitting an open T C	 component (in red and dashed).

I Theorem 46 (?). The worst-case number of T C	 components is at least 20.52
√
n, and at340

most 20.53n.341

I Theorem 47 (?). T C	 Component is solvable in time O(n2(m log T+n logn)+min(nkk2, 20.25n)).342

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 11

Outside of the trivial case of lifetime T = 1, T C	 Component can be solved in polynomial343

time for lifetime T = 2 as well.344

I Theorem 48 (?). T C	 Component is solvable in polynomial time O(n+m) on temporal345

graphs with constant lifetimes T ≤ 2.346

I Theorem 49 (?). T C	 Component is NP -complete, for all constant lifetimes T > 2.347

I Theorem 50 (?). The worst-case number of closed T C	 components is at least 20.52
√
n,348

and at most 20.53n.349

I Theorem 51 (?). Closed T C	 Component is solvable in time O(2n(n2(m log T +350

n logn)).351

I Theorem 52 (?). Closed T C	 Component is solvable in polynomial time O(n+m) on352

temporal graphs with constant lifetimes T ≤ 2.353

I Theorem 53 (?). Closed T C	 Component is NP -complete, for all constant lifetimes354

T > 2.355

5 Conclusion356

5.1 Summary of this paper357

A first summary of this paper is given in the following table, where we precise for each X358

component the worst-case number of components, or the presented bounds on this number359

(using notation [lower bound, upper bound]), as well as the complexity of the corresponding360

decision problem and its corresponding complexity class (P referring to polynomial-time361

solvable, NPC to NP -complete). For X components defined through the T C property (lower362

part of the table) we give the constant values of T (and ∆ when applicable) for which the363

corresponding decision problem is NP -complete.364

Component Worst-case Number Complexity Class

S n (n
2 no isolated vertices) O(n(m log T + n log n)) P

SB n O((T −∆)n(m log ∆ + n log n)) P
Closed SB n O(n(T −∆)(n− k)(m log ∆ + n log n)) P
SD [n, min(2n, nT−∆+1)] O(nmin(k,T−∆+2)(T −∆)k(m log ∆ + n log n)) NPC

Closed SD [n, min(2n, nT−∆+1)] O(min(2n, nT−∆+1)(T −∆)n(m log ∆ + n log n)) NPC

T C [20.52
√

n, 20.53n] O(nm log T + min(nkk2, 20.25n)) NPC (T > 1)
Closed T C [20.52

√
n, 20.53n] O(2nn(m log T + n log n)) NPC (T > 1)

T CB [20.52
√

n, 20.53n] O((T −∆)n(m log ∆ + n log n) + min(nkk2, 20.25n)) NPC (T &∆ > 1)
Closed T CB [20.52

√
n, 20.53n] O(2n(T −∆)n(m log ∆ + n log n)) NPC (T &∆ > 1)

T C	 [20.52
√

n, 20.53n] O(n2(m log T + n log n) + min(nkk2, 20.25n)) NPC (T > 2)
Closed T C	 [20.52

√
n, 20.53n] O(2n(n2(m log T + n log n)) NPC (T > 2)

Temporal graphs with lifetime T = 1 trivially admit polynomial-time algorithms for all365

these problems (since they reduce to finding connected components in the static graph), so366

they are not presented. Note that all these results are to be found in this paper, although367

some parts were first presented in related works. We also prove T C	 Component and368

Closed T C	 Component can be solved in polynomial time for temporal graphs with369

lifetime T = 2.370

12 Temporally connected components

5.2 A short discussion about optimisation of windowed components371

This paper provided algorithms (polynomial or not) to solve the windowed versions of our372

problems. Some of these consider treat the windows in the specific order ([1,∆], [2,∆ +373

1], ...[T −∆ + 1, T]). We note this order isn’t necessary, in the sense that the result would374

remain unchanged if it considered the time windows in other orders. A consequence potentially375

useful for optimisation is that one could reorder the time windows in the most "favorable" way.376

For example, for SB, start with the window in which the corresponding temporal graph may377

have few and small candidate components, and start the intersection process with windows378

in which the corresponding temporal graphs may have very distinct S components from the379

candidate components. Of course, theoretically this would only be useful if such an estimation380

and reordering of time windows could be done in time O((T −∆)(n(m log ∆ + n logn))) as381

well, and even then practically this may still induce a significant change in running time.382

Another possible optimisation concerns some bounded versions of problems related to T C,383

where transitive closures are computed for each time window. Can one do better by computing384

a modified transitive closure over the whole graph, which iteratively keeps track of how old385

journeys’ starting dates are, and removes them over time if too old? Our first investigations386

did not allow to show this idea brings a breakthrough.387

Both of these directions we leave as open research avenues in this paper.388

5.3 A quick note on parameterised complexity389

Among the NP-hard problems in this paper, all but two are para-NP-hard concerning390

the lifetime parameter, i.e. for some constant value of T the problem is NP-hard. The391

two problems which are not para-NP-hard regarding lifetime T are SD Component and392

Closed SD Component. Both are in XP, i.e. the problems are polynomial-time solvable for393

all constant T (and SD Component is in XP as well concerning the solution size parameter394

k). It may be of interest to determine where exactly in XP the problems are situated, e.g.395

FPT or W[1]-hard. Of course, outside of T , other natural parameters may be considered.396

Again, this research is left as open avenues.397

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 13

References398

1 Eleni C Akrida, Leszek Gasieniec, George B Mertzios, and Paul G Spirakis. The complexity of399

optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,400

2017.401

2 Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin.402

Algorithms on evolving graphs. In Proceedings of the 3rd Innovations in Theoretical Computer403

Science Conference, ITCS ’12, pages 149–160, 2012.404

3 Brenda Baker and Robert Shostak. Gossips and telephones. Discrete Mathematics, 2(3):191–405

193, June 1972.406

4 Stefan Balev, Yoann Pigné, Eric Sanlaville, and Mathilde Vernet. Complexité du problème de407

Steiner dynamique. In 23ème congrès annuel de la Société Française de Recherche Opération-408

nelle et d’Aide à la Décision, Villeurbanne - Lyon, France, February 2022. INSA Lyon.409

5 Matthieu Barjon, Arnaud Casteigts, Serge Chaumette, Colette Johnen, and Yessin M Neggaz.410

Testing temporal connectivity in sparse dynamic graphs. arXiv preprint arXiv:1404.7634,411

2014.412

6 Sandeep Bhadra and Afonso Ferreira. Computing multicast trees in dynamic networks and413

the complexity of connected components in evolving graphs. Journal of Internet Services and414

Applications, 3(3):269–275, 2012.415

7 Peter Bradshaw and Bojan Mohar. A Rainbow Connectivity Threshold for Random Graph416

Families. In Jaroslav Nešetřil, Guillem Perarnau, Juanjo Rué, and Oriol Serra, editors, Extended417

Abstracts EuroComb 2021, Trends in Mathematics, pages 842–847. Springer International418

Publishing, 2021.419

8 Arnaud Casteigts. A Journey Through Dynamic Networks (with Excursions). Habilitation à420

diriger des recherches, Université de Bordeaux, June 2018.421

9 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying422

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed423

Systems, 27(5):387–408, 2012.424

10 Arnaud Casteigts, Ralf Klasing, Yessin M Neggaz, and Joseph G Peters. Computing parameters425

of sequence-based dynamic graphs. Theory of Computing Systems, 63(3):394–417, 2019.426

11 Arnaud Casteigts, Joseph G Peters, and Jason Schoeters. Temporal cliques admit sparse427

spanners. Journal of Computer and System Sciences, 121:1–17, 2021.428

12 Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds in429

random simple temporal graphs. In 2021 IEEE 62nd Annual Symposium on Foundations of430

Computer Science (FOCS), pages 319–326. IEEE, 2022.431

13 Lily Chen, Xueliang Li, and Yongtang Shi. The complexity of determining the rainbow432

vertex-connection of a graph. Theoretical Computer Science, 412(35):4531–4535, 2011.433

14 Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest434

paths with applications to vertex-capacitated flow and cut problems. In Proceedings of the435

51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 389–400.436

Association for Computing Machinery, 2019.437

15 Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Approximating the temporal438

neighbourhood function of large temporal graphs. Algorithms, 12(10):211, 2019.439

16 Argyrios Deligkas, Eduard Eiben, and George Skretas. Minimizing reachability times on440

temporal graphs via shifting labels. arXiv preprint arXiv:2112.08797, 2021.441

14 Temporally connected components

17 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,442

Berlin, Heidelberg, 2017.443

18 Antoine Dutot, Frédéric Guinand, Damien Olivier, and Yoann Pigné. Graphstream: A tool444

for bridging the gap between complex systems and dynamic graphs. In Emergent Properties445

in Natural and Artificial Complex Systems. (ECCS’2007), 2007.446

19 Jessica Enright, Kitty Meeks, and Hendrik Molter. Counting temporal paths. arXiv preprint447

arXiv:2202.12055, 2022.448

20 Jeff Erickson. Algorithms. self-publishing, 2019.449

21 Satoshi Fujita, Stephane Perennes, and Joseph G Peters. Neighbourhood gossiping in hyper-450

cubes. Parallel Processing Letters, 8(02):189–195, 1998.451

22 Frits Göbel, J Orestes Cerdeira, and Hendrik Jan Veldman. Label-connected graphs and the452

gossip problem. Discrete Mathematics, 87(1):29–40, 1991.453

23 Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A connectivity454

model for agreement in dynamic systems. In Jesper Larsson Träff, Sascha Hunold, and455

Francesco Versaci, editors, Euro-Par 2015: Parallel Processing, Lecture Notes in Computer456

Science, pages 333–345, Berlin, Heidelberg, 2015. Springer, Springer.457

24 John P. Hayes. A graph model for fault-tolerant computing systems. IEEE Transactions on458

Computers, 25(09):875–884, 1976.459

25 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the460

bron–kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network461

Analysis and Mining, 7(1):35, 2017.462

26 Petter Holme. Network reachability of real-world contact sequences. Physical Review E,463

71(4):046119, 2005.464

27 Charles Huyghues-Despointes, Binh-Minh Bui-Xuan, and Clémence Magnien. Forte delta-465

connexité dans les flots de liens. In ALGOTEL 2016-18èmes Rencontres Francophones sur les466

Aspects Algorithmiques des Télécommunications, 2016.467

28 Allen Ibiapina and Ana Silva. Mengerian temporal graphs revisited. In International Symposium468

on Fundamentals of Computation Theory, pages 301–313. Springer, Springer International469

Publishing, 2021.470

29 David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade. Exploration of constantly471

connected dynamic graphs based on cactuses. In International Colloquium on Structural472

Information and Communication Complexity, pages 250–262. Springer, 2014.473

30 Joe-Air Jiang, Chien-Hao Wang, Min-Sheng Liao, Xiang-Yao Zheng, Jen-Hao Liu, Cheng-Long474

Chuang, Che-Lun Hung, and Chia-Pang Chen. A wireless sensor network-based monitoring475

system with dynamic convergecast tree algorithm for precision cultivation management in476

orchid greenhouses. Precision agriculture, 17(6):766–785, 2016.477

31 Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and Shawn478

O’Banion. Examining covid-19 forecasting using spatio-temporal graph neural networks. arXiv479

preprint arXiv:2007.03113, 2020.480

32 Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E. Miller,481

James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations,482

The IBM Research Symposia Series, pages 85–103. Springer US, Boston, MA, 1972.483

33 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for484

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.485

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 15

34 Abdul Waheed Khan, Abdul Hanan Abdullah, Mohammad Hossein Anisi, and Javed Iqbal486

Bangash. A comprehensive study of data collection schemes using mobile sinks in wireless487

sensor networks. Sensors, 14(2):2510–2548, 2014.488

35 Nina Klobas, George B Mertzios, Hendrik Molter, and Paul G Spirakis. The complexity of489

computing optimum labelings for temporal connectivity. arXiv preprint arXiv:2202.05880,490

2022.491

36 Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways492

in a social communication network. In Proceedings of the 14th ACM SIGKDD international493

conference on Knowledge discovery and data mining, KDD ’08, pages 435–443. Association for494

Computing Machinery, August 2008.495

37 Vassilis Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applications,496

388(6):1007–1023, 2009.497

38 Michael Krivelevich and Raphael Yuster. The rainbow connection of a graph is (at most)498

reciprocal to its minimum degree. Journal of Graph Theory, 63(3):185–191, 2010.499

39 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams500

for the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61, 2018.501

40 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.502

Computing maximum matchings in temporal graphs. arXiv preprint arXiv:1905.05304, 2019.503

41 John W Moon and Leo Moser. On cliques in graphs. Israel journal of Mathematics, 3(1):23–28,504

1965.505

42 Vincenzo Nicosia, John Tang, Mirco Musolesi, Giovanni Russo, Cecilia Mascolo, and Vito506

Latora. Components in time-varying graphs. Chaos: An interdisciplinary journal of nonlinear507

science, 22(2):023101, 2012.508

43 John M Robson. Finding a maximum independent set in time o (2n/4). Technical report,509

Technical Report 1251-01, LaBRI, Université Bordeaux I, 2001.510

44 Mathilde Vernet, Yoann Pigné, and Éric Sanlaville. A study of connectivity on dynamic511

graphs: Computing persistent connected components. 4OR, April 2022.512

45 Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. Enumerating k-Vertex513

Connected Components in Large Graphs. In 2019 IEEE 35th International Conference on514

Data Engineering (ICDE), pages 52–63, April 2019.515

46 B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost516

journeys in dynamic networks. International Journal of Foundations of Computer Science,517

14(02):267–285, 2003.518

47 Hiroyuki Yomo, Akitoshi Asada, and Masato Miyatake. On-demand data gathering with519

a drone-based mobile sink in wireless sensor networks exploiting wake-up receivers. IEICE520

Transactions on Communications, 101(10):2094–2103, 2018.521

48 Ping Yu, Zhiping Wang, Peiwen Wang, Haofei Yin, and Jia Wang. Dynamic evolution of522

shipping network based on hypergraph. Physica A: Statistical Mechanics and its Applications,523

598:127247, July 2022.524

49 Wenyu Zang, Peng Zhang, Chuan Zhou, and Li Guo. Discovering Multiple Diffusion Source525

Nodes in Social Networks. Procedia Computer Science, 29:443–452, 2014.526

50 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity527

of finding small separators in temporal graphs. Journal of Computer and System Sciences,528

107:72–92, 2020.529

16 Temporally connected components

A Auxiliary proofs530

A.1 S components531

I Theorem 11. The worst-case number of S components is n.532

Proof. Theorem 9 implies that at most n S components can exist, which by Theorem 10 is533

tight when considering the trivial case of the empty temporal graph, i.e. a temporal graph534

composed of empty graph snapshots Gi = (V, ∅). J535

For Theorem 12, we establish a relation between S components and locally minimum label536

edge sets, i.e. connected edge sets sharing a label which have no incident edges with lower537

labels other than themselves.538

I Lemma 54. The number of S components is at most the number of locally minimum edge539

sets in a temporal graph without isolated vertices.540

Proof. For any locally minimum label edge set E′ = {{u1, u2}, ...{uj , uk}}, observe that S541

components Sui
with source ui ∈ V (E′) are identical (in terms of their vertex set), since all542

vertices ui can reach all vertices reachable by all other vertices of E′ through the locally543

minimum label edge set. Hence, such vertices ui of a locally minimum label edge set produce544

altogether at most one S component. Concerning vertices which are not part of a locally545

minimum label edge set, say vertex v, observe that since v is not part of a locally minimum546

label edge set, this means that its incident edge with the smallest label, say {v, x}, must have547

some incident edge {x, y} with an even smaller label (or {v, x} is part of a connected edge548

set of the same label which has such an incident edge). Now, either {x, y} is part of a locally549

minimum label edge set or it has again some incident edge with a smaller label (or again its550

connected edge set of the same label does). Continue this process until having found a locally551

minimum label edge set, say E′ = {{u1, u2}, ...{uj , uk}}. Note that any ui can reach v at552

the latter’s earliest incident edge’s label, implying any vertex v can reach, can be reached by553

ui as well, through v. S component Sv with source v thus has to be contained (in terms of554

their vertex set) within the larger S component Sui with source ui, since ui can reach all555

vertices v can reach. Hence, vertices v which are not part of a locally minimum label edge556

set cannot be the source of a S component, since it would not be maximal. This combined557

with locally minimum label edge sets producing at most one S component each, effectively558

bounds the number of S components by the number of locally minimum label edge sets. J559

Note that there is not necessarily equality for Theorem 54, for example when one component560

induced by a locally minimum label edge set is included in another, such as shown in Figure 6.561

I Lemma 55. At most n
2 locally minimum label edge sets may exist in any temporal graph,562

which is tight.563

Proof. Since locally minimum label edge sets cannot be incident by definition, and cover at564

least two vertices each, at most n
2 locally minimum label edge sets exist in any graph. This565

is shown tight as follows. Take a complete graph on n vertices Kn = (V,E) without any566

labels. Now, take a maximum matching in Kn and assign small labels to it, and to the rest567

of the edges, either assign large labels or remove these edges. The result is a temporal graph568

with exactly n
2 locally minimum label edge sets, corresponding to the maximum matching’s569

n
2 edges.570

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 17

... ...

1

1

2

3 3

2

2

2

2

2

u v

s t

Figure 6 Example graph family for which Theorem 54 does not induce an equality between the
number of S components (only one exists composed of all vertices with source either u or v) and the
number of locally minimum edge sets (two such sets exist: {u, v} and {s, t}).

J571

I Theorem 12. The worst-case number of S components is n
2 in temporal graphs without572

isolated vertices.573

Proof. In other words, we prove that at most n
2 S components may exist in any temporal574

graph without isolated vertices, and we prove this is tight. Figure 7 shows a graph family575

which admits n
2 S components, which by Theorem 54 and Theorem 55 finishes the proof.576

...

1

1

1

1 2

2

2

2

Figure 7 A graph family with n
2 S components. A component with its corresponding source is

marked in red.

J577

I Theorem 13. S Component is solvable in polynomial time O(n(m log T + n logn)).578

Proof. We propose the following algorithm for S Component. First, construct the transitive579

closure H of the given temporal graph G, then check if k ≤ ∆+(H) + 1, where ∆+(H)580

denotes the maximum outdegree of H. The described algorithm has a time complexity of581

O(n(m log T + n logn)) to construct the transitive closure H, and an additional O(n2) to582

compute the maximum outdegree ∆+(H). J583

I Theorem 56. For a given temporal graph, all S components can be enumerated in time584

O(nm log T + n3).585

18 Temporally connected components

Proof. Start by computing the transitive closure H, taking time O(n(m log T + n logn)).586

Then, let the set of S components be composed of vertex v with all its out-neighbours in H,587

for all vertices v ∈ V . Now, some of these S components may be included in others, meaning588

they may be non-maximal. To remove non-maximal S components, start by sorting the589

vertices in each S component, taking time O(n2 logn). Then, for each pair of S components,590

of which there are O(n2), check whether one is a subset of the other, and remove it if so,591

which can be done in time O(n). All in all, enumeration of S components can be done in592

time O(n(m log T + n logn) + n2 logn+ n3) = O(nm log T + n3). J593

A.2 SB components594

I Theorem 16. The worst-case number of SB components is n.595

Proof. Theorem 15 implies at most n SB components may exist, which is tight for example596

for the empty temporal graph. In fact, it is tight even for much denser graphs; a temporal597

graph with one window of size ∆ containing only empty snapshots is sufficient to obtain n598

SB components of size 1, meaning even a temporal graph with a complete graph as footprint599

may attain n SB components. J600

I Theorem 17. SB Component is solvable in polynomial time O((T − ∆)n(m log ∆ +601

n logn)).602

Proof. We propose the following algorithm for SB Component. Start by enumerating the603

S components of the windowed temporal graph G[1,∆], which by Theorem 56 can be done in604

time O(nm log ∆ + n3). However, we are not interested in maximal S components, so the605

added O(n3) can be removed. Thus, we enumerate S components, some of which may not606

be maximal, in time O(n(m log ∆ + n logn)). Keep only those of size at least k. These are607

candidate components for SB components. Let us denote these candidate components as Ss by608

their unique corresponding source vertex s (Theorem 9). Then, for each windowed temporal609

graph G[t,t+∆−1], of which there are O(T−∆), obtain their S components in the same manner,610

again in time O(n(m log ∆ + n logn)). Denote these S components as Ss[t, t+ ∆− 1]. For611

each candidate component Ss, of which there are O(n), update Ss by setting it to the612

intersection of Ss and Ss[t, t+ ∆− 1] which is doable in time O(n logn). Remove Ss from613

the candidate components if its size is less than k. If no candidate components remain at614

some point, the instance is negative, otherwise it is positive. All in all, this gives a total615

time complexity of O(n(m log ∆ + n logn) + (T − ∆)n(m log ∆ + n logn + n(n logn))) =616

O((T −∆)n(m log ∆ + n logn)). J617

I Theorem 57. For a given temporal graph, all SB components can be enumerated in time618

O((T −∆)n(m log T + n logn) + n3).619

Proof. Run the algorithm from Theorem 17 and at the end add the verification and removal620

of non-maximal SB components, doable as in Theorem 56 in time O(n3), for a total of621

O((T −∆)n(m log T + n logn) + n3). J622

I Theorem 18. The worst-case number of closed SB components is n.623

Proof. Theorem 16 directly adapts for closed SB components, since n SB components of624

size 1 are necessarily closed. J625

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 19

I Lemma 58. Verifying a solution vertex subset Ss of source s and of size k for Closed SB Com-626

ponent takes time O((T −∆)(min(m, k2) log ∆ + k log k)).627

Proof. For each windowed temporal subgraph G[Ss][t,t+∆−1], of which there are O(T −∆),628

apply the temporal Dijkstra algorithm from vertex s to obtain its reachability which is done629

in time O(min(m, k2) log ∆ + k log k). If for all windows, its reachability covers the whole630

vertex set Ss, then Ss is a solution, else it is not. J631

I Theorem 19. Closed SB Component is solvable in polynomial time O(n(n− k)(T −632

∆)(m log ∆ + n logn)).633

Proof. We propose the following algorithm for Closed SB Component. Run the algorithm634

for SB Component. At the end of the algorithm, the set of candidates contains all SB635

components Ss of size at least k. For all Ss, test if it is closed, i.e. if for all t ≤ T −∆ + 1, Ss636

is an S component of temporal graph G[Ss][t,t+∆−1]. If some component is, then the instance637

is positive. If however Ss is open, meaning at some time t ≤ T −∆ + 1, vertex s cannot638

reach all vertices in G[Ss][t,t+∆−1], then Ss can be shrunk down to contain only the reachable639

vertices in G[Ss][t,t+∆−1]. This shrunken down Ss can now be tested again: if it is of size at640

least k and closed, then the instance is positive, and if not we can again shrink Ss etc. If no641

closed SB component remains of suitable size, then the instance is negative. The algorithm642

for SB Component runs in time O((T −∆)n(m log ∆+n logn)), after which O(n) candidate643

components are to test whether they contain a large enough closed SB component. For each644

of these, testing if they are closed, takes time O((T −∆)(m log ∆ + n logn)) by Theorem 58.645

This process is repeated in case the component is not closed and a shrunken component646

has to be tested which again isn’t closed but contains another shrunken component to be647

tested etc. This can happen at most n− k times, since the size of a component is at most n648

and we’re not interested in components of size less than k. Hence, all together, we obtain649

a complexity of O(n(T − ∆)(m log ∆ + n logn) + n(n − k)(T − ∆)(m log ∆ + n logn)) =650

O(n(n− k)(T −∆)(m log ∆ + n logn)). J651

A.3 SD components652

I Theorem 22. The worst-case number of SD components is at least n, and at most653

min(2n, nT−∆+1).654

Proof. The lower bound comes from Theorem 18, with an example being the empty temporal655

graph. For the upper bounds, since SD components are subsets of vertices which may intersect,656

at most 2n SD components may exist. By Theorem 21, representing components through657

their sources, i.e. ordered sets of vertices (one source per window), another bound of nT−∆+1
658

is found. J659

I Lemma 59. Verifying a solution vertex subset V ′ of size k for SD Component takes660

time O((T −∆)k(m log ∆ + n logn)).661

Proof. For each window [t, t+ ∆− 1], of which there are T −∆, one constructs a partial662

transitive closure H ′ of G[t,t+∆−1] in which only reachability for the vertices V ′ is computed.663

This takes time O(k(m log ∆ + n logn)). For each induced subgraph H ′[V ′], checking if664

a vertex with outdegree k − 1 exists takes time O(k2). In total, this takes time O((T −665

∆)(k(m log ∆ + n logn) + k2) = O((T −∆)k(m log ∆ + n logn)). J666

20 Temporally connected components

I Theorem 23. SD Component is solvable in time O(nmin(k,T−∆+2)(T −∆)k(m log ∆ +667

n logn)).668

Proof. We present two algorithms, the first being the brute force algorithm of testing669

all possible subsets of vertices of size k, the other a generalization of the algorithm for670

SB Component. Let us start by analysing the brute force algorithm first. For all possible671

subsets of vertices of interest, of which there exist
(
n
k

)
= O(nk), we verify if it is a suitable672

solution. By Theorem 59, one verification takes time O((T−∆)k(m log ∆+n logn)), meaning673

the brute force algorithm runs in time O(nk(T − ∆)k(m log ∆ + n logn)). Concerning674

the generalization of the algorithm for SB Component, only one change needs to be675

made. Instead of shrinking candidate component Ss at every window by taking the union676

with Ss[t, t+ ∆− 1], we will need to instead shrink the candidate component with all677

Sv[t, t+ ∆− 1] for all v ∈ Ss (which could all correspond to a source for that time window),678

splitting a candidate component up into potentially O(n) distinct components every time679

window. A result of this is that at every time window [t, t + ∆ − 1], not O(n) candidate680

components Ss exist from previous windows, but at most nt = O(nT−∆+1) candidate681

components S(s,t,u,...,v). Analysing the complexity gives O(nT−∆+1n(T − ∆)(m log ∆ +682

n logn)). J683

I Theorem 24. SD Component is NP-complete.684

Proof. Theorem 59 proves SD Component is in NP. To prove NP-hardness, we give a685

polynomial-time reduction from Clique to SD Component, i.e. we show how to transform686

any instance of Clique to an instance of SD Component such that the instance of Clique687

is positive if and only if the instance of SD Component is positive.688

Given an instance of Clique, being a graph G1 of n1 vertices and m1 edges and an integer k1,689

we describe the following polynomial-time transformation to an instance of SD Component,690

being a temporal graph G2 = (G2, λ2) of lifetime T2 and integers ∆2 and k2. Set T2 = 3n1−1,691

∆2 = 2 and k2 = m1 + n1 + k1. Let’s construct the footprint G2, initially the empty692

graph. Suppose V (G1) = {v1, v2, ..., vn1}. For each vertex vi ∈ V (G1), add vertices vi and693

vi,i with edge {vi, vi,i} to G2. We refer to vertices vi in G2 as original vertices, and to694

vertices vi,i as satellite vertices. Then, for each edge {vi, vj} ∈ E(G1), add vertex vi,j = vj,i695

and edges {vi, vi,j}, {vi,j , vj} to G2. These edges will allow for vi to reach vj and/or vice696

versa, depending on the labelling. We refer to vertices vi,j as intermediary vertices. Finally,697

∀vi,j , vh,k ∈ G2, add edges {vi,j , vh,k} (essentially creating a clique of all intermediary and698

satellite vertices, of size m1 + n1). Let us refer to these last edges as the background edges.699

This concludes the construction of G2. Note that n2 = m1 + 2n1. Concerning λ2 (see also700

Figure 8), for each vertex va ∈ V (G1) with 1 ≤ a ≤ n1, we create a temporal graph Gva
701

using labels 3a− 2 and 3a− 1. Afterwards, we take the union of these temporal graphs and702

add some extra labels to all edges to obtain G2. For now, construct each Gva
by placing label703

3a − 1 on all edges {vi, vi,a} and on the background edges, and label 3a − 2 on all other704

edges. Note that the intermediary vertices allow for vi and vj to reach each other, except for705

temporal graphs Gvi
in which only vi can reach vj , and vice versa for Gvj

. Now, let G2 be706

the union of all Gva , for all 1 ≤ a ≤ n1, and add labels 3a on all edges, for all 1 ≤ a ≤ n1 − 1.707

This concludes the polynomial-time transformation.708

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 21

G1

v2

v3

v4

v1

G2 = ∪Gva and add labels 3, 6 and 9 to all edges.

v2

v1

v4

v3

Gv1 = G2[1,2]

v1,2

v2,4

v2,3

v3,4v1,4

v1,1

v2,2

v3,3

v4,4

Gv2 = G2[4,5]

Gv4 = G2[10,11]Gv3 = G2[7,8]

Figure 8 Example of transformation from a Clique instance graph G1 to a SD Component
instance temporal graph G2. For visibility, for all Gva , blue full edges correspond to edges with label
3a− 2, red dashed edges to edges with label 3a− 1, and orange dotted edges to background edges
with label 3a− 1. Also for visibility, not all background edges are represented.

22 Temporally connected components

Now let’s show that the instance of Clique, being (G1, k1), is positive if and only if the709

instance of SD Component, being (G2,∆2, k2), is positive.710

(G1, k1) is positive =⇒ (G2,∆2, k2) is positive:711

Suppose that a clique exists in G1 of size k1, composed of vertices V ′ = vh, vh+1, ...vh+k1 .712

Note that in all windows of size ∆2 = 2 in G2, either the window contains 3a for some a and713

thus all vertices can reach each other in this window using only edges with label 3a, or the714

window does not contain 3a in which case it must contain 3a− 1, meaning m1 + n1 vertices715

can reach each other by using the background edges with label 3a− 1. In either case, this716

implies a SD component of size at least m1 + n1 must exist in G2. To prove a larger SD717

component exists, of size k2 = m1 + n1 + k1, we can ignore windows containing 3a, since in718

these windows a S component of size n2 ≥ k2 exists and can thus be shrunk to adapt to any719

SD component suitable for the other windows. The remaining windows correspond exactly720

to the temporal graphs Gvi for all 1 ≤ i ≤ n1. Now, all edges {vi, vj} composing our clique721

in G1 exist by definition as edges {vi, vi,j} and {vi,j , vj}, with either labels 1 and 1 resp. or722

1 and 2 resp., or 2 and 1 resp. in temporal graphs Gva
. Let us iterate over these temporal723

graphs (with variable b), in which two cases are distinguished:724

If the edges of the clique in G1 are all transformed in edges with label 1 in the temporal725

graph Gvb
, then vertex vh is a source able to reach V ′ in Gvb

, for a total of at least726

m1 + n1 + k1 = k2 vertices.727

If some edges of the clique in G1 are transformed into edges with label 2 in the temporal728

graph Gvb
, then vb must be a part of the clique in G1, since by definition only adjacent729

edges to vb are transformed into edges with label 2 in Gvb
(outside of background edges).730

Also, vb (and only vb amongst the original vertices) corresponds to a source able to reach731

V ′ in Gvb
, for a total of at least m1 + n1 + k1 = k2 vertices.732

In both cases, and thus for all Gva
, a S component exists containing the aforementioned733

m1 + n1 vertices, as well as the k1 vertices from the clique in G1. The result of a SD734

component of size m1 + n1 + k1 = k2 existing in G2 follows directly.735

(G2,∆2, k2) is positive =⇒ (G1, k1) is positive:736

Again, observe that any SD component in G2 must contain the m1 + n1 vertices which the737

background edges cover. Let us look at the other k2− (m1 +n1) = k1 vertices. These vertices738

must be vi for some i (since vertices vi,j are already contained through the background edges),739

meaning they correspond directly to vertices vi of G1. Let’s denote these vertices as V ′.740

Consider temporal graph Gvb
for some vb, and observe that any vertex vi can, by construction,741

only reach other vertices vj by traversing intermediary vertices vi,j . Also, at most one original742

vertex vj can be reached by a journey starting at a vertex vi. This implies all vertices in V ′743

must be linked pairwise through intermediary vertices in Gvb
. By construction, intermediary744

vertices between vertices V ′ can only exist in Gvb
if the corresponding edges exist between745

V ′ in G1. Thus a clique of size |V ′| = k1 must exist in G1. J746

I Theorem 25. The worst-case number of closed SD components is at least n, and at most747

min(2n, nT−∆+1).748

Proof. The lower bound from Theorem 22 works as SD components of size 1 are closed. The749

upper bounds transfer directly from Theorem 22. J750

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 23

I Lemma 60. Verifying a solution vertex subset V ′ of size k for Closed SD Component751

takes time O((T −∆)k(min(m, k2) log ∆ + k log k)).752

Proof. For each window [t, t+ ∆− 1], of which there are T −∆, constructing the transitive753

closure of G[V ′][t,t+∆−1] takes time O(k(min(m, k2) log ∆+k log k)). In each transitive closure,754

checking if a vertex with outdegree k − 1 exists takes time O(k2). In total, this takes time755

O((T −∆)(k(min(m, k2) log ∆+k log k)+k2) = O(k(T −∆)(min(m, k2) log ∆+k log k)). J756

I Lemma 61. The existence of a closed SD component of size > k does not necessarily757

imply the existence of a (non-maximal) closed SD component of size k.758

Proof. Consider Figure 9, in which an infinite family of temporal graphs is presented. For759

each of these graphs, say G, a closed SD component exists of size n, with any vertex as760

source for both windows. However, no (non-maximal) closed SD component exists of size761

n− 1, since considering any such set of vertices V ′ would result in either G(G[V ′][1,∆]) or762

G(G[V ′][2,∆+1]) to be disconnected, implying no temporal source can exist in that window.763

1

∆ + 1

...

1,∆ + 1

1,∆ + 1

1,∆ + 1

1,∆ + 1

1,∆ + 1

1

1

1

...

1 1

1

∆ + 1

...

∆ + 1

∆ + 1∆ + 1

∆ + 1

∆ + 1

Figure 9 Temporal graph family in which a closed SD component of size n exists but no non-
maximal component of size n− 1 exists. The temporal graphs corresponding to time window [1, ∆]
and time window [2, ∆ + 1] are shown in the middle and on the right respectively.

J764

I Theorem 26. Closed SD Component is solvable in time O(min(2n, nT−∆+1)(T −765

∆)n(m log ∆ + n logn)).766

Proof. Due to Theorem 61, a brute force algorithm cannot simply verify all possible subsets767

of size k, as a closed SD component of size > k may still exist even if one of size k768

does not. Hence, all possible subsets of size at least k will have to be checked, of which769

there are O(min(2n, nT−∆+1)) by Theorem 25. Verifying a solution takes time O((T −770

∆)k(min(m, k2) log ∆ + k log k)) by Theorem 60, meaning the brute force algorithm runs in771

time O(min(2n, nT−∆+1)(T −∆)n(m log ∆ + n logn)). J772

I Theorem 27. Closed SD Component is NP-complete.773

Proof. To prove Closed SD Component is in NP, we show how to verify a solution V ′ ⊆ V774

in polynomial time. For every window [t, t + ∆ − 1] , compute the transitive closure of775

temporal graph G[V ′][t,t+∆−1] and check if at least one source, i.e. a vertex able to reach all776

others, exists. If this is the case in all windows, then V ′ is a solution, and else it is not.777

24 Temporally connected components

To prove NP-hardness, the same reduction as in Theorem 24 is used, since all the SD778

components in the transformed instance of the reduction are closed SD components. J779

A.4 T C components780

I Theorem 32. The worst-case number of T C components is at least 20.52
√
n, and at most781

20.53n.782

Proof. The lower bound has been obtained by Casteigts et al. [8] by adapting a Moon and783

Moser graph [41] on n vertices and
(
n
2
)
− n edges admitting 3n/3 cliques. Every edge of784

this graph is replaced by a semaphore gadget (see Figure 10) creating a temporal graph on785

N = n2 − 2n vertices in which every initial clique is now a T C component, obtaining a total786

of 3n/3 = 3(
√
N+1+1)/3 > 3

√
N/3 > 20.52

√
N T C components.787

(a)

−→ 21

2 1

(b)

Figure 10 A graph with at least 20.52
√

n T C components is constructed by taking a Moon and
Moser graph (left) admitting 3n/3 cliques, and replacing each edge with a semaphore gadget (right).
All initial cliques now correspond to T C components, which are maximal when including semaphore
vertices.

Outside of the trivial upper bound of 2n, a better upper bound can be obtained as follows.788

Since T C components of G correspond to bidirectional cliques in the transitive closure of G789

(see [6]), modify the transitive closure as follows. For all arcs (u, v) such that (v, u) exists790

as well, replace both arcs by one (undirected) edge {u, v}. All other arcs are removed. The791

corresponding graph is undirected and cliques in this graph correspond to T C components.792

By Moon and Moser [41], at most 3n/3 cliques can exist in undirected graphs, which implies793

the same upper bound 3n/3 < 20.53n holds for T C components in temporal graphs. J794

I Theorem 33. T C Component is solvable in time O(nm log T + min(nkk2, 20.25n)).795

Proof. The algorithm starts by constructing the transitive closure of the input temporal796

graph. This is done in time O(n(m log T +n logn)). Then, it searches for bidirectional cliques797

(a subset of vertices with arcs in both directions between vertices) in the transitive closure.798

This has the same asymptotic complexity as searching for cliques. Since we’re interested in799

cliques of size at least k, the brute force algorithm of testing each subset of size k runs in time800

O(nkk2). Also, one can obtain a maximum-size clique in time O(2n/4) [43]. All together,801

T C Component can thus be solved in time O(n(m log T + n logn) + min(nkk2, 2n/4)) =802

O(nm log T + min(nkk2, 20.25n)). J803

I Theorem 34. T C Component is NP -complete, for all constant lifetimes T > 1.804

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 25

Proof. We use a specific version of Clique, in which one has to decide if a clique of size805

k = n
3 exists in a given graph on n vertices. This specific problem was indirectly proven806

NP -hard by Erickson [20] through his reduction from 3-SAT to IndependentSet (in [32],807

Karp reduces SAT to Clique in a similar fashion). Let us refer to this problem as n
3 Clique.808

We show how to reduce n
3 Clique to T C Component in polynomial time. Given a graph809

G = (V,E) for the n
3 Clique problem, create temporal graph G with (initially) the same810

vertex set V . For each edge (u, v) ∈ E, add a semaphore gadget between u and v in G, with811

semaphore “intermediary” vertices uv and vu (see Figure 11). See Figure 12 for an example812

of how to construct G.813

u

v

−→

u

v

vuuv
21

2 1

Figure 11 An edge is replaced by a semaphore gadget, adding two intermediary vertices.

a

b

c

d
−→ a

b

c

d

ab

ba bd

db

ac

ca
cd

dc

bc cb

1

1 1

1

1

1
1

1
1

12

2

2

2

2

2

2

2

2

2

Figure 12 On the left an example instance of Clique with a clique of size 3 which, when
transformed as shown on the right, allows for a T C component of size 9 (shown in red and dashed).

We prove a clique of size k = n
3 exists in G if and only if a T C component of size k2 = n2

9814

exists in G.815

n
3 Clique =⇒ T C Component816

If a clique of size k exists in G of vertices K = {v1, v2, ..., vk}, then consider the corresponding817

vertices in G, as well as intermediary vertices {vivj : vi, vj ∈ K, vi 6= vj}. Let’s refer to this818

set of vertices in G as V ′, which is of size k + 2k(k−1)
2 = k2. V ′ is a T C component, since all819

vertices can reach each other:820

a vertex vi can reach all other vertices vj through journey (vi, vivj , vj) using time steps821

(1, 2) respectively;822

a vertex vi can reach all intermediary vertices vjvk, through journey (vi, vivk, vk, vjvk)823

with time steps (1, 2, 2) respectively;824

26 Temporally connected components

an intermediary vertex vivj can reach all vertices vk through journey (vivj , vi, vivk, vk)825

using time steps (1, 1, 2) respectively;826

an intermediary vertex vivj can reach all other intermediary vertices vkv` through journey827

(vivj , vi, viv`, v`, vkv`) using time steps (1, 1, 2, 2) respectively.828

T C Component =⇒ n
3 Clique829

If a T C component V ′ of size k2 = n2

9 exists in G, then consider all vertices K = V ′ ∩ V .830

Trivially |K| > 0, furthermore |K| > 1 since otherwise the lone vertex v ∈ K is part of a831

T C component of size at most 2∆ + 1 (including all adjacent intermediary vertices), which832

leads to the asymptotic contradiction k2 = n2

9 ≤ 2∆ + 1 < 2n+ 1. We prove that K forms a833

clique of size k in G:834

for all pairs of vertices vi, vj ∈ K, intermediary vertex vivj (resp. vjvi) must be included835

in V ′, since otherwise no journey vi vj (resp. vj vi) exists in V ′;836

for all vk 6∈ K, vertices vkv` (resp. v`vk) cannot reach (resp. be reached by) vertices vivj837

where vi, vj ∈ V ′, thus vkv` 6∈ V ′ (resp. v`vk 6∈ V ′);838

since V ′ is composed solely of vertices K and all their corresponding intermediary vertices,839

we have that |V ′| = k2 = |K|+ 2 |K|(|K|−1)
2 = |K|2, leading to |K| = k;840

finally, since all intermediary vertices of K are present in V ′ which can only be created841

through a semaphore gadget, which in turn can only be created if a corresponding edge842

is present in G, K forms a clique in G.843

J844

I Theorem 35. The worst-case number of closed T C components is at least 20.52
√
n, and at845

most 20.53n.846

Proof. Theorem 32 directly adapts for closed components, as the components obtained by847

the lower bound’s construction are closed. J848

I Lemma 62. Verifying a solution vertex subset V ′ of size k for Closed T C Component849

takes time O(k(min(m, k2) log T + k log k)).850

Proof. To verify a solution V ′, we construct the transitive closure of temporal graph G[V ′]851

and check if it is a (bidirectional) complete graph, doable in time O(k(min(m, k2) log T +852

k log k) + k2) = O(k(min(m, k2) log T + k log k)). J853

I Lemma 63. The existence of a closed T C component of size > k does not necessarily854

imply the existence of a (non-maximal) closed T C component of size k.855

Proof. Consider Figure 13, in which an infinite family of temporal graphs is presented.856

For each of these graphs, say G, a closed T C component exists of size n. However, no857

(non-maximal) closed T C component exists of size n− 1, since considering any such set of858

vertices V \ ui (resp. vi) would result in vi (resp. ui) not being able to reach any vertex vj859

(resp. uj).860

J861

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 27

1 1 1 1 1

2 2 2

222

...

u1 u2 u3 un
2 −1 un

2

v1 v2 v3 vn
2 −1 vn

2

Figure 13 Temporal graph family in which a closed T C component of size n exists but no
non-maximal component of size n− 1 exists.

I Theorem 36. Closed T C Component is solvable in time O(2nn(m log T + n logn)).862

Proof. We describe the brute force algorithm of testing all possible subsets of vertices. Due to863

Theorem 63, we cannot only test subsets of size k, needing to possibly test all subsets of size at864

least k, of which there are O(2n). Testing a vertex subset takes time O(n(m log T + n logn))865

by Theorem 62, giving a total time complexity of O(2nn(m log T + n logn)).866

J867

I Theorem 37. Closed T C Component is NP -complete, for all constant lifetimes T > 1.868

Proof. By Theorem 62, a solution vertex subset can be verified in time O(n(m log T+n logn)),869

and thus Closed T C Component is in NP.870

In the construction from Theorem 34, all T C components in G are closed. This suffices to871

prove that Open T C Component is NP -hard as well, for all lifetimes T > 1. J872

A.5 T CB components873

I Theorem 39. The worst-case number of T CB components is at least 20.52
√
n and at most874

20.53n.875

Proof. The lower bound transfers directly from Theorem 32.876

The upper bound is obtained in a similar manner as for Theorem 32. Start by creating an877

adaptation of the transitive closure, in which an arc (u, v) is present if and only if a journey878

exists from u to v in every window of size ∆. (This can be computed easily using temporal879

Dijkstra algorithms from [46] in each windowed graph.) Then, for all arcs (u, v) such that880

(v, u) exists as well, replace both arcs by one (undirected) edge {u, v}. All other arcs are881

removed. The corresponding graph is undirected and cliques in this graph correspond to882

T CB components. By Moon and Moser [41], at most 3n/3 cliques can exist in undirected883

graphs, which implies the same upper bound 3n/3 < 20.53n holds for T CB components in884

temporal graphs. J885

I Theorem 40. T CB Component is solvable in time O((T − ∆)n(m log ∆ + n logn) +886

min(nkk2, 20.25n)).887

28 Temporally connected components

Proof. For all windowed temporal graphs G[t,t+∆−1], construct transitive closures H[t,t+∆−1],888

taking time O((T −∆)(n(m log ∆ + n logn))). Afterwards, take the intersection of these889

transitive closures, denoted by H. An arc (u, v) in H means that u can reach v in all890

windowed temporal graphs. A bidirectional clique of size k in H thus represents a T CB891

component of size k. As described in Theorem 33, such a clique of size at least k can be892

found in time O(min(nkk2, 2n/4)). All in all, T CB Component can thus be solved in time893

O((T −∆)(n(m log ∆ + n logn)) + min(nkk2, 20.25n)). J894

I Theorem 41. T CB Component is NP -complete, for all constant lifetimes T > 1 and895

window sizes ∆ > 1.896

Proof. We prove that instances of T C Component are equivalent to firstly, instances897

of T CB Component such that ∆ is arbitrarily larger than T , and secondly, instances of898

T CB Component such that ∆ is arbitrarily smaller than T . We also prove these cover the899

precised bounds of T > 1 and ∆ > 1.900

Concerning ∆ ≥ T , we trivially have that any instance (G, k) for T C Component, where901

the lifetime of G is T , is equivalent to instance (G, k,∆ ≥ T) for T CB Component. This902

combined with Theorem 34 proves that T CB Component is NP -hard for all T > 1 and all903

∆ > 1 such that ∆ ≥ T .904

Concerning ∆ < T , any instance (G, k) for T C Component, where the lifetime of G is T , is905

equivalent to instance (G′, k,∆ = T) for T CB Component, where G′ corresponds to G with906

some additional complete snapshots, i.e. G′ = G_(Gi = Kn)ji=T+1 for some arbitrary j > T .907

Again with Theorem 34, this proves that T CB Component is NP -hard for all T > 1 and908

all ∆ > 1 such that ∆ < T . J909

I Theorem 42. The worst-case number of closed T CB components is at least 20.52
√
n and at910

most 20.53n.911

Proof. The lower bound from Theorem 32 transfers since the construction produces closed912

T C components, which are also closed T CB components for ∆ = T . The upper bounds from913

Theorem 39 transfer directly. J914

I Lemma 64. Verifying if a vertex subset V ′ of size k is a solution for Closed T CB Com-915

ponent takes time O((T −∆)k(min(m, k2) log ∆ + k log k)).916

Proof. For each window [t, t+ ∆− 1], compute the transitive closure H[t,t+∆−1] of temporal917

graph G[V ′][t,t+∆−1]. V ′ is a solution for Closed T CB Component if and only if all918

H[t,t+∆−1] are bidirectional complete graphs. J919

I Theorem 43. Closed T CB Component is solvable in time O(2n(T −∆)n(m log ∆ +920

n logn)).921

Proof. We present the brute force algorithm. Due to Theorem 63, we know it may not be922

sufficient to verify only the subsets of size exactly k; we may need to verify all subsets of923

size at least k, of which there exist O(2n). By Theorem 64, verifying such a subset requires924

O((T −∆)n(m log ∆ + n logn)) time. In total, the brute force algorithm thus takes time925

O(2n(T −∆)n(m log ∆ + n logn)). J926

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 29

I Theorem 44. Closed T CB Component is NP -complete, for all constant lifetimes T > 1927

and window sizes ∆ > 1.928

Proof. By Theorem 64, a vertex subset can be verified to be a solution for Closed T CB Com-929

ponent in time O((T − ∆)n(m log ∆ + n logn)). Closed T CB Component is thus in930

NP.931

In the reduction used in Theorem 41, all T CB components in the transformed instance are932

closed. This suffices to prove that Closed T CB Component is NP-hard, for any constant933

lifetime T > 1 and window size ∆ > 1. J934

A.6 T C	 components935

I Theorem 46. The worst-case number of T C	 components is at least 20.52
√
n, and at most936

20.53n.937

Proof. The lower bound can be obtained as follows. Take a Moon and Moser graph [41] on938

n vertices and
(
n
2
)
− n edges admitting 3n/3 cliques. Every edge of this graph is replaced939

by a semaphore gadget (see Figure 10) creating a temporal graph on N = n2 − 2n vertices940

in which every initial clique is now a T C	 component, obtaining a total of 3n/3 > 20.52
√
N

941

T C	 components.942

(a)

−→ 21, 3

2 1, 3

(b)

Figure 14 A graph with at least 20.52
√

n T C	 components is constructed by taking a Moon and
Moser graph (left) admitting 3n/3 cliques, and replacing each edge with a semaphore gadget (right).
All initial cliques now correspond to T C	 components, which are maximal when including semaphore
vertices.

Outside of the trivial upper bound of 2n, a better upper bound can be obtained as follows.943

Consider the following adaptation of the transitive closure: instead of adding an arc between944

vertices u and v when a journey exists, add an arc when a round trip exists. (Detecting round945

trips between all pairs of vertices is easily done adapting the temporal Dijkstra algorithm946

from [46].) By definition, T C	 components of G correspond to bidirectional cliques in this947

adapted transitive closure of G. Further modify the transitive closure as follows. For all arcs948

(u, v) such that (v, u) exists as well, replace both arcs by one (undirected) edge {u, v}. All949

other arcs are removed. The corresponding graph is undirected and cliques in this graph950

correspond to T C	 components. By Moon and Moser [41], at most 3n/3 cliques can exist951

in undirected graphs, which implies the same upper bound 3n/3 < 20.53n holds for T C	952

components in temporal graphs. J953

I Theorem 47. T C	 Component is solvable in time O(n2(m log T+n logn)+min(nkk2, 20.25n)).954

30 Temporally connected components

Proof. We start by constructing a modified version of the transitive closure H, where an955

arc (u, v) represents u 	 v instead of u v. Initialize H with vertex set V . For all pairs of956

vertices, of which there are O(n2), do the following. Apply the temporal Dijkstra algorithm957

from [46] starting from u to obtain the smallest label at which v is reached from u through958

a journey, suppose label t. If v is unreachable from u, suppose t = ∞. This takes time959

O(m log T + n logn). Then, if t 6= ∞, on temporal graph G[t,T], apply again the temporal960

Dijkstra algorithm to check if u is reachable from v. This again takes time O(m log T+n logn).961

If t 6= ∞ and if u is reachable from v in G[t,T], then add arc (u, v) to H. Apply the same962

process in the other direction to check if v 	 u. After having done this for all pairs of vertices,963

modify H as follows. For all arcs (u, v) such that (v, u) exists as well, replace both arcs by964

an (undirected) edge {u, v}. Remove all other arcs. H is now an undirected graph in which965

cliques correspond to T C	 components. Since we’re interested in cliques of size at least k,966

the brute force algorithm of testing each subset of size k runs in time O(nkk2). Also, one967

can obtain a maximum-size clique in time O(2n/4) [43]. All together, T C	 Component can968

thus be solved in time O(n2(m log T + n logn) + min(nkk2, 20.25n)). J969

I Theorem 48. T C	 Component is solvable in polynomial time O(n + m) on temporal970

graphs with constant lifetimes T ≤ 2.971

Proof. The case of T = 1 trivially reduces to finding connected components in the snapshot,972

doable in time O(n+m).973

For the case of T = 2, note that three possible T C	 components can exist. The first (resp.974

second) type of T C	 components are those which use only labels 1 (resp. 2). These T C	975

components correspond to connected components in the corresponding snapshot, and can976

thus be computed in time O(n+m) as well. The third, and final, type of T C	 components977

use both labels 1 and 2. We continue by proving such T C	 components do not exist, finishing978

the proof.979

By contradiction, let us suppose one such a T C	 component exists, say V ′. For any two980

vertices u, v ∈ V ′, if a journey using only labels 1 (resp. 2) does not exist between u and v,981

then a journey using only labels 2 (resp. 1) must exist between u and v (or V ′ would not be982

a T C	 component). Let us simplify this as a graph G with a copy of V ′ in which an edge983

with label i is drawn between vertices u and v if the corresponding journey between u and v984

uses only labels i. G is thus a complete graph with some arbitrary labelling of one label per985

edge, being either 1 or 2. We finish by showing that in G there is necessarily a spanning986

structure using only label 1, or using only label 2, implying that in fact V ′ is not a T C	987

component needing both labels 1 and 2, as a spanning structure using only labels 1 or only988

labels 2 exists which is sufficient for T C	.989

G contains a spanning structure using only labels 1 or only labels 2:990

We prove this property by induction. A K2 graph trivially admits such a spanning structure.991

Now, if a Kn graph has this property, suppose w.l.o.g. that the spanning structure has only992

labels 1. Adding a vertex so as to obtain a Kn+1 implies adding n edges connecting this993

vertex to the other vertices. To avoid having this property in the newly constructed Kn+1,994

none of these edges can have label 1 (since otherwise a spanning structure with only labels 1995

exists), but they cannot all have label 2 either (since otherwise a spanning structure with996

only labels 2 exists), which is impossible. J997

I Theorem 49. T C	 Component is NP -complete, for all constant lifetimes T > 2.998

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 31

Proof. We show how to reduce n
3 Clique to T C	 Component in polynomial time. Given999

a graph G = (V,E) for the n
3 Clique problem, create temporal graph G with (initially) the1000

same vertex set V . For each edge {u, v} ∈ E, add a semaphore gadget between u and v in1001

G, with semaphore “intermediary” vertices uv and vu. On edges {u, uv} and {v, vu} place1002

labels 1 and 3, and on edges {u, vu} and {v, uv} place labels 2.1003

We prove a clique of size k = n
3 exists in G if and only if a T C	 component of size k2 exists1004

in G.1005

n
3 Clique =⇒ T C	 Component1006

If a clique of size k exists in G of vertices K = {v1, v2, ..., vk}, then consider the corresponding1007

vertices in G, as well as intermediary vertices {vivj : vi, vj ∈ K, vi 6= vj}. Let’s refer to this1008

set of vertices in G as V ′, which is of size k + 2k(k−1)
2 = k2. V ′ is a T C	 component, since1009

all vertices can reach each other and then reach back:1010

a vertex vi can reach all other vertices vj and back through journey (vi, vivj , vj , vivj , vi)1011

using time steps (1, 2, 2, 3) respectively;1012

a vertex vi can reach all intermediary vertices vjvk and back through journey (vi, vivk, vk, vjvk, vk, vivk, vi)1013

with time steps (1, 2, 2, 2, 2, 3) respectively;1014

an intermediary vertex vivj can reach all vertices vk and back through journey (vivj , vi, vivk, vk, vivk, vi, vivj)1015

using time steps (1, 1, 2, 2, 3, 3) respectively;1016

an intermediary vertex vivj can reach all other intermediary vertices vkv` and back1017

through journey (vivj , vi, viv`, v`, vkv`, v`, viv`, vi, vivj) using time steps (1, 1, 2, 2, 2, 2, 3, 3)1018

respectively.1019

T C	 Component =⇒ n
3 Clique1020

If a T C	 component V ′ of size k2 = n2

9 exists in G, then consider all vertices K = V ′ ∩ V .1021

Trivially |K| > 0, furthermore |K| > 1 since otherwise the lone vertex v ∈ K is part of a1022

T C	 component of size at most 2∆ + 1 (including all adjacent intermediary vertices), which1023

leads to the asymptotic contradiction k2 = n2

9 ≤ 2∆ + 1 < 2n+ 1. We prove that K forms a1024

clique of size k in G:1025

for all pairs of vertices vi, vj ∈ K, intermediary vertex vivj (resp. vjvi) must be included1026

in V ′, since otherwise no round trip vi 	 vj (resp. vj 	 vi) exists in V ′;1027

for all intermediary vertices vkvj : vj ∈ K, vk 6∈ K (thus having label 2), round trip1028

vkvj 	 vi, where vi ∈ K isn’t possible without vk, i.e., vertices vkvj cannot be included1029

in V ′;1030

for all intermediary vertices vjvk : vj ∈ K, vk 6∈ K (thus having labels 1 and 3), round trip1031

vi 	 vjvk, where vi ∈ K isn’t possible without vk, i.e., vertices vjvk cannot be included1032

in V ′;1033

since V ′ is composed solely of vertices K and all their corresponding intermediary vertices,1034

we have that |V ′| = k2 = |K|+ 2 |K|(|K|−1)
2 = |K|2, leading to |K| = k;1035

finally, since all intermediary vertices of K are present in V ′ which can only be created1036

through a semaphore gadget, which in turn can only be created if a corresponding edge1037

is present in G, K forms a clique in G.1038

J1039

32 Temporally connected components

I Theorem 50. The worst-case number of closed T C	 components is at least 20.52
√
n, and1040

at most 20.53n.1041

Proof. The lower bound comes from the fact that all T C	 components in the construction1042

from Theorem 46 are closed, and the upper bound transfers directly from Theorem 46. J1043

I Lemma 65. Verifying if a vertex subset V ′ of size k is a solution for Closed T C	 Com-1044

ponent takes time O(k2(min(m, k2) log T + k log k)).1045

Proof. Construct a modified transitive closure H in the following manner. In G[V ′], apply1046

for all pairs of vertices u and v, of which there are O(k2), the temporal Dijkstra algorithm1047

from [46], starting from vertex u to obtain the smallest label t at which u reaches v.1048

If u cannot reach v, then V ′ is not a solution vertex set. This can be done in time1049

O(min(m, k2) log T + k log k). Then, check if v can reach u in temporal graph G[V ′][t,T],1050

doable again in time O(min(m, k2) log T + k log k). If v cannot reach u, then V ′ is not1051

a solution vertex set. Else, it means u 	 v in G[V ′]. Apply the same process in the1052

other direction to check if v 	 u. When this is checked for all pairs of vertices, then1053

V ′ is a solution vertex set for Closed T C	 Component. In total, this thus takes time1054

O(k2(min(m, k2) log T + k log k)). J1055

I Lemma 66. The existence of a closed T C	 component of size > k does not necessarily1056

imply the existence of a (non-maximal) closed T C	 component of size k.1057

Proof. Consider Figure 15, in which an infinite family of temporal graphs is presented.1058

For each of these graphs, say G, a closed T C	 component exists of size n. However, no1059

(non-maximal) closed T C	 component exists of size n− 1, since considering any such set of1060

vertices V \ ui (resp. vi) would result in vi (resp. ui) not being able to reach any vertex vj1061

(resp. uj) and back.1062

1 1 1 1

2 2 2

222

...

u1 u2 u3 un
2 −1 un

2

v1 v2 v3 vn
2 −1 vn

2

1, 3 1, 3 1, 3 1, 3 1, 3

Figure 15 Temporal graph family in which a closed T C	 component of size n exists but no
non-maximal component of size n− 1 exists.

J1063

I Theorem 51. Closed T C	 Component is solvable in time O(2n(n2(m log T + n logn)).1064

Proof. We present the brute force algorithm. Due to Theorem 66, we know it may not1065

be sufficient to verify only the subsets of size exactly k; we may need to verify all subsets1066

of size at least k, of which there exist O(2n). By Theorem 65, verifying such a subset1067

requires O(n2(m log T + n logn)) time. In total, the brute force algorithm thus takes time1068

O(2n(n2(m log T + n logn)). J1069

S. Balev, Y. Pigné, E. Sanlaville and J. Schoeters 33

I Theorem 52. Closed T C	 Component is solvable in polynomial time O(n + m) on1070

temporal graphs with constant lifetimes T ≤ 2.1071

Proof. In Theorem 48, we prove that all T C	 components in temporal graphs of lifetime1072

T ≤ 2 correspond to connected components in G1 or G2. Connected components are1073

necessarily closed, thus all T C	 components in temporal graphs of lifetime T ≤ 2 are1074

necessarily closed. Since T C	 Component can be solved in time O(m+n) on such temporal1075

graphs, Closed T C	 Component can be solved in time O(m+ n) as well. J1076

I Theorem 53. Closed T C	 Component is NP -complete, for all constant lifetimes1077

T > 2.1078

Proof. By Theorem 65, a vertex subset can be verified to be a solution for Closed T C	 Com-1079

ponent in time O(k2(min(m, k2) log T + k log k)). Closed T C	 Component is thus in1080

NP.1081

In the reduction used in Theorem 49, all T C	 components in the transformed instance are1082

closed. This suffices to prove that Closed T C	 Component is NP-hard, for any constant1083

lifetime T > 2. J1084

	1 Introduction
	2 Main concepts of temporal graph connectivity
	2.1 Temporal graphs
	2.2 Journeys and temporal connectivity
	2.3 Hierarchy of connectivity properties for temporal graphs
	2.4 From connectivity properties to temporal components

	3 One to/from all (S, SB, SD, T, TB, TD)
	3.1 S components
	3.2 SB components
	3.3 SD components

	4 All to/from all (TC, TCB, TC)
	4.1 TC components
	4.2 TCB components
	4.3 TC components

	5 Conclusion
	5.1 Summary of this paper
	5.2 A short discussion about optimisation of windowed components
	5.3 A quick note on parameterised complexity

	A Auxiliary proofs
	A.1 S components
	A.2 SB components
	A.3 SD components
	A.4 TC components
	A.5 TCB components
	A.6 TC components

