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Abstract. We present an extension of the Metamorphosis algorithm
to align images with different topologies and/or appearances. We pro-
pose to restrict/limit the metamorphic intensity additions using a time-
varying spatial weight function. It can be used to model prior knowledge
about the topological/appearance changes (e.g., tumour/oedema). We
show that our method improves the disentanglement between anatomi-
cal (i.e., shape) and topological (i.e., appearance) changes, thus improv-
ing the registration interpretability and its clinical usefulness. As clinical
application, we validated our method using MR brain tumour images
from the BraTS 2021 dataset. We showed that our method can better
align healthy brain templates to images with brain tumours than exist-
ing state-of-the-art methods. Our PyTorch code is freely available here:
https://github.com/antonfrancois/Demeter metamorphosis.

Keywords: Image registration · Metamorphosis · topology variation ·
brain tumour

1 Introduction

When comparing medical images, for diagnosis or research purposes, physicians
need accurate anatomical registrations. In practice, this is achieved by mapping
images voxel wise with a plausible anatomical transformation. Possible applica-
tions are: computer assisted diagnosis or therapy, multi-modal fusion or surgical
planning. These mappings are usually modelled as diffeomorphisms, as they al-
low for the creation of a realistic one to one deformation without modifying
the topology of the source image. There exists a vast literature dealing with
this subject. Some authors proposed to use stationary vectors fields, using the
Lie algebra vector field exponential [1,2,14], or, more recently, Deep-Learning
based methods [5,16,19,21,22,29]. Other authors used the Large Diffeomorphic
Deformation Metric Mapping (LDDMM) that uses time varying vector fields
to define a right-invariant Riemannian metric on the group of diffeomorphisms.



2 A. François et al.

One advantage of this metric is that it can be used to build a shape space, pro-
viding useful notions of geodesics, shortest paths and distances between images
[3,6,30,31]. A shortest path represents the registration between two images.

However, clinical or morphometric studies often include an alignment step
between a healthy template (or atlas) and images with lesions, alterations or
pathologies, like white matter multiple sclerosis or tumour. In such applications,
source and target images show a different topology, thus preventing the use of
diffeomorphisms, which are by definitions one-to-one mappings. Several solutions
have been proposed in order to take into account such topological variations. One
of the first methods was the Cost-Function Masking [7], where authors simply
excluded the lesions from the image similarity cost. It is versatile and easy to im-
plement, but it does not give good results when working with big lesions. Sdika
et al. [24] proposed an inpainting method which only works on small lesions.
Niethammer et al. proposed Geometric Metamorphosis [20], that combines two
deformations to align pathological images which need to have the same topology.
Another strategy, when working with brain images with tumours, is to use bio-
physical models [10,23] to mimic the growth of a tumour into an healthy image
and then perform the registration (see for instance GLISTR [11]). However, this
solution is slow, computationally heavy, specific to a particular kind of tumour
and needs many different imaging modalities. Other works proposed to solve this
problem using Deep-Learning techniques [8,12,15,25]. However, these methods
strongly depend on the data-set and on the modality they have been trained on,
and might not correctly disentangle shape and appearance changes.

The Metamorphic framework [13,27,30] can be seen as a relaxed version of
LDDMM in which residual time-varying intensity variations are added to the dif-
feomorphic flow, therefore allowing for topological changes. Nevertheless, even if
metamorphosis leads to very good registrations, the disentanglement between ge-
ometric and intensity changes is not unique and it highly depends on user-defined
hyper-parameters. This makes interpretation of the results hard, thus hampering
its clinical usage. For instance, in order to align a healthy template to an image
with a tumour, one would expect that the method adds intensities only to create
new structures (i.e., tumours) or to compensate for intensity changes due to the
pathology (i.e. oedema). All other structures should be correctly aligned solely
by the deformations. However, depending on the hyper-parameters, the algo-
rithm might decide to account for morphological differences (i.e. mass effect of
tumours) by changing the appearance rather than applying deformations. This
limitation mainly comes from the fact that the additive intensity changes can
theoretically be applied all over the image domain. However, in many clinical
applications, one usually has prior knowledge about the position of the topolog-
ical variations between an healthy image and a pathological one (e.g., tumour
and oedema position).

To this end, we propose an extension of the Metamorphosis (M) model
[13,27], called Weighted Metamorphosis (WM), where we introduce a time-
varying spatial weight function that restricts, or limits, the intensity addition
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only to some specified areas. Our main contributions are: 1./ A novel time-
varying spatial weight function that restricts, or limits, the metamorphic inten-
sity additions [13,27] only to some specified areas. 2./ A new cost function that
results in a set of geodesic equations similar to the ones in [13,27]. Metamor-
phosis can thus be seen as a specific case of our method. 3./ Evaluation on a
synthetic shape dataset and on the BraTS 2021 dataset [17], proposing a simple
and effective weight function (i.e., segmentation mask) when working with tu-
mour images. 4./ An efficient PyTorch implementation of our method, available
at https://github.com/antonfrancois/Demeter_metamorphosis.

2 Methods

Weighted Metamorphosis. Our model can be seen as an extension of the
model introduced by Trouvé and Younès [27,30]. We will use the same notations
as in [9]. Let S, T : Ω → [0, 1] be grey-scale images, where Ω is the image domain.
To register S on T , we define, similarly to [27,30], the evolution of an image It
(t ∈ [0, 1]) using the action of a vector field vt, defined as v · It = −⟨∇It, vt⟩,
and additive intensity changes, given by the residuals zt, as:

İt = −⟨∇It, vt⟩+ µMtzt, s.t. I0 = S, I1 = T, µ ∈ R+. (1)

where we introduce the weight function Mt : x ∈ Ω → [0, 1] (at each time
t ∈ [0, 1]) that multiplies the residuals zt at each time step t and at every
location x. We assume that Mt is smooth with compact support and that it can
be fully computed before the optimisation. Furthermore, we also define a new
pseudo-norm ∥ • ∥Mt for z. Since we want to consider the magnitude of z only
at the voxels where the intensity is added, or in other terms, where Mt(x) is not
zero, we propose the following pseudo-norm:

∥zt∥2Mt
=

∥∥∥√Mtzt

∥∥∥2
L2

= ⟨zt,Mtzt⟩L2 (2)

This metric will sum up the square values of z inside the support of Mt. As usual
in LDDMM, we assume that each vt ∈ V , where V is a Hilbert space with a
reproducing kernel Kσ, which is chosen here as a Gaussian kernel parametrized
by σ [18,28]. Similarly to [27,30], we use the sum of the norm of z and the one
of v (i.e., the total kinetic energy), balanced by ρ, as cost function:

EWM(v, I) =

∫ 1

0

∥vt∥2V + ρ∥zt∥2Mt
dt, s.t. I0 = S, I1 = T, ρ ∈ R+ (3)

where z depends on I through Eq. 1. By minimising Eq.3, we obtain an exact
matching.

Theorem 1. The geodesics associated to Eq. 3 are:
vt = − ρ

µKσ ⋆ (zt∇It)

żt = − ∇ · (ztvt)
İt = −⟨∇It, vt⟩+ µMtzt

(4)

https://github.com/antonfrancois/Demeter_metamorphosis
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where ∇ · (v) is the divergence of the field v and ⋆ represents the convolution.

Proof. This proof is similar to the one in [30], Chap. 12, but needs to be treated

carefully due to the pseudo-norm ∥zt∥2Mt
=

〈
zt,

1
µ (İt + vt · ∇It)

〉
L2
. We aim at

computing the variations of Eq. 3 with respect to I and v and compute the
Euler-Lagrange equations. To this end, we define two Lagrangians: LI(t, I, İ) =
EWM(•, v) and Lv(t, v, v̇) = EWM(I, •) and start by computing the variations h
with respect to v:

DvLv · h =

∫ 1

0

⟨2(K−1vt +
ρ

µ
zt∇It), ht⟩L2dt (5)

Then, noting that ∇vLv = 2(K−1vt +
ρ
µzt∇It) and since ∇v̇Lv = 0, the Euler-

Lagrange equation is:

∇vLv − ∇̇v̇Lv = 0 ⇔ vt =
ρ

µ
K ⋆ (zt∇It) (6)

as in the classical Metamorphosis framework [30]. Considering the variation of I,

we have DI

∥∥√Mtz
∥∥2
L2 =

〈
zt,

1
µvt · ∇ht

〉
L2
, thus obtaining:

DILI · h = 2

∫ 1

0

〈
zt,

1

µ
∇ht · vt

〉
L2

dt =

∫ 1

0

〈
− 2

µ
∇ · (ztvt), ht

〉
L2

dt (7)

and DİLI · h =
∫ 1

0
⟨ 2µzt, ht⟩L2dt. We deduce that ∇ILI = 2

µ∇ · (ztvt) and as

∇v̇Lv = 2
µzt, its Euler-Lagrange equation is:

∇ILI − ∇̇İLI = 0 ⇔ żt = −∇ · (ztvt) (8)

We can first notice that, by following the geodesic paths, the squared norms
over time are conserved (∀t ∈ [0, 1], ∥v0∥2V = ∥vt∥2V ) and thus one can actually
optimise using only the initial norms. Furthermore, since v0 can be computed
from z0 and I0, the only parameters of the system are z0 and I0. As it is often
the case in the image registration literature, we propose to convert Eq.3 into an
unconstrained inexact matching problem, thus minimising:

JWM(z0) = ∥I1 − T∥2L2
+ λ

[
∥v0∥2V + ρ∥z0∥2M

]
, λ ∈ R+, I0 = S (9)

where I1 is integrated with Eq.4, ∥v0∥2V = ⟨z0∇S,Kσ ⋆ (z0∇S)⟩ and λ is the
trade-off between the data term (based here on a L2-norm, but any metric could
be used as well) and the total regularisation.

Weighted function construction. The definition of the weight function Mt is
quite generic and could be used to register any kind of topological/appearance
differences. Here, we restrict to brain tumour images and propose to use an
evolving segmentation mask as weight function. We assume that we already
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have the binary segmentation mask B of the tumour (comprising both oedema
and necrosis) in the pathological image and that healthy and pathological images
are rigidly registered, so that B can be rigidly moved onto the healthy image.
Our goal is to obtain an evolving mask Mt : [0, 1] × Ω → [0, 1] that somehow
mimics the tumour growth in the healthy image starting from a smoothed small
ball in the centre of the tumour (M0) and smoothly expanding it towards B. We
generate Mt by computing the LDDMM registration between M0 and B. Please
note that here one could use an actual biophysical model [10,23] instead of the
proposed simplistic approximation based on LDDMM. However, it would require
prior knowledge, correct initialisation and more than one imaging modality. The
main idea is to smoothly and slowly regularise the transformation so that the
algorithm first modifies the appearance only in a small portion of the image,
trying to align the surrounding structure only with deformations. In this way,
the algorithm tries to align all structures with shape changes adding/removing
intensity only when necessary. This should prevent the algorithm from changing
the appearance instead of applying deformations (i.e. better disentanglement)
and avoid wrong overlapping between new structures (e.g. tumour) and healthy
ones. Please refer to Fig.1 for a visual explanation.

3 Results and Perspectives

Implementation details. Our Python implementation is based on PyTorch
for automatic differentiation and GPU support, and it uses the semi-Lagrangian
formulation for geodesic shooting presented in [9]. For optimisation we use the
PyTorch’s Adadelta method.

Synthetic data. Here, we illustrate our method on a 300x300 grey-scale image
registration toy-example (Fig. 1). We can observe the differences in the geodesic
image evolution for LDDMM, Metamorphosis (M) and Weighted Metamorphosis
(WM) with a constant and evolving mask. First, LDDMM cannot correctly align
all grey ovals and Metamorphosis results in an image very similar to the target.
However, most of the differences are accounted for with intensity changes rather
than deformations. By contrast, when using the proposed evolving mask (fourth
row), the algorithm initially adds a small quantity of intensity in the middle
of the image and then produces a deformation that enlarges it and correctly
pushes away the four grey ovals. In the third row, a constant mask (Mt =
M1,∀t ∈ [0, 1]) is applied. One can observe that, in this case, the bottom and left
ovals overlap with the created central triangle and therefore pure deformations
cannot correctly match both triangle and ovals. In all methods, the registration
was done with the same field smoothness regularisation σ and integration steps.
Please note that the four grey ovals at the border are not correctly matched
with LDDMM and, to a lesser extent, also with our method. This is due to the
L2-norm data term since these shapes do not overlap between the initial source
and target images and therefore the optimiser cannot match them.
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Fig. 1. Comparison between LDDMM, Metamorphosis and our method. Im-
age registration toy example. Differently from the Source image (S), the Target im-
age (T) has a big central triangle that has grown “pushing”’ the surroundings ovals.
Note that the bottom and left ovals in S overlap with the triangle in T. The two last
rows show our method using a constant and time evolving mask (see Sec. 2). The used
mask is displayed on the top right corner of each image. see animations in GitHub

in notebook : toyExample weightedMetamorphosis.ipynb

Validation on 2D real data. For evaluation, we used T1-w MR images from
the BraTS 2021 dataset [4,17]. For each patient, a tumour segmentation is pro-
vided. We selected the same slice for 50 patients resizing them to 240x240 and
making sure that a tumour was present. We then proceeded to register the
healthy brain template SRI24 [26] to each of the selected slices (see Fig.2 for
two examples). To evaluate the quality of the alignment we used three different
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Fig. 2. Registrations on MRI brains presenting brain tumours. Two examples
from BraTS database [4,17]. Comparison of geodesic shooting for LDDMM, Metamor-
phosis (M) and Weighted Metamorphosis (WM). (a&d) On the target images and the
geodesic integration, the temporal mask is indicated by the red outline. The final re-
sult of each integration can be seen in the green outlined row. (b) The deformation
grids retrieved from each method and (c) the template image deformed without inten-
sity additions for each concerned method. Purple arrows in columns 2 and 3 in the
top right part of each image show the evolution of one ventricle through registration:
while M makes the ventricle disappear and reappear, WM coherently displaces the
structure. (d) Target images with the segmentation outlined in red; the colored im-
age is its superposition with the source. see animations in GitHub in notebook :

brains weightedMetamorphosis.ipynb
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measures in Table 1: 1./ the Sum of Squared Differences (SSD) (i.e. L2-norm)
between the target (T) and the transformed source (S) images. This is a nat-
ural choice as it is used in the cost function. 2./ the SSD between T and the
deformed S without considering intensity changes. This is necessary since Meta-
morphoses could do a perfect matching without using deformations but only
intensity changes. 3./ A Dice score between the segmentations of the ventricles
in the deformed S and T. The ventricles were manually segmented. All methods
should correctly align the ventricles using solely pure deformations since the-
ses regions are (theoretically) not infiltrated by the tumour (i.e., no intensity
modifications) and they can only be displaced by the tumor mass effect.

Table 1. Quantitative evaluation for different registration methods. Results were com-
puted on a test set of 50 2D 240x240 images from BraTS 2021 dataset. - (∗) SSD for
CFM is computed over the domain outside the mask.

Method LDDMM [18] Meta. [9] WM (ours) MAE [8] Voxelm. [5] CFM [7]

SSD (final) 223± 51 36 ± 9 65± 71 497± 108 166.71± 37 49∗ ± 28
SSD (def.) - 112± 21 102 ± 76 865± 172 - -
Dice score 68.6± 11.9 74.1± 9.3 77.2 ± 10.1 60.6± 8.79 66.8± 10 45.0± 13.5

We compared our method with LDDMM [6], Metamorphosis [27], using the
implementation of [9], Metamorphic Auto-Encoder (MAE) [8], Voxelmorph [5]
and Cost Function Masking (CFM) [7] (see Table 1). Please note that we did not
include other deep-learning methods, such as [12,15], since they only work the
other way around, namely they can only register images with brain tumours to
healty templates. As expected, Metamorphosis got the best score for SSD (final)
as it is the closest to an exact matching method. However, WM outperformed
all methods in terms of Dice score obtaining a very low SSD (both final and
deformation-only). This means that our method correctly aligned the ventricles,
using only the deformation, and at the same time it added intensity only where
needed to globally match the two images (i.e., good disentanglement between
shape and appearance).

Perspectives and conclusion. In this work, we introduced a new image regis-
tration method, Weighted Metamorphosis, and showed that it successfully disen-
tangles deformation from intensity addition in metamorphic registration, by us-
ing prior information. Furthermore, the use of a spatial mask makes our method
less sensitive to hyper-parameter choice than Metamorphosis, since it spatially
constrains the intensity changes. We also showed that WM improves the accu-
racy of registration of MR images with brain tumours from the BRATS 2021
dataset. We are confident that this method could be applied to any kind of med-
ical images showing exogenous tissue growth with mass-effect. A future research
direction will be the integration of methods from topological data analysis, such
as persistent homology, to improve even more the disentanglement between geo-
metric and appearance changes. We also plan to adapt our method to 3D data.
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