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Leading constants of rank deficient Gaussian elimination

Introduction

Rank revealing factorizations play a key role in many applications, especially in producing compact generators for structured matrices [START_REF] Eidelman | On generators of quasiseparable finite block matrices[END_REF][START_REF] Chandrasekaran | Fast stable solver for sequentially semi-separable linear systems of equations[END_REF][START_REF] Martinsson | A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix[END_REF][START_REF] Pernet | Time and space efficient generators for quasiseparable matrices[END_REF].

In the context of exact linear algebra, Gaussian elimination based factorizations prevail, since there is no numerical instability issue. We refer to [START_REF] Jeannerod | Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[END_REF][START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF][START_REF] Dumas | Fast computation of the rank profile matrix and the generalized bruhat decomposition[END_REF][START_REF] Storjohann | Algorithms for Matrix Canonical Forms[END_REF][START_REF] Ibarra | A generalization of the fast LUP matrix decomposition algorithm and applications[END_REF] for further details on the various decompositions (LSP, LQUP, PLUQ, CUP, PLE, CRE, etc) and algorithms to compute them.

We focus here on algorithms reducing to fast matrix multilication, with a rank sensitive cost. For instance, in [START_REF] Jeannerod | Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[END_REF][START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF], cost analysis are given in the form O(mnr ω-2 ) where ω is a feasable exponent for matrix multiplication.

In order to compare algorithms more precisely, it is essential to estimate the leading constant in the cost of such algorithms. We will denote by T XX (n) the leading term in the cost of running algorithm XX on dimension n, i.e. such that the cost is T XX (n) + o(T XX (n)). In the following we will assume that the product of two n × n matrices over a field can be computed in T MM (n) = C ω n ω , where 2 < ω ≤ 3.

In [6, Table 1] and [START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF], such constants are shown but only under strong genericity assumptions: namely, that the matrices are square with full rank (m = n = r) and must also sometimes have generic rank profile.

The purpose of this report is to state leading constants for the costs of the main algorihtms when matrices are rank deficient and with no genericity assumption.

Unfortunately, the non-predictable rank distribution among the blocks being processed leads to overestimate some costs, which prevents us to produce tight constants (i.e. matching the known ones in the generic case).

Following [START_REF] Jeannerod | Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[END_REF][START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF][START_REF] Dumas | Fast computation of the rank profile matrix and the generalized bruhat decomposition[END_REF], the rank revealing factorizations CUP, PLE, PLUQ, CRE can all be computed using either a uni- [START_REF] Jeannerod | Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[END_REF] or bi-dimensional [START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF] divide and conquer algorithm.

Recall from [6, Table 1] that the cost for solving n triangular systems of order m is

T TRSM (m, n) = C ω 2 ω-1 -2 m ω-1 n
.

Unidimensional recursive algorithms

Most divide and conquer Gaussian elimination follow split one of the two dimension of the work matrix in halves (either the row or column dimension). Refer to [START_REF] Jeannerod | Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[END_REF] for a survey on these algorihtms and the related matrix factorizations being produced: CUP, PLE, LSP, LQUP, PLUQ, etc.

Lemma 1. T uni (m, n, r) = αmnr ω-2 + βmr ω-1 with

α = C ω 2 -2 3-ω , β = max 0, C ω (3 -2 ω-1 ) 2 ω-1 -2 .
Note that with (ω, C ω ) = (3, 2), this becomes T uni (m, n, r) = 2mnr ω-2 -2 3 mr ω-1 . The constant overshoots by a factor of 2, the actual constant for m = n = r which is 2/3.

Proof.

T uni (m, n, r) = T uni ( m 2 , n, r 1 ) + T uni ( m 2 , n -r 1 , r 2 ) + C ω 2 ω-1 -2 m 2 r ω-1 1 + C ω m 2 (n -r 1 )r ω-2 1 ≤ mn α 2 (r ω-2 1 + r ω-2 2 ) + C ω 2 + m β 2 (r ω-1 1 + r ω-1 2 ) + C ω 2 3 -2 ω-1 2 ω-1 -2 r ω-1 1 since a ω-2 + b ω-2 ≤ 2 3-ω (a + b) ω-2 .
For any ω ≥ log 2 3 + 1, we have 3 -2 ω-1 ≤ 0 and therefore setting β = 0 we get

T uni (m, n, r) ≤ mnr ω-2 2 2-ω α + C ω 2 Lemma 1 is satisfied as soon as α ≥ 2 2-ω α + Cω 2 which gives α = Cω 2-2 3-ω . When ω ≤ 1 + log 2 3, we have T uni (m, n, r) ≤ mnr ω-2 2 2-ω α + C ω 2 + mr ω-1 β 2 + C ω (3 -2 ω-1 ) 2(2 ω-1 -2) Similarly, Lemma 1 is satisfied for α = Cω 2-2 3-ω and β = Cω(3-2 ω-1 ) 2 ω-1 -2 .
3 Bi-dimensional recursive algorithms

Alternatively, a bi-dimensionnal split can be applied, which generates in the general case four recursive calls. Refer to [START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF][START_REF] Dumas | Fast computation of the rank profile matrix and the generalized bruhat decomposition[END_REF] for an algorithm and a survey on the related matrix decompositions: PLUQ, CRE, etc.

Lemma 2. T bi (m, n, r) = αmnr ω-2 + β(m + n)r ω-1 with

α = 3 4-ω C ω (4 -4 3-ω ) , β = max 0, C ω (3 -2 ω-1 ) 2 ω -4 . Proof. Following [2] T bi (m, n, r) ≤ T bi ( m 2 , n 2 , r 1 ) + T bi ( m 2 -r 1 , n 2 , r 2 ) + T bi ( m 2 , n 2 -r 1 , r 3 ) + T bi ( m 2 , n 2 -r 2 -r 3 , r 4 ) + C ω 2 1 2 ω-1 -2 -1 (m + n)r ω-1 1 + mr ω-1 2 + nr ω-1 3 + C ω 4 mn 3r ω-2 1 + r ω-2 2 + r ω-2 3 ≤ mnr ω-2 4 3-ω α + 3 4-ω C ω 4 +(m + n)r ω-1 C ω (3 -2 ω-1 ) 2(2 ω -4) (m + n)r ω-1 1 + mr ω-1 2 + nr ω-1 3 + β 2 (m + n) r ω-1 1 + r ω-1 2 + r ω-1 2 + r ω-1 4 
For any ω ≥ log 2 3 + 1, we have 3 -2 ω-1 ≤ 0 and therefore setting β = 0 we get T bi (m, n, r) ≤ mnr ω-2 4 3-ω α + 3 4-ω C ω 4 .

Lemma 2 is satisfied as soon as α ≥ 4 3-ω α+3 4-ω Cω

, which gives α = 3 4-ω Cω (4-4 3-ω )

When ω ≤ log 2 3 + 1, then the same value for α and β = Cω(3-2 ω-1 )

satisfy Lemma 2.