
HAL Id: hal-03976168
https://cnrs.hal.science/hal-03976168v1

Preprint submitted on 6 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leading constants of rank deficient Gaussian elimination
Clément Pernet, Hippolyte Signargout, Gilles Villard

To cite this version:
Clément Pernet, Hippolyte Signargout, Gilles Villard. Leading constants of rank deficient Gaussian
elimination. 2023. �hal-03976168�

https://cnrs.hal.science/hal-03976168v1
https://hal.archives-ouvertes.fr


Leading constants of rank deficient Gaussian elimination

Clément Pernet ∗

Grenoble INP – UGA, LJK

Hippolyte Signargout †

ENS de Lyon, LIP, LJK

Gilles Villard ‡

CNRS, ENS de Lyon, LIP

February 6, 2023

1 Introduction

Rank revealing factorizations play a key role in many applications, especially in producing compact
generators for structured matrices [4, 1, 7, 8].

In the context of exact linear algebra, Gaussian elimination based factorizations prevail, since there is
no numerical instability issue. We refer to [6, 2, 3, 9, 5] for further details on the various decompositions
(LSP, LQUP, PLUQ, CUP, PLE, CRE, etc) and algorithms to compute them.

We focus here on algorithms reducing to fast matrix multilication, with a rank sensitive cost. For
instance, in [6, 2], cost analysis are given in the form O(mnrω−2) where ω is a feasable exponent for
matrix multiplication.

In order to compare algorithms more precisely, it is essential to estimate the leading constant in the
cost of such algorithms. We will denote by TXX(n) the leading term in the cost of running algorithm XX

on dimension n, i.e. such that the cost is TXX(n) + o(TXX(n)). In the following we will assume that the
product of two n× n matrices over a field can be computed in TMM(n) = Cωn

ω, where 2 < ω ≤ 3.
In [6, Table 1] and [2], such constants are shown but only under strong genericity assumptions:

namely, that the matrices are square with full rank (m = n = r) and must also sometimes have generic
rank profile.

The purpose of this report is to state leading constants for the costs of the main algorihtms when
matrices are rank deficient and with no genericity assumption.

Unfortunately, the non-predictable rank distribution among the blocks being processed leads to over-
estimate some costs, which prevents us to produce tight constants (i.e. matching the known ones in the
generic case).

Following [6, 2, 3], the rank revealing factorizations CUP, PLE, PLUQ, CRE can all be computed
using either a uni- [6] or bi-dimensional [2] divide and conquer algorithm.

Recall from [6, Table 1] that the cost for solving n triangular systems of order m is

TTRSM(m,n) =
Cω

2ω−1 − 2
mω−1n

.

2 Unidimensional recursive algorithms

Most divide and conquer Gaussian elimination follow split one of the two dimension of the work matrix
in halves (either the row or column dimension). Refer to [6] for a survey on these algorihtms and the
related matrix factorizations being produced: CUP, PLE, LSP, LQUP, PLUQ, etc.

∗clement.pernet@univ-grenoble-alpes.fr
†hippolyte.signargout@ens-lyon.fr
‡gilles.villard@ens-lyon.fr

1

mailto:clement.pernet@univ-grenoble-alpes.fr
mailto:hippolyte.signargout@ens-lyon.fr
mailto:gilles.villard@ens-lyon.fr


Lemma 1. Tuni(m,n, r) = αmnrω−2 + βmrω−1 with

α =
Cω

2− 23−ω
, β = max

(

0,
Cω(3− 2ω−1)

2ω−1 − 2

)

.

Note that with (ω,Cω) = (3, 2), this becomes Tuni(m,n, r) = 2mnrω−2 − 2
3mrω−1. The constant

overshoots by a factor of 2, the actual constant for m = n = r which is 2/3.

Proof.

Tuni(m,n, r) = Tuni(
m

2
, n, r1) + Tuni(

m

2
, n− r1, r2) +

Cω

2ω−1 − 2

m

2
rω−1
1 + Cω

m

2
(n− r1)r

ω−2
1

≤ mn

(

α

2
(rω−2

1 + rω−2
2 ) +

Cω

2

)

+m

(

β

2
(rω−1

1 + rω−1
2 ) +

Cω

2

(

3− 2ω−1

2ω−1 − 2

)

rω−1
1

)

since aω−2 + bω−2 ≤ 23−ω(a+ b)ω−2. For any ω ≥ log2 3+ 1, we have 3− 2ω−1 ≤ 0 and therefore setting
β = 0 we get

Tuni(m,n, r) ≤ mnrω−2

(

22−ωα+
Cω

2

)

Lemma 1 is satisfied as soon as α ≥ 22−ωα+ Cω

2 which gives α = Cω

2−23−ω
.

When ω ≤ 1 + log2 3, we have

Tuni(m,n, r) ≤ mnrω−2

(

22−ωα+
Cω

2

)

+mrω−1

(

β

2
+

Cω(3 − 2ω−1)

2(2ω−1 − 2)

)

Similarly, Lemma 1 is satisfied for α = Cω

2−23−ω
and β = Cω(3−2ω−1)

2ω−1
−2 .

3 Bi-dimensional recursive algorithms

Alternatively, a bi-dimensionnal split can be applied, which generates in the general case four recursive
calls. Refer to [2, 3] for an algorithm and a survey on the related matrix decompositions: PLUQ, CRE,
etc.

Lemma 2. Tbi(m,n, r) = αmnrω−2 + β(m+ n)rω−1 with

α =
34−ωCω

(4− 43−ω)
, β = max

(

0,
Cω(3− 2ω−1)

2ω − 4

)

.

Proof. Following [2]

Tbi(m,n, r) ≤ Tbi(
m

2
,
n

2
, r1) + Tbi(

m

2
− r1,

n

2
, r2) + Tbi(

m

2
,
n

2
− r1, r3) + Tbi(

m

2
,
n

2
− r2 − r3, r4)

+
Cω

2

(

1

2ω−1 − 2
− 1

)

(

(m+ n)rω−1
1 +mrω−1

2 + nrω−1
3

)

+
Cω

4
mn

(

3rω−2
1 + rω−2

2 + rω−2
3

)

≤ mnrω−2

(

43−ωα+ 34−ωCω

4

)

+(m+ n)rω−1

(

Cω(3 − 2ω−1)

2(2ω − 4)

)

(

(m+ n)rω−1
1 +mrω−1

2 + nrω−1
3

)

+
β

2
(m+ n)

(

rω−1
1 + rω−1

2 + rω−1
2 + rω−1

4

)

For any ω ≥ log2 3 + 1, we have 3− 2ω−1 ≤ 0 and therefore setting β = 0 we get

Tbi(m,n, r) ≤ mnrω−2

(

43−ωα+ 34−ωCω

4

)

.

Lemma 2 is satisfied as soon as α ≥
43−ω

α+34−ω

Cω

4 , which gives α = 34−ω

Cω

(4−43−ω)

When ω ≤ log2 3 + 1, then the same value for α and β = Cω(3−2ω−1)
2ω−4 satisfy Lemma 2.

2



References

[1] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. J. van der Veen. Fast stable solver for sequen-
tially semi-separable linear systems of equations. In Sartaj Sahni, Viktor K. Prasanna, and Uday
Shukla, editors, High Performance Computing — HiPC 2002, pages 545–554, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[2] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Simultaneous computation of the row and
column rank profiles. In Proceedings of the 38th International Symposium on Symbolic and Algebraic

Computation, ISSAC ’13, page 181–188, New York, NY, USA, 2013. Association for Computing
Machinery.

[3] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Fast computation of the rank profile
matrix and the generalized bruhat decomposition. Journal of Symbolic Computation, 83:187 – 210,
2017. Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra.

[4] Yuli Eidelman and I. Gohberg. On generators of quasiseparable finite block matrices. Calcolo,
42:187–214, 12 2005.

[5] Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast LUP matrix decompo-
sition algorithm and applications. Journal of Algorithms, 3(1):45–56, March 1982.

[6] Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann. Rank-profile revealing Gaussian
elimination and the CUP matrix decomposition. J. Symbolic Comput., 56:46–68, 2013.

[7] P. Martinsson. A fast randomized algorithm for computing a hierarchically semiseparable represen-
tation of a matrix. SIAM J. Matrix Analysis Applications, 32:1251–1274, 10 2011.

[8] Clément Pernet and Arne Storjohann. Time and space efficient generators for quasiseparable matri-
ces. Journal of Symbolic Computation, 85:224 – 246, 2018. Special issue on the 41th International
Symposium on Symbolic and Alge-braic Computation (ISSAC’16).

[9] Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Institut für Wissenschaftliches
Rechnen, ETH-Zentrum, Zürich, Switzerland, November 2000.

3


	Introduction
	Unidimensional recursive algorithms
	Bi-dimensional recursive algorithms

