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1 Introduction

Rank revealing factorizations play a key role in many applications, especially in producing compact
generators for structured matrices [4, 1, 7, 8].

In the context of exact linear algebra, Gaussian elimination based factorizations prevail, since there is
no numerical instability issue. We refer to [6, 2, 3, 9, 5] for further details on the various decompositions
(LSP, LQUP, PLUQ, CUP, PLE, CRE, etc) and algorithms to compute them.

We focus here on algorithms reducing to fast matrix multilication, with a rank sensitive cost. For
instance, in [6, 2], cost analysis are given in the form O(mnrω−2) where ω is a feasable exponent for
matrix multiplication.

In order to compare algorithms more precisely, it is essential to estimate the leading constant in the
cost of such algorithms. We will denote by TXX(n) the leading term in the cost of running algorithm XX

on dimension n, i.e. such that the cost is TXX(n) + o(TXX(n)). In the following we will assume that the
product of two n× n matrices over a field can be computed in TMM(n) = Cωn

ω, where 2 < ω ≤ 3.
In [6, Table 1] and [2], such constants are shown but only under strong genericity assumptions:

namely, that the matrices are square with full rank (m = n = r) and must also sometimes have generic
rank profile.

The purpose of this report is to state leading constants for the costs of the main algorihtms when
matrices are rank deficient and with no genericity assumption.

Unfortunately, the non-predictable rank distribution among the blocks being processed leads to over-
estimate some costs, which prevents us to produce tight constants (i.e. matching the known ones in the
generic case).

Following [6, 2, 3], the rank revealing factorizations CUP, PLE, PLUQ, CRE can all be computed
using either a uni- [6] or bi-dimensional [2] divide and conquer algorithm.

Recall from [6, Table 1] that the cost for solving n triangular systems of order m is

TTRSM(m,n) =
Cω

2ω−1 − 2
mω−1n

.

2 Unidimensional recursive algorithms

Most divide and conquer Gaussian elimination follow split one of the two dimension of the work matrix
in halves (either the row or column dimension). Refer to [6] for a survey on these algorihtms and the
related matrix factorizations being produced: CUP, PLE, LSP, LQUP, PLUQ, etc.
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Lemma 1. Tuni(m,n, r) = αmnrω−2 + βmrω−1 with

α =
Cω

2− 23−ω
, β = max

(

0,
Cω(3− 2ω−1)

2ω−1 − 2

)

.

Note that with (ω,Cω) = (3, 2), this becomes Tuni(m,n, r) = 2mnrω−2 − 2
3mrω−1. The constant

overshoots by a factor of 2, the actual constant for m = n = r which is 2/3.

Proof.

Tuni(m,n, r) = Tuni(
m

2
, n, r1) + Tuni(

m

2
, n− r1, r2) +

Cω

2ω−1 − 2

m

2
rω−1
1 + Cω

m

2
(n− r1)r

ω−2
1

≤ mn

(

α

2
(rω−2

1 + rω−2
2 ) +

Cω

2

)

+m

(

β

2
(rω−1

1 + rω−1
2 ) +

Cω

2

(

3− 2ω−1

2ω−1 − 2

)

rω−1
1

)

since aω−2 + bω−2 ≤ 23−ω(a+ b)ω−2. For any ω ≥ log2 3+ 1, we have 3− 2ω−1 ≤ 0 and therefore setting
β = 0 we get

Tuni(m,n, r) ≤ mnrω−2

(

22−ωα+
Cω

2

)

Lemma 1 is satisfied as soon as α ≥ 22−ωα+ Cω

2 which gives α = Cω

2−23−ω
.

When ω ≤ 1 + log2 3, we have

Tuni(m,n, r) ≤ mnrω−2

(

22−ωα+
Cω

2

)

+mrω−1

(

β

2
+

Cω(3 − 2ω−1)

2(2ω−1 − 2)

)

Similarly, Lemma 1 is satisfied for α = Cω

2−23−ω
and β = Cω(3−2ω−1)

2ω−1
−2 .

3 Bi-dimensional recursive algorithms

Alternatively, a bi-dimensionnal split can be applied, which generates in the general case four recursive
calls. Refer to [2, 3] for an algorithm and a survey on the related matrix decompositions: PLUQ, CRE,
etc.

Lemma 2. Tbi(m,n, r) = αmnrω−2 + β(m+ n)rω−1 with

α =
34−ωCω

(4− 43−ω)
, β = max

(

0,
Cω(3− 2ω−1)

2ω − 4

)

.

Proof. Following [2]

Tbi(m,n, r) ≤ Tbi(
m

2
,
n

2
, r1) + Tbi(

m

2
− r1,

n

2
, r2) + Tbi(

m

2
,
n

2
− r1, r3) + Tbi(

m

2
,
n

2
− r2 − r3, r4)

+
Cω

2

(

1

2ω−1 − 2
− 1

)

(

(m+ n)rω−1
1 +mrω−1

2 + nrω−1
3

)

+
Cω

4
mn

(

3rω−2
1 + rω−2

2 + rω−2
3

)

≤ mnrω−2

(

43−ωα+ 34−ωCω

4

)

+(m+ n)rω−1

(

Cω(3 − 2ω−1)

2(2ω − 4)

)

(

(m+ n)rω−1
1 +mrω−1

2 + nrω−1
3

)

+
β

2
(m+ n)

(

rω−1
1 + rω−1

2 + rω−1
2 + rω−1

4

)

For any ω ≥ log2 3 + 1, we have 3− 2ω−1 ≤ 0 and therefore setting β = 0 we get

Tbi(m,n, r) ≤ mnrω−2

(

43−ωα+ 34−ωCω

4

)

.

Lemma 2 is satisfied as soon as α ≥
43−ω

α+34−ω

Cω

4 , which gives α = 34−ω

Cω

(4−43−ω)

When ω ≤ log2 3 + 1, then the same value for α and β = Cω(3−2ω−1)
2ω−4 satisfy Lemma 2.
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