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S U M M A R Y
Deformation and failure of rocks are important for a better understanding of many crustal
geological phenomena such as faulting and compaction. In carbonate rocks among others, low-
temperature deformation can either occur with dilatancy or compaction, having implications
for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of
all the micromechanisms responsible for deformation is of great interest. In this study, a con-
stitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate
rocks is derived from the micromechanisms identified in previous studies. The micromechan-
ical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms
of dislocation glide without possibility to climb) for porous media with hardening and (3)
crack nucleation due to dislocation pile-ups. The model predicts stress–strain relations and
the evolution of damage during deformation. The model adequately predicts brittle behaviour
at low confining pressures, which switches to a semi-brittle behaviour characterized by in-
elastic compaction followed by dilatancy at higher confining pressures. Model predictions are
compared to experimental results from previous studies and are found to be in close agree-
ment with experimental results. This suggests that microphysical phenomena responsible for
the deformation are sufficiently well captured by the model although twinning, recovery and
cataclasis are not considered. The porosity range of applicability and limits of the model are
discussed.

Key words: Defects; Elasticity and anelasticity; Fracture and flow; Plasticity, diffusion, and
creep; Geomechanics; Microstructures.

1 I N T RO D U C T I O N

Understanding and predicting the mechanical behaviour of carbon-
ate rocks is of great interest for industrial purposes, because they are
crossed by faults zones (Armijo et al. 1992; Willemse et al. 1997;
Mouslopoulou et al. 2014), constitute the basement under some
volcanoes (Heap et al. 2013) and host thermal water resources
(e.g. Goldscheider et al. 2010) among other examples of applica-
tion. Experimental studies have been conducted on limestones (e.g.
Heard 1960; Olsson 1974; Vincké et al. 1998; Baud et al. 2000;
Vajdova et al. 2004, 2010; Brantut et al. 2014; Brantut 2015;
Nicolas et al. 2016), marbles (e.g. Rutter 1974; Fredrich et al. 1989;
Renner et al. 2002; Schubnel et al. 2006), chalks (e.g. Rhett &
Farrell 1991; Risnes et al. 2005). Focusing on limestones, these
studies have shown that depending on the confining pressure, sam-
ples can have a brittle or a ductile behaviour, even at low (room)
temperature (Fig. 1). The brittle-ductile transition depends on grain
size, porosity and pore size (e.g. Vajdova et al. 2004; Zhu et al. 2010;
Wong & Baud 2012).

At low confining pressure, features are typical of the brittle
regime: (i) samples undergo an elastic compaction until a point

denoted C′ (e.g. Wong et al. 1997; Baud et al. 2000) beyond which
dilatancy takes place (Fig. 1, inset A); (ii) the differential stress
reaches a peak beyond which strain softening is occurring, which is
typical of shear localization (Brace 1978); (iii) Observation of the
samples after deformation in the post-peak regime indicates that
the deformation was localized in a shear fault. Deformation at mi-
croscopic scale is accommodated by microcrack nucleation and/or
propagation and eventually their coalescence.

At confining pressure higher than a threshold depending on the
rock (e.g. Wong & Baud 2012), porous limestones exhibit (1) an
elastic compaction and (2) an inelastic shear-enhanced compaction
associated with strain hardening beyond a critical stress denoted C∗

(e.g. Wong et al. 1997; Baud et al. 2000). Yet, inelastic compaction is
transient and volumetric strain reverses from inelastic compaction
to dilatancy (Fig. 1, inset B) beyond a critical stress denoted C∗′

(Baud et al. 2000). These features (i) involving macroscopically
distributed, dilatant deformation by both crystal plasticity (disloca-
tion creep, twinning) and microcracking (e.g. Fredrich et al. 1989);
(ii) leading to strains lying in the range 3-5 per cent at
failure and (iii) inducing a pressure-dependent strength; are
typical of the semi-brittle (ductile) regime as defined by
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Figure 1. The failure envelope obtained by Vajdova et al. (2004) for Tavel limestone (porosity of 10.4 per cent) deformed at constant strain rate under dry
conditions at 20 ◦C. Inset A illustrates the evolution of mean stress as a function of volumetric strain for a constant strain rate experiment performed in the
brittle regime. Inset B illustrates the evolution of mean stress as a function of volumetric strain for a constant strain rate experiment performed in the semi-brittle
regime.

Evans et al. (1990), in agreement with Rutter (1986). The im-
portance of this semi-brittle regime in the lithospheric defor-
mation has been well recognized (e.g. Ross & Lewis 1989;
Kohlstedt et al. 1995). At the microscale, microplasticity (me-
chanical twinning and dislocation glide) is active even at low
temperature (Turner et al. 1954; Griggs et al. 1960; De Bresser &
Spiers 1997). However, at low temperature, dislocations can only
slip in their plane and twins cannot be eliminated, microdefects ac-
cumulate and no recovery process takes place. Localized residual
stresses due to pile-ups can be sufficient to nucleate new micro-
cracks (Smith & Barnby 1967; Evans et al. 1980; Wong 1990).
Temperature plays a role (Rutter 1974) but only low temperature is
considered in this article.

This study focuses on the development of a constitutive
model for the prediction of the mechanical behaviour of lime-
stones undergoing constant strain rate deformation at low
temperature and various confining pressures. This model is mi-
cromechanically motivated: Assuming the micromechanisms con-
sidered previously, the aim is to predict the stress–strain relation.
The model predictions are then compared to data available in the
literature.

2 D E V E L O P M E N T O F T H E
C O N S T I T U T I V E M O D E L

Limestones are heterogeneous in terms of microstructure (e.g.
grain type and size, porosity distribution, cementation; see Lu-
cia (2007) for details), thus physical properties and mechanical
behaviour are not easy to predict (Anselmetti & Eberli 1993;
Eberli et al. 2003; Baechle et al. 2008; Vajdova et al. 2012;
Regnet et al. 2015a,b). For simplicity, in this model we assume
that the microstructure is characterized by (1) a matrix composed
of pure calcite, (2) a porosity made-up of equant pores and (3)
cracks.

Predicting the mechanical behaviour of limestones implies to
embody all the possible micromechanisms. Thus, the derivation of
the micromechanically motivated constitutive model includes five
key steps: (i) derive the effective elastic moduli for the cracked
porous medium, (ii) calculate the macroscopic strains related to
crack growth of an array of interacting cracks, (iii) calculate the
macroscopic strains related to dislocations from crystal plasticity,
(iv) account for crack nucleation and growth from dislocation pile-
ups, and (v) finally calculate the macroscopic stress evolution during
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Table 1. Summary of all the parameters used for the development of the model.

σ , σm, σ e Remotely applied stress tensor and corresponding mean and von-Mises effective stresses
Q, S Remotely applied differential and deviatoric stresses
x Stress triaxiality
ρc Crack density as defined by Budiansky & O’Connell (1976)
Gi, G, Ki, K Initial and current shear moduli, initial and current bulk moduli
G0, Gu, K0, Ku Calcite and uncracked porous medium shear and bulk moduli
ν0, νu, νi Calcite, uncracked porous medium, and initial Poisson’s ratios
KI, KIC Stress intensity factor, and the critical value of the material
W Strain energy density
ε, ε̇ Remote strain and its rate of change
ε̇ax Remotely imposed axial strain rate
ε̇ p Plastic strain rate
ε̇d Strain rate induced by dislocations
εmd, ε̇md Strain induced by mobile dislocation motions and its rate of change
ε̇0 Reference strain rate for the non-porous material
ε0 Yield strain for macroscopic plasticity
εe, εcracks, εmp Strain due to elasticity, cracks, and plasticity of the porous material
ρd, ρmd Total and mobile dislocation densities
ρid, ρini

id , ρnew
id Immobile dislocation density, decomposed as initial and newly nucleated

b Burgers vector
v Dislocation average slip velocity
V0 Reference dislocation slip velocity
m, n Stress sensitivity of the dislocation slip velocity and of the plasticity in the material
M Strain hardening exponent of the macroscopic plastic law of the non-porous material
σ 0 Reference stress for dislocation slip velocity
σ p, σ i

p Reference stress for plasticity of the non-porous material and its initial value
σ i Internal stress
σ i

i , ε̇
p
0 , ε

p
0 Constants depending on microplastic parameters and relevant to internal stress

Lg Grain size
τ d Characteristic time for dislocation motions
Ap, Bp, Cp, Dp Constants relevant to microplastic flow
V, V̇ Void volume and its rate of change
x∗, k, f∗ Reference values in the porous medium plasticity law
L Pile-up length
τ ∗, τ a, τ f Dislocation driving shear stress, resolved shear stress, and lattice friction stress
Ndi, N pu

di Number of dislocations in a pile-up, and its average value
N cri

di Critical number of dislocations in a pile-up for new crack nucleation
�pu Number of pile-ups intersecting a reference surface
Lpu, �pu Average spacing between pile-ups, and pile-up density
θ , ξ Angle between wedge crack and pile-up plane, and angle between σ 1 and the pile-up plane
lw Wedge crack length
σw, τw Normal and shear stresses acting on the wedge crack
γ s Surface energy of the material

constant strain rate loading. All the parameters used thereafter can
be found in Table 1.

In this paper, compressive stresses and compactive strains are
counted positive. The principal stresses will be denoted σ 1 and
σ 3, σ 1 being the highest principal stress. The mean stress σ m

and the von-Mises effective stress σ e are σ m = σ kk/3 and σe =√
(3/2)Si j Si j , respectively, Sij being the deviatoric stress defined as

Sij = σ ij − δijσ m, where δij is the Kronecker delta. Stress triaxial-
ity x is defined as x = σ m/σ e and differential stress (σ 1 − σ 3) is
denoted Q.

2.1 Elastic moduli of the cracked and deformed solid

Cracks and porosity have an impact on elastic moduli of porous
materials (Mackenzie 1950; Walsh 1965a,b). Elastic moduli in-
crease when porosity is closed and decrease with crack density
increase (Bristow 1960; Budiansky & O’Connell 1976). Indeed, al-
though open microcracks represent an extremely small amount of

porosity, they are very compliant (Guéguen et al. 2009). In this
model, voids are made-up of spheroidal pores and penny-shaped
cracks. Effective elastic moduli are expressed as a function of the
overall porosity and the open crack density ρ (e.g. Kachanov 1993;
Shafiro & Kachanov 1997; Fortin et al. 2007). We use Budiansky
& O’Connell’s 1976 definition of crack density ρc:

ρc = 1

V

N∑
i=1

c3
i , (1)

where ci is the radius of the ith crack and N is the total number of
cracks embedded in the representative elementary volume (REV)
V. In the dry case, for an isotropic distribution of crack orientations,
the shear modulus G and bulk modulus K of a medium contain-
ing spheroidal pores and cracks can be expressed as a function
of the shear and bulk moduli of the crack- and porosity-free ma-
trix, and its Poisson’s coefficient (e.g. Kachanov 1993; Shafiro &
Kachanov 1997). As open crack density increases by �ρc with re-
spect to its initial value, elastic moduli (K, G) decrease with respect
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Figure 2. (a) An isolated wing–crack is subjected to remote stress. Wings develop from an initial flaw of radius a, parallel to σ 1 (direction X1). (b) Geometry
of the crack network used for the stress-intensity factor, KI, calculated at a crack tip.

to their initial values (Ki, Gi). Note that here we neglect porosity
variation, which is a fair approximation (e.g. Fortin et al. 2007). In
the non-interaction approximation, evolution of K and G is given
by (Appendix A):

Gi

G
≈ 1 + �ρc

h

1 + νi

(
1 − νi

5

)
,

Ki

K
≈ 1 + �ρc

h

1 − 2νi

(
1 − νi

2

)
, (2)

where Gi and Ki are the initial shear and bulk moduli, ν i is the initial
Poisson’s coefficient and �ρc is the crack density variation during
deformation. The factor h describes the penny-shaped geometry and
is expressed as:

h = 16(1 − ν2
i )

9(1 − νi/2)
. (3)

When the model is used for rocks of known elastic moduli, ex-
perimental values can be used as initial values. When the model
is used for rocks of unknown elastic moduli, their initial values
can be computed with the rock initial crack density and porosity
(Appendix A). Young modulus E and Poisson’s ratio ν of the cracked
porous medium are calculated from G and K.

Note that the overall crack orientations distribution may be
anisotropic. In that case, the above calculations have to be ex-
tended to the anisotropic appropriate symmetry (Guéguen &
Kachanov 2011). Moreover, in water-saturated cases, frequency
dependence can be important and should be accounted for when
determining elastic moduli from dynamic measurements (e.g.
Adelinet et al. 2011; Fortin et al. 2014; Pimienta et al. 2015).

2.2 Macroscopic strains related to crack growth

Crack growth from a pre-existing isolated sharp inclined crack un-
der compressive stresses can be described by wing crack mod-
els initially developed by Nemat-Nasser & Horii (1982), and later
revisited by Ashby & Hallam (1986); Ashby & Sammis (1990);

Bhat et al. (2011, 2012); Mallet et al. (2015); Perol & Bhat (2016),
among others. In their paper, Ashby & Sammis (1990) compared
their theoretical predictions of failure envelopes to experimental
data on granite, aplite, dunite, eclogite, gabbro, sandstone, lime-
stone, marble and salt and showed that the agreement was excellent.
Mallet et al. (2013) confirmed this good agreement using experi-
ments performed on a cracked borosilicate glass.

We use Ashby & Sammis’s approach to calculate the stress inten-
sity factor KI in a 3-D setting (Fig. 2). Isolated initial penny-shaped
crack of radius a are inclined at an angle ψ with respect to the max-
imum principal stress (X1-axis; Fig. 2a). Wings of length denoted
l can grow from each end of the pre-existing flaw, parallel to the
X1-axis (Fig. 2a). Wing cracks form an array of interacting cracks
in an isotropic linear elastic surrounding medium subjected to com-
pressive stresses (Fig. 2b). The faces of the initial crack, in contact,
can slide with some friction characterized by a Coulomb friction
coefficient μ. The crack can also open, as discussed later. As wing
cracks grow, the current damage increases. Current damage is de-
fined as D = (4/3)Nvπ (l + acos ψ)3 (e.g. Ashby & Sammis 1990),
where Nv is the number of cracks per unit volume. Initial damage
is calculated with l = 0. The damage parameter D is not equiv-
alent to the crack density as defined in eq. (1), because damage
takes into account open and closed cracks whereas crack density
only considers open cracks (e.g. Kachanov & Sevostianov 2012).
If all cracks are open, damage and crack density become related
and D = (4/3)πρc. This current damage parameter does not take
into account new cracks that are nucleated during the experiment.
Damage due to new cracks is discussed in Section 2.4.

Subcritical crack growth is not considered here and cracks grow
when the stress intensity at their tips KI exceeds the fracture tough-
ness KIC of the solid. Thus, the condition for crack growth is:

KI ≥ KI C . (4)

Then, cracks propagate until KI falls to KIC. Under compressive
stresses as considered in this study, KI decreases as l increases until
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the cracks start to interact strongly: each increment of crack advance
requires an increment of load and growth is stable.

The previous condition for crack propagation is valid when
(i) frictional sliding is enabled by the stress conditions, and (ii)
the flanks of the initial crack remain in contact. Three regimes need
to be considered (Deshpande & Evans 2008):

Regime I: Relative sliding on the flanks of the initial crack cannot
take place because of friction, preventing cracks from growing.
Damage remains at its initial value D0 and open crack density is 0
because pre-existing cracks are closed.

Regime II: Relative sliding is possible and Ashby & Sammis’s
approach is used. Expression of the stress intensity KI at the tip of
interacting cracks forming an array is given by eq. (26) in Ashby
& Sammis (1990). Damage increases as wing cracks propagate and
D = (4/3)Nvπ (l + a cos ψ)3. Crack density also increases and is
equal to ρc = 2Nvl3 because the wings are open but the flanks of
the pre-existing flaws remain in contact.

Regime III: Contact between the flanks of the initial crack is lost
and the current damage is directly linked to the open crack density:
D = (4/3)πρc. The situation reduces to the classical problem for a
cracked elastic solid (Bristow 1960; Budiansky & O’Connell 1976;
Tada et al. 2000). For an isotropic distribution of cracks, K 2

I is a
quadratic function of the stresses σ m and σ e:

KI = [πa(C2σ 2
m + F2σ 2

e )]1/2, (5)

where C and F are given in Deshpande & Evans (2008) and recalled
in Appendix B, and depend on the initial damage D0 and current
damage D.

Based on elastic strain εij continuities between regimes II and
III, Deshpande & Evans (2008) found that the transition between
regime II and regime III occurs at a stress triaxiality:

xII→III = AB

C2 − A2
, (6)

where A and B depend on the initial and current damage and are
given in Deshpande & Evans (2008) and recalled in Appendix B.

Strains at the macroscale εij due to microcracks are calculated
from the strain energy density W via the work conjugate relation
(Deshpande & Evans 2008):

εi j = ∂W

∂σi j
. (7)

Regime I: As cracks are closed and their flanks cannot slide, they
have no influence on the elastic response of the solid.

Regime II: Noting �W the strain energy per crack, the strain
energy density due to wing crack growth is W = Nv�W. It is given
by Deshpande & Evans (2008):

W = π D0

4α3Gu(1 + νu)
(Aσm + Bσe)2, (8)

where νu and Gu are the Poisson’s ratio and the shear modulus of
the uncracked porous medium (see Appendix A) and α = cos ψ .

Regime III: Contact is lost between the two sides of the pre-
existing penny-shaped cracks and cracks open. Total strain energy
density due to crack growth is (Deshpande & Evans 2008):

W = π D0

4α3Gu(1 + νu)
(C2σ 2

m + F2σ 2
e ). (9)

To summarize, the parameters needed to describe the strain due to
crack growth are the elastic constants of the matrix (G0 and ν0 or
any equivalent doublet), porosity (needed to calculate the elastic
moduli of the uncracked porous medium; Gu, νu = f(G0, ν0, p);

see Appendix A), the initial damage D0, the size of pre-existing
flaws a, the friction coefficient on these pre-existing cracks μ, and
the fracture toughness of the solid KIC. A discussion on the values
taken by all these parameters is provided in Section 3.2.

2.3 Macroscopic strains related to intracrystalline
plasticity

In low-porosity carbonate rocks deformed at low temperature, the
microplasticity can account for the compactant ductile behaviour
(e.g. Fredrich et al. 1989, 1990; Miguel et al. 2001). Mechanical
twinning and r-, f-dislocation glide are accessible at low temperature
and relatively low confining pressures in calcite (Turner et al. 1954;
Griggs et al. 1960; De Bresser & Spiers 1997). Twinning and dislo-
cation glide can be associated (e.g. Keith & Gilman 1960; Startsev
et al. 1960; Braillon & Serughetti 1976) and occur simultaneously
(e.g. Nicolas et al. 2017). Fig. 3 shows microstructural observa-
tions done on Tavel limestone deformed in the semi-brittle regime
at Pc = 70 MPa (Nicolas et al. 2017). Dislocations and twins can
be observed in deformed grains. Both mechanisms are microscopic
plastic flow without volumetric change at the scale of the grains
(Paterson 1978; Paterson & Wong 2005) that lead to a ductile be-
haviour at the macro-scale. However, for both mechanisms, plastic
flows are imperfect in the sense that neither twins nor dislocations
can be eliminated at low temperature. At low temperature, their den-
sity increases with the imposed deformation, leading to hardening.
Thus, twinning and dislocation glide lead to similar macroscopic
behaviours: ductile deformation with hardening. The aim of this
section is to describe microplasticity with hardening. It would be
possible to use a description based on twinning and/or disloca-
tion glide. However, dislocation glide and twins may have different
stress and strain sensitivity (e.g. Karato 2008). For simplicity we
only consider dislocation glide here.

To describe the evolution of plastic strain rate ε̇ p as a function
of the stress state, previous authors have used an empirical stress-
dependent power law (e.g. Xiao & Evans 2003):

ε̇ p = ε̇0(σ/σp)n, (10)

where ε̇0 and σ p are reference values, σ is the applied compression
stress, and n is a material constant. A discussion of this macroscopic
power-law description can be found in Renner & Evans (2002) and
alternative constitutive relations can be found in Poirier (1985).
In Appendix C, a micromodel accounting for dislocations-induced
plastic flow and hardening is developed, leading to a physical de-
scription of eq. (10). Enhanced ductility in front of the crack tip
due to stress concentrations and associated high dislocation den-
sity is not considered in this model. The reference stress σ p is as-
sumed to account for the material hardening and following Danas &
Castañeda (2012), the matrix phase is assumed to exhibit an
isotropic strain hardening law described as:

σp = σ i
p

[
1 + ε p

ε0

]M

, (11)

where σ i
p and ε0 denote the initial yield stress and yield strain of

the matrix material, respectively. The strain hardening exponent is
taken as: M ≤ 1. Using the micromodel accounting for dislocation-
induced plastic flow and hardening, it is possible to justify that
M = 1/2 and that ε0 = bLgρ

init
id , where b is Burgers vector for cal-

cite, Lg is the grain size, and ρ init
id is the initial immobile dislocation

density (see Appendix C). From the micromodel, the initial immo-
bile dislocation density is directly linked to σ i

p (see Appendix C).
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Figure 3. Micrographs of Tavel limestone samples deformed at 70 MPa and presented in Nicolas et al. (2017). (a) Micrograph of the sample under optical
light. The twinning activity is very intense. (b) Observation of a foil milled in a highly twinned grain. At some point of inelastic compaction, crystals cannot
undergo more plastic strain and develop intragranular cracks noted ‘c’. Dislocations and twins (noted ‘t’) are associated and occur simultaneously. Cracks are
cross-cutting the twins.

Thus, at this stage, three parameters are needed to describe the evo-
lution of plastic strain: ε̇0, n, and σ i

p . These three parameters will
be discussed in Section 3.3.

The above plastic law is applicable to a non-porous medium.
Dislocation glide does not lead to volumetric strain of the solid
medium, but can induce porosity changes (and thus volumetric
strain) of the porous material. Rice & Tracey (1969) first treated
the ductile growth of voids as a problem of continuum plasticity
by considering the asymmetric deformation of spherical voids em-
bedded in an elastically rigid and incompressible plastic material.
Budiansky et al. (1982) later accounted for nonlinear viscosity.
Baud et al. (2000) modelled the inelastic compaction of a 3 per cent-
porosity limestone at room temperature using a plastic pore collapse
model (Curran & Carroll 1979). Xiao & Evans (2003) reproduced
general trends of the deformation of a porous calcite-quartz ag-
gregate at high temperature with a model of an isolated equivalent
void in a incompressible nonlinear viscous matrix. Following these
works, we use a creep model (Budiansky et al. 1982) to analyse
the inelastic compaction at a macroscale. The porous rock is mod-
elled as a medium containing isolated equivalent voids. Each void
is assumed to be spherical and its surface to be traction-free.

As we focus on the mechanical behaviour of carbonate rocks un-
der differential stress (i.e. shear-enhanced compaction), plasticity is
set to 0 for high triaxiality (|x| > 1) when the stress state is close to
hydrostatic, and thus inelastic compaction does not occur without
shear stress. For low triaxiality (|x| < 1), plasticity develops (en-
abling shear-enhanced compaction). Based on the numerical results
of Budiansky et al. (1982), Duva & Hutchinson (1984) derived an
approximate normalised dilation rate:

V̇

ε̇V
= k(n)[x − x∗(n)], (12)

where V is void volume, V̇ the rate of change of volume and ε̇ the
remote volumetric strain rate. Values of k and x∗ depend on n (de-
fined through eq. 10) and are listed in Table 2. Duva & Hutchinson
(1984) derived an approximate constitutive relation for the creep
rate at low triaxiality:

ε̇
mp
i j = 3

2
ε̇0

(
σe

σp

)n−1 Si j

σp
+ pε̇0

(
σe

σp

)n

×
{

3

2

[
(n + 1) f ∗ + 1

2
k(n − 1)x2

]
Si j

σe
+ 1

3
kxδi j

}
, (13)

Table 2. Values considered in the plasticity law for a porous
medium that are taken from Duva & Hutchinson (1984).

n f∗ x∗ k

1 0.833 0 2.25
1.5 0.965 −0.019 2.42
2 1.05 −0.031 2.55
3 1.16 −0.045 2.71
5 1.26 −0.058 2.88
10 1.35 −0.070 3.06
∞ 1.46 −0.083 3.30

where p is the overall porosity. Values of f∗ depend on the strain
rate exponent n and are listed in Table 2. Note that eq. (13) is
simply a new form of eq. (10) accounting for porosity p (second
term in eq. 13). As the differential stress is increased, eq. (13)
is resolved (allowing to calculate ε̇ = ε̇

mp
ii ) and then porosity is

updated using the strain rate of the voids V̇ provided by eq. (12).
The new plastic creep strain rate is then calculated with eq. (13). At
this stage, porosity p is the only supplementary parameter appearing
in eq. (13) needed additionally to the three parameters appearing in
eq. (10).

In this study, pores are idealized as spheres. The initial shape
and evolution of pores probably has a substantial effect upon the
behaviour of the porous solid. However, a model accounting for
other pore shapes is beyond this work.

The general formulation of eq. (13) is equivalent to considering
the matrix material as an incompressible, nonlinearly viscous ma-
terial (Renner & Evans 2002). When n = 1, the material is linearly
viscous whereas when n → ∞, it is rigid-perfectly plastic. The real
situation is likely to be between these two end-members, which is
discussed in Section 3.3.

2.4 Crack nucleation from pile-ups

At low temperature, in calcite, dislocation and twin slips are blocked
at grain boundaries and defects, resulting in pile-ups (Fig. 3). These
pile-ups creates local stress concentrations that can be sufficient to
nucleate new cracks (e.g. Stroh 1954, 1957; Smith & Barnby 1967;
Olsson & Peng 1976; Wong 1990), as illustrated by Fig. 3(b). Thus,
at low temperature, microplastic deformation can induce cracking
and the two micromechanisms reported in Sections 2.2 and 2.3 are
coupled. As for the intra-crystalline plasticity, only dislocations are
considered here (see Section 2.3) but twins could also be considered
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Figure 4. (a) A pile-up of Ndi positive edge dislocations (Burger vector magnitude b) nucleating a tensile microcrack on a plane at an angle θ . The length of
the pile-up is L. The driving shear stress is τ ∗. (b) The wedge crack length is lw, and the wedge opening at one end is nb due to the coalescence of n dislocations
of Burger vector b. The remotely applied 2-D stress field has principal components σ 1 and σ 3 with the maximum principal compressive stress at an angle ξ to
the dislocation pile-up.

because deformation due to twins is limited at low temperature,
which creates local stresses sufficient to nucleate new cracks (e.g.
Olsson & Peng 1976).

Considering a dislocation pile-up of length L (Fig. 4), Wong
(1990) found the following condition for crack nucleation:

KI C = 4
√

2√
3π

τ ∗√L, (14)

where the driving shear stress is τ ∗ = τ a − τ f, where τ a and τ f

are the resolved shear stress and lattice friction stress, respectively.
Following Eshelby et al. (1951), the number of dislocations Ndi

contained in a pile-up is:

Ndi = π (1 − ν0)Lτ ∗

bG0
, (15)

where G0 and ν0 are the shear modulus and Poisson’s ratio of the
non-porous medium (calcite), respectively. Considering pile-ups of
length L = Lg/2 and using eqs (14) and (15), the critical number of
dislocations in the pile-up N crit

di to nucleate a crack is:

N crit
di = π

√
3π Lg

8Gb0
(1 − ν0)KI C . (16)

New crack nucleation will occur when the number of dislocations
per pile-up N pu

di reaches N crit
di . Immobile dislocation (i.e. disloca-

tions trapped in pile-ups) density is linked to the plastic strain un-
dergone by the medium (eq. C8 in Appendix C). Dislocation densi-
ties represent average values whereas crack nucleation is controlled
by high local concentration of dislocations in pile-ups (eq. 16). To
deal with these complexities, let us separate dislocations into mo-
bile and immobile ones: ρd = ρmd + ρ id, where ρmd and ρ id are
mobile and immobile dislocation densities, respectively. Details are
given in Appendix C. It is possible to find relations between immo-
bile dislocation density and high local concentration of dislocations
in pile-ups. A simplified model assumes that the overall immobile
dislocation density is approximately given by the largest pile-ups.
The number of immobile dislocations intersecting a surface S is:

Ndi = ρid S. (17)

If �pu is the number of largest pile-ups over the area S, then the
average number of dislocations per pile-up is:

N pu
di = ρid S

�pu
. (18)

Defining Lpu as the average spacing between pile-ups, the number
of pile-ups intersecting the surface S is:

�pu = S

L2
pu

. (19)

The density of pile-ups is then defined as �pu = 1/(Lpu)2. This
pile-up density is likely to be linked to the crystalline network of
calcite, as discussed later. Combining eqs (18) and (19), the number
of dislocations per pile-up is:

N pu
di = ρid

�pu
. (20)

Using eq. (16), the condition for nucleating new cracks becomes:

ρid = �pu

π
√

3π Lg

8G0b
(1 − ν0)KI C . (21)

Following Wong (1990), the mode I stress intensity factor of the
wedge crack nucleated by a dislocation pile-up can be calculated
as:

KI = G0 N pu
di b

(1 − ν0)

sin θ√
2πlw

− σw

√
πlw/2, (22)

where θ is the angle between the wedge crack and the pile-
up plane (Fig. 4b), lw is the length of the wedge crack and
σ w = (σ 1 + σ 3)/2 − (1/2)(σ 1 − σ 3) cos (2[θ − ξ ]) is the resolved
normal stress acting on the wedge crack. In this last expression, ξ

is the angle between the maximum principal stress and the pile-up
plane (Fig. 4b). Following Wong (1990), the angle θ is taken equal
to 70.5◦ (maximum hoop stress) and ξ to 45◦ (maximum resolved
shear stress). Then, the condition for wedge crack propagation is
described by eq. (4): cracks propagate until KI (calculated with eq.
(22)) falls to KIC. Once nucleated, cracks can propagate across crack
boundaries and become larger than the grain size.

The volumetric strain induced by wedge cracks is calculated
with eq. (7). The free energy change �W due to the wedge crack is
(Wong 1990):

�W = π (1 − ν2
0 )

4G0
(σ 2

w + τ 2
w)lw − 2γs, (23)

where τw is the shear stresses acting on the wedge crack, and γ s is
the surface energy. Deriving this expression with respect to σ ij, the
volumetric strain due to wedge cracks is:

εwc
vol = (1 − p)

π (1 − ν2
0 )lw

2G0

[
σ1cos2(θ − ξ )+2σ3 sin2(θ − ξ )

]
.

(24)
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Figure 5. Illustration of the phenomena taken into account in the model. Parameters in red are those imposed, parameters in green are taken from the literature,
parameters in black are inverted and parameters in blue are calculated and vary throughout the calculations. (a) Intracrystalline plasticity leads to plastic pore
collapse. (b) The intracrystalline plasticity can be calculated in terms of dislocation glide. Dislocation pile-ups can induce new crack nucleations. (c) Wing
cracks develop from an initial flaw parallel to σ 1 and interact. (d) Crack nucleation and propagation induce a decrease of elastic moduli. The imposed axial
strain rate is accommodated by plastic pore collapse (a), new crack nucleation due to pile-ups (b), crack propagation from pre-existing flaws (c), and elastic
deformation calculated with varying moduli and increasing differential stress (d).

The current damage due to new cracks is:

Dw = �3/2
pu l3

w. (25)

Thus, at this stage, one parameter is needed to describe the propa-
gation of wedge cracks: �pu. This parameter will be fitted to exper-
imental data, which is discussed in Section 4.2.1.

2.5 Stress–strain relation during constant strain rate
deformation

The overall stress–strain curve of the porous material submitted
to a constant strain rate can finally be derived from the previous
steps. Total strain is the sum of (i) the elastic strain, (ii) the strain
induced by cracks propagating from pre-existing flaws (Section 2.2)
and induced by plasticity (Section 2.4) and (iii) the microplasticity-
induced (Section 2.3) strains. During a short time dt, total strain dε

is:

dε = dεe + dεcracks + dεmp, (26)

where dεe, dεcracks and dεmp are the elastic, crack propagation and
porous material microplastic strain increments, respectively. Total
axial strain is dε1 = ε̇1 dt , where ε̇1 is the imposed constant axial
strain rate. The crack and microplastic axial strains are calculated
with the work conjugate relation and eq. (13), respectively. Then,
the macroscopic axial stress increment dσ 1 is:

dσ1 = E dεe
1, (27)

where E is the evolving Young modulus of the cracked porous
medium (Section 2.1) and dεe

1 the elastic axial strain increment. This
incremental procedure is repeated to obtain the entire constitutive
stress–strain relation.

3 S U M M A RY O F T H E M O D E L , C H O I C E
O F M AT E R I A L P RO P E RT I E S A N D
S E N S I T I V I T Y T O T H E S E PA R A M E T E R S

3.1 Summary of the equations used in computation of the
model

In this section, we detail the equations used when computing the
model. The overall procedure is shown in Fig. 5. At each given time
step, we proceed in the following way:

(1) Kinetic of wing crack propagation: Based on the stress state,
we examine if sliding on pre-existing flaws is possible. If no, crack
is not propagated. If yes, stress triaxiality is calculated and com-
pared to that of the transition between regime II and III (eq. 6).
Depending on the regime, KI is calculated with eq. (26) from Ashby
& Sammis (1990) or with eq. (5). If KI is lower than KIC, wing
cracks do not propagate. Otherwise, wing crack length is increased
until KI becomes lower than KIC. Strains related to crack growth are
calculated with eq. (7).

(2) Kinetic of intracrystalline plasticity and plastic pore col-
lapse: Then, plastic pore collapse is calculated. eq. (13) is resolved
(allowing to calculate ε̇ = ε̇

mp
ii ) and then porosity is updated using

the strain rate of the voids V̇ provided by eq. (12). The yield stress
of the plasticity law is finally updated following eq. (11). The num-
ber of immobile dislocations is calculated with eq. (C8) provided in
Appendix C.

(3) Kinetic of cracks induced by pile-ups: Under the assumptions
discussed in Section 2.4, the density of immobile dislocations is
compared to the condition for new crack nucleation expressed by
eq. (21). If the density of immobile dislocations is higher than the
threshold expressed by eq. (21), the length of nucleated cracks lw

is increased until KI expressed by eq. (22) falls below KIC. Finally,
the volumetric strain due to nucleated cracks is calculated with
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Figure 6. Influence of the input parameters characterizing the brittle behaviour. The model is run for a confining pressure of 20 MPa. Each parameter is
changed by 20 per cent around an average value. (a) Influence of a 20 per cent variation of porosity around the average value p = 15 per cent. (b) Influence
of a 20 per cent variation of initial penny-shaped crack radii around the average value a = 5 µm. (c) Influence of a 20 per cent variation of the initial damage
around the average value D0 = 0.45. (d) Influence of a 20 per cent variation of the friction coefficient on the initial penny-shaped cracks around the average
value μ = 0.6. Arrows represent the onset of dilatancy C′ for each value of friction coefficient.

eq. (24) and the damage due to new cracks is calculated with eq.
(25) and converted into crack density (cracks are open).

(4) The next step is to update the elastic moduli, simply with
eq. (2) and taking into account crack density due to new cracks and
open wing cracks. Concerning the wing cracks, depending on the
regime, the open crack density is related to the damage as discussed
in Section 2.2.

(5) Once everything is calculated for the given time step, the
change of axial stress is calculated with eq. (27) and the same
procedure is applied for the next time step.

3.2 Parameters relevant to elastic properties and crack
propagation

In this section, we detail the parameters relevant to describe a brittle
behaviour. Calcite Young’s modulus E0 = 84 GPa and Poisson’s
ratio ν0 = 0.28 are taken from Homand et al. (2000). Any other set
of independent elastic constants of calcite are calculated from these
values. If elastic moduli of the initial cracked porous medium (Gi, Ki

or any other set of independent elastic constants) are known, eq. (2)
is used to compute the evolution of the elastic constants as a function
of the evolution of damage (crack density). If the initial elastic
moduli of the medium are unknown, they can be computed using
the initial porosity and crack density of the material (e.g. Fortin
et al. 2007). Elastic moduli of the uncracked porous medium are
calculated using calcite moduli and porosity (e.g. Fortin et al. 2007).

Critical stress intensity factor is taken equal to KIC =
0.14 MPam1/2, corresponding to a surface energy for dry calcite
equal to γ s = 0.23 J m−2 as measured by Gilman (1960). This is
in good agreement with the value of γ s = 0.32 J m−2 found by
Røyne et al. (2011) for dry calcite and with values of KIC around
0.2 MPam1/2 reported by Atkinson (1984).

Crack density can be inferred from elastic wave velocity mea-
surements (e.g. Sayers & Kachanov 1995; Fortin et al. 2005) or
SEM images (e.g. Fredrich et al. 1989; Mallet et al. 2013). Typical
values for intact carbonate rocks are in the range [0–0.05]. Crack
mean size can be inferred from SEM images (e.g. Mallet et al. 2013)
or taken as equal to the grain size. The friction coefficient on pre-
existent penny-shaped cracks can be inferred from a linear failure
envelope, assuming that friction is equal on a macroscopic fault
and microcracks. Typical values for intact rocks are in the range
[0.4–0.8]. Porosity can be measured using a triple weighting pro-
cedure or weighting the sample and assuming a 100 per cent calcite
matrix. Typical values of porosity that the model is able to tackle
are discussed in Section 4.3.

The influence of porosity, initial crack length, initial crack den-
sity and friction coefficient is explored hereafter (Fig. 6). The value
of each parameter is varied by 20 per cent around an average value.
Average values are taken equal to the set of parameters used in the
comparison to white Tavel limestone and are given in Table 3. Poros-
ity has a small influence on the model prediction (Fig. 6a). Initial
penny-shaped crack radii and crack density have a strong influence
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Table 3. Microstructural parameters used to predict the macroscopic mechanical behaviour of Solnhofen limestone at a confining pressure of 200 MPa and
macroscopic mechanical behaviour of white Tavel limestone.

Porosity D0 a μ n ε̇0 σ i
p �pu Ki Gi

per cent (µm) s−1 (MPa) (m−2) (GPa) (GPa)

Solnhofen limestone 3a 0.25a 5a 0.53a 10 2.5e-19b 18b 1e8b 53a 22.4a

White Tavel limestone 15c 0.45c 5c 0.6c 10 2e-21b 5b 1.8e8b 26.7c 13c

aAfter Baud et al. (2000).
bFitting data.
cAfter Nicolas et al. (2016).

Figure 7. Influence of the input parameters characterizing the ductile behaviour. The model is run for a confining pressure of 85 MPa. (a) Influence of a
variation of the stress sensitivity n. (b) Influence of a 20 per cent variation of the reference strain rate around the average value. (c) Influence of a 20 per cent
variation of the initial yield stress σ i

p around the average value. (d) Influence of a 20 per cent variation of the strain hardening exponent around the average
value.

on the peak stress (Figs 6b and c). A variation of 20 per cent around
the average value induces variations of 15 per cent in the predicted
peak stress. Finally, the friction coefficient has the strongest influ-
ence (Fig. 6d). Its variation has a strong influence on the onset of
dilatancy C′ (represented by arrows), on the peak stress and on the
volumetric strain at the peak stress. As the friction coefficient in-
creases, the onset of dilatancy C′, the peak stress and the volumetric
strain at peak stress increase.

3.3 Parameters relevant to plasticity and dislocations

The ductile behaviour of the matrix material is described by eqs (10)
and (11) (with M = 1/2) and the ductile behaviour of the porous
material is described by eq. (13). All parameters of the plasticity
and hardening laws are microstructure-dependent. Grain size can
be obtained from SEM images, shear-modulus is an elastic constant

provided by eq. (2). Burgers vector in calcite is a0 = 6.4 × 10−10 m
(De Bresser 1996).

For the non-porous matrix, the microparameters that need to be
fixed a priori are the mobile and immobile dislocation densities
(or equivalently ε̇0 and σ i

p) and the stress sensitivity n. In addition,
for porous materials, porosity has to be known (eq. 13). The sen-
sitivity of the model to each parameter is examined thereafter. The
value of each parameter is varied independently. Stress sensitivity n
has a strong influence on the inelastic compaction (Fig. 7a). When
n is increased, inelastic compaction for a given stress level is en-
hanced. Models based on the motion of dislocations predict value
in the region of 3 to 5 for n (e.g. Kirby & Raleigh 1973; Stocker &
Ashby 1973; Weertman 1975). Schmid et al. (1977) measured val-
ues in the range 1.7–4.7 on Solnhofen limestone deformed at high
temperature, Wang et al. (1996) measured values around 5 in calcite
single crystals deformed at temperatures around 800 ◦C but higher
values (4.2–10) were found on marbles (Heard & Raleigh 1972;
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Figure 8. Influence of the porosity on the ductile behaviour. The model is
run for a confining pressure of 85 MPa. The predicted onset on inelastic
compaction (C∗) and post-yield onset of dilatancy (C∗′) are shown by ar-
rows. (a) Influence of a 20 per cent variation of the porosity on the inelastic
compaction. Pre-existing cracks cannot propagate. No crack nucleation is
possible. (b) Influence of a 20 per cent variation of the porosity on the inelas-
tic compaction and nucleation of new cracks. Pre-existing cracks propagate
but their volumetric strain is not taken into account. Crack nucleation is pos-
sible. (c) Influence of a 20 per cent variation of the porosity on the inelastic
compaction. Pre-existing cracks can grow and new cracks can nucleate.

Figure 9. Model predictions for volumetric strain due to all the physical
phenomena taken into account for a confining pressure of 20 MPa.

Rybacki et al. 2013). This difference could be due to some grain
size effect (Schmid et al. 1977). The data from Renner et al. (2002)
agree with a power law relation with a stress sensitivity n = 4.5
even though creep tests indicate that the stress exponent is actually
not constant (Renner et al. 2002). However, their study focuses on
high temperature deformation. At low temperature, n is likely to be
higher (e.g. Rybacki et al. 2013) because the deformation regime is
different from that at high temperature. Rybacki et al. (2013) found
higher values for n in marble deformed at temperatures lower than
300 ◦C, in agreement with Rutter (1974) who found values around
15 for n for Solnhofen limestone, Carrara and Yule marbles de-
formed at low temperature. Thus, a standard constant value of n = 10
is used in this study.

When the reference strain rate ε̇0 is increased by 20 per cent,
volumetric strain rate increases but the effect remains very small
(Fig. 7b). The initial yield stress σ i

p has the exact opposite influence:
when it is increased, volumetric strain tends to decrease and the onset
of inelastic compaction to increase, but the effect is small (Fig. 7c).
The strain hardening exponent M has been fixed at M = 0.5, which
is physically justified in Appendix C. However, given its impor-
tance, the sensitivity to this parameter is also examined (Fig. 7d).
When M is increased, volumetric strain tends to decrease (Fig. 7d).
Finally, the influence of porosity on inelastic compaction, new crack
nucleation and overall semi-brittle behaviour is examined hereafter
(Fig. 8). Inelastic compaction rate increases with initial porosity
(Fig. 8a). Porosity also has a small influence on the post-yield onset
of dilatancy (C∗′), due to new crack nucleation (Fig. 8b). When
porosity is increased, the onset of dilatancy takes place at a slightly
higher volumetric strain and a slightly lower differential stress. Tak-
ing into account pre-existent crack propagation does not change
these conclusions (Fig. 8c), but increases the dilatancy attained at
rupture and decreases the peak stress (Figs 8b and c).

4 R E S U LT S A N D D I S C U S S I O N

4.1 Prediction of the stress/strain response

We investigate the model predictions for ε̇ax = 10−5 s−1 and for the
parameters of Tavel limestone given in Table 3. At a confining pres-
sure of 20 MPa, no significant plastic flow and no crack nucleation
take place (Fig. 9). The volumetric strain versus mean stress curves
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Figure 10. Mechanical parameters evolution during deformation at a confining pressure of 20 MPa. (a) Wing crack length l as a function of the mean stress P.
The red arrow indicates the divergence of l that occurs at failure. (b) Damage evolution as a function of P. (c) Relative volumetric strain (i.e. volumetric strain
is set to zero before the beginning of differential stress loading) as a function of P. The onset of dilatancy C′ and predominance of dilatancy D′ are shown for
reference.

first show an elastic compactant behaviour until a critical stress state
denoted C′ (Wong et al. 1997) beyond which the volumetric strain
deviates from elasticity because of the onset of dilatancy (Fig. 9).
Elastic deformation and wing crack propagation are responsible for
the major part of the total deformation. Details on the brittle be-
haviours are given in Fig. 10. At low mean stress, wing lengths
remain at 0 (regime 1, friction prevents cracks from growing). At a
given threshold, for a mean stress around 65 MPa, KI/KIC increases.
When KI/KIC = 1, wing cracks start to grow, which leads to a di-
latant component of the volumetric strain. The onset of dilatancy
is marked by the stress state C′. At this point elastic compaction
and crack propagation inducing dilatancy are taking place simulta-
neously but compaction is dominant. Dilation becomes dominant
at a mean stress of about 100 MPa, marked D′. When cracks start
to interact, dilatancy increases faster with the differential stress. At

macroscopic failure, KI and wing crack lengths diverge, as marked
by the red arrows. Macroscopic rupture is reached at a mean stress
of approximately 115 MPa.

At a confining pressure of 85 MPa (Fig. 11), inelastic compaction
takes place. At low differential stress, elastic deformation is respon-
sible for the overall deformation (Fig. 11). At higher differential
stress values, overall deformation undergoes shear-enhanced com-
paction (Baud et al. 2000) due to the onset of plasticity before it
becomes dilatant because new cracks nucleate. Let us first exam-
ine porosity collapse assuming that neither crack nucleation nor
crack propagation is possible (Fig. 12). At a given differential stress
threshold, plastic strain rate increases sharply. This stress state de-
notes the onset of inelastic compaction C∗ in the macroscopic be-
haviour. At this point, the normalised dilation rate (eq. 12) increases
sharply, σp/σ

i
p start to increase because hardening is taking place
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Figure 11. Model predictions for volumetric strain due to all the physical
phenomena taken into account for a confining pressure of 85 MPa.

and porosity starts to decrease because of pore collapse. Beyond C∗,
volumetric ductile strain rate decreases as σp/σ

i
p increases, because

of hardening. Porosity decreases as a result of plastic pore collapse.
Let us now assume that new crack nucleation is possible due to

dislocation pile-ups (Fig. 13). The dislocation density increase ac-
celerates with σp/σ

i
p (Fig. 13a). At low σp/σ

i
p values, cracks cannot

nucleate because the internal stress is not high enough. When dislo-
cation pile-ups induce an internal stress high enough, new cracks nu-
cleate, grow and reach a length of over five microns. Induced crack
density and volumetric strain increase (Figs 13c and d). At rupture,
nucleated dislocation density ρnew

id is around ρnew
id = 4.5 × 1012 m−2,

nucleated crack length is around 5 µm, crack density is almost
0.2 and dilatancy due to new cracks is almost 0.3 per cent. Note
that these values are consistent: the nucleated dislocation density
is comparable to observations on significantly deformed materials
(e.g. Fredrich et al. 1989; Dimanov et al. 2007), crack length is
of the order of the grain size and crack density is comparable to
experimental results.

4.2 Comparison with available data

4.2.1 Mechanical data

Baud et al. (2000) performed constant strain rate deformation exper-
iments on Solnhofen limestone. A detailed curve of the mechanical
behaviour of Solnhofen limestone under differential stress is given
in (Baud et al. 2000) for a confining pressure of 200 MPa. Porosity is
composed of pre-existing microcracks (crack porosity 0.2 per cent)
and equant pores (porosity 2.8 per cent). At this confining pressure,
pre-existing microcracks are closed (Baud et al. 2000) but wing
cracks can grow from pre-existing closed flaws. In the model, ini-
tial damage is described by a crack density and a crack initial length.
Microstructural parameters (μ = 0.53, D0 = 0.25 among others) are
given in Baud et al. (2000). Initial damage D0 = 0.25 corresponds
to an open crack density ρc = 0.047 (see the relation between D0

and ρc in Section 2.2). Initial crack length is lc = 5µm (grain size).
The model is run with a porosity of equant pores of 3 per cent. Stress
sensitivity n, and strain hardening exponent M are taken equal to 10
and 0.5, respectively. A discussion on the values of these parameters
was provided in Section 3.3. Elastic constants are those experimen-

tally measured. The reference strain rate ε̇0, the initial yield stress
σ i

p , and the pile-up density �pu are fitted to retrieve the macroscopic
behaviour measured experimentally. Their values can be found in
Table 3. The onset of dilatancy is controlled by the pile-up density
�pu. To fit the data, it is found that �pu = 1 × 108 m−2. This value
corresponds to about 1 pile-up over 23 grains of size 5 µm; which
is a realistic value. All parameters used can be found in Table 3.

The model closely reproduces the experimental stress–strain rela-
tion (Fig. 14). Predicted stress states C∗ and C∗′ and corresponding
volumetric strains are close to experimental ones, even if C∗ is
slightly overestimated. Once fitted on an experiment, the unknown
parameters are determined and further model predictions can be
compared to experimental results for other confining pressures.

Nicolas et al. (2016) performed constant strain rate deformation
experiments on white Tavel limestone (porosity of 14.7 per cent).
At T = 70 ◦C and Pc lower than 55 MPa, the mechanical be-
haviour and failure mode are typical of the brittle faulting regime
(Paterson & Wong 2005). At T = 70 ◦C and Pc equal or higher than
55 MPa, the mechanical behaviour is semi-brittle and characterized
by an elastic compaction beyond which an inelastic compactive
regime takes place. At higher strain, dilatancy overcomes com-
paction. Mean stress versus volumetric strain is shown in Fig. 15(a)
for various confining pressures.

Microstructural parameters (μ = 0.6, ρc = 3 × 0.035 = 0.105)
are given in Nicolas et al. (2016). The friction coefficient was in-
ferred from failure envelope (Nicolas et al. 2016) and initial crack
length is set to lc = 5 µm (grain size, Nicolas et al. (2016). Initial
damage D0 is set to 0.45, which corresponds to the initial crack den-
sity inverted from elastic wave velocities at low pressure (Nicolas
et al. 2016) under the assumption that cracks were initially open.
The model is run with a porosity of 15 per cent, very close to the
experimentally measured value (14.7 per cent). Stress sensitivity n,
and strain hardening exponent M are those used previously and are
taken equal to 10 and 0.5, respectively (see Section 3.3 for dis-
cussion). Elastic constants are those experimentally measured. The
reference strain rate ε̇0, the initial yield stress σ i

p , and the pile-up
density �pu are fitted to retrieve the macroscopic behaviour mea-
sured experimentally at the highest confining pressure (85 MPa).
The reason is that they describe the semi-brittle behaviour observed
at high confining pressure. Onset of dilatancy is controlled by the
parameter �pu, which represents the pile-up density. For these pre-
dictions, �pu = 1.8 × 108 m−2. This corresponds to about 1 pile-up
over 15 grains of size 5 µm. All these parameters are obtained for
one experiment (confining pressure of 85 MPa). Then, the same
parameter values are used for modelling the behaviour at different
confining pressures. All parameters used can be found in Table 3. To
summarize, three parameters relevant to the semi-brittle behaviour
(inelastic compaction and post-yield onset of dilatancy) are fitted to
retrieve the behaviour of the sample deformed at the highest con-
fining pressure. The same set of parameters is then used to predict
the behaviour at all confining pressures.

Using parameter values reported in Table 3, predicted behaviour
is reported in Fig. 15(b). Experimental and predicted stress–strain
curves are very similar (Fig. 15). At confining pressures below or
equal to 35 MPa, the predicted mechanical behaviour is brittle. Be-
low the brittle-ductile transition, the model reproduces the general
trend of the deformation. Stress states C′ and peak stress are gener-
ally over estimated, which is probably due to a too small initial crack
length. At confining pressures strictly above 35 MPa, the predicted
mechanical behaviour is characterized by elastic compaction, tran-
sient inelastic compaction, ultimately leading to dilatancy. However,
predicted stress states C∗ and C∗′ (and related volumetric strains)
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Figure 12. Compilation of mechanical parameters linked to the ductile behaviour. (a) Evolution of the axial ductile strain rate as a function of the mean stress P.
(b) Evolution of the volumetric ductile strain rate as a function of P. (c) Reference stress in the plasticity law normalized by its initial value as a function of P.
(d) Porosity evolution as a function of P.

are very close to experimental ones (less than 20 per cent differ-
ence). The inferred brittle-ductile transition occurs at a confining
pressure between 35 MPa and 55 MPa, close to the experimental
value.

4.2.2 Crack densities

Nicolas et al. (2016) inverted elastic wave velocity data to infer
axial crack densities (Fig. 16a). Experimental results are com-
pared to model predictions (Fig. 16b). Initial damage in the

model is 0.45, corresponding to an initial crack density of 0.105
(thus an initial axial crack density of approximately 0.035). How-
ever, cracks are considered as initially closed and initial crack
density is 0. Experimental and predicted crack density evo-
lutions during constant strain rate experiments are reasonably
similar (Fig. 16). Below the brittle-ductile transition, the model
reproduces the experimental axial crack density values during de-
formation. Predicted axial crack densities at a given volumet-
ric strain are close to measured ones and remain relatively low
(below 0.1).
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Figure 13. Compilation of mechanical parameters linked to new crack nucleation. (a) Evolution of the strain-induced dislocation density as a function of the
reference stress in the plasticity law normalized by its initial value σp/σ

i
p . The arrow denotes the onset of new crack nucleation. (b) Evolution of the nucleated

crack length as a function of σp/σ
i
p . (c) Evolution of the nucleated crack density as a function of σp/σ

i
p . (d) Evolution of the volumetric strain due to nucleated

cracks as a function of σp/σ
i
p .

Above the brittle-ductile transition, the model also reproduces
well-enough the experimental axial crack density evolution. Pre-
dicted axial crack densities at a given volumetric strain are very
close to measured ones. Both experimental and predicted results
show a slight increase between the onset on inelastic compaction
(C∗) and the post-yield onset of dilatancy (C∗′) and a dramatic
increase beyond C∗′.

4.3 Limits of the model and possible applications

Initial porosity is a key parameter that controls the deformation and
failure modes of limestones (e.g. Vajdova et al. 2004). In carbonate
rocks, structural heterogeneities can also influence the localization
of damage (Dautriat et al. 2011a), as well as the microporosity
distribution (Regnet et al. 2015a). The model takes into account a
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Figure 14. Comparison of the mean stress versus volumetric strain curve
predicted by the model developed in this paper with the result of an experi-
ment performed by Baud et al. (2000) on Solnhofen limestone at a confining
pressure of 200 MPa. Parameters used are reported in Table 3.

dilatancy due to crack development at low confining pressure, and a
semi-brittle behaviour characterized by shear-enhanced compaction
due to microplastic flow, switching to dilatancy because local stress
concentrations caused by pile-ups. To what extend can the model
developed here be applied to various carbonate rocks? What is the
porosity range of application of the model?

In low porosity limestones, inelastic compaction is the result of
plastic pore collapse and grain plasticity (e.g. Fredrich et al. 1989;
Baud et al. 2000). For example, Baud et al. (2000) interpreted shear-
enhanced compaction in Solnhofen limestone (porosity 3 per cent)
as resulting from plastic collapse of spherical pores embedded in
a solid matrix, as initially modelled by Curran & Carroll (1979).
These mechanisms of deformation are those taken into account in
the model, which should therefore predict adequately the mechani-
cal behaviour of low porosity limestones.

Baud et al. (2009) investigated systematically the micromechan-
ics of compaction in two high porosity carbonates, Majella grain-
stone (porosity 30 per cent) and Saint-Maximin limestone (porosity

37 per cent). In Majella grainstone, shear-enhanced compaction is
followed by shear failure with the apparition of a compactive shear
band at low confining pressure (5–10 MPa), and homogeneous cat-
aclastic flow at higher confining pressure (>10 MPa). In both cases,
grain crushing is the dominant mechanism of deformation beyond
C∗. In Saint-Maximin limestone, Baud et al. (2009) could not unam-
biguously determine the evolution of the failure mode with increas-
ing pressure but they observed various patterns of strain localization
in all their samples. In a third high porosity limestone, Estaillades
limestone (porosity: 28 per cent), Dautriat et al. (2011b) showed
that beyond elastic compaction, cataclastic compaction is coupled
with an elastic wave velocity decrease due to grain crushing. It can
be concluded that the micromechanisms of deformation in Majella
grainstone, Saint-Maximin and Estaillades limestones are very dif-
ferent from the micromechanisms taken into account in the model
developed in this study. The mechanical behaviour of high porosity
limestones (porosity higher than 20 per cent), where grain crushing
is the main mechanism of inelastic compaction, cannot be accounted
for by the present model. Thus, up to what porosity can the model
predict the mechanical behaviour?

For porosities lower than 15 per cent, deformation beyond C∗ in
the semi-brittle regime and inelastic pore collapse are controlled
by plastic micromechanisms (dislocation slip processes, twinning)
associated with some microcracking (Vajdova et al. 2004). Thus, it
can be suggested that, as porosity increases, a transitional behaviour
is likely to develop and volumetric strain due to shearing and rotation
of fragments (Peng & Johnson 1972; Vajdova et al. 2012) becomes
more important. The transition between shear-enhanced compaction
controlled by crystal plasticity and grain crushing is likely to occur
for a porosity of approximately 20 per cent (Vajdova et al. 2004)
and the present model probably predicts adequately the stress–strain
evolution for carbonates of porosity lower than 20 per cent.

Compaction of porous rocks is known to be localized in many
cases, as shown in sandstones by Mollema & Antonellini (1996) and
Fortin et al. (2005) among many others. Baud et al. (2009) observed
compactive shear bands at low confinement in Majella grainstone
and at all confining pressures in Saint-Maximin limestone, sug-
gesting that compaction localization is important in the mechanical
compaction of high porosity carbonates. This kind of phenomenon
has not been considered here because experimental results do not
show localization of compaction for low porosity limestones. The

Figure 15. (a) Mean stress as a function of volumetric strain for experiments conducted at confining pressures ranging from 0 to 85 MPa for dry Tavel
limestone samples at T = 70 ◦C (Nicolas et al. 2016). The dashed line corresponds to the behaviour under hydrostatic loading and is shown for reference.
(b) Corresponding model predictions for various confining pressures, using parameters determined for Pc = 85 MPa. The dashed line corresponds to the
experimentally obtained behaviour under hydrostatic loading and is shown for reference.
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Figure 16. Comparison of the experimental mean stress versus volumetric strain (a) and the model prediction (b) for deformation of Tavel limestone at various
confining pressures. The colour of the dots represents the vertical crack density. Initial damage in the model is 0.45, corresponding to an initial crack density
of 0.105 (thus an initial axial crack density of approximately 0.035). However, cracks are considered as initially closed and initial crack density is 0.

present model is based on the assumption of homogeneous inelastic
compaction and homogeneous development of damage. This kind
of approach allows to compute an homogeneous deformation of the
medium and can be considered as complementary to a localiza-
tion deformation approach (i.e. bifurcation theory, see Bésuelle &
Rudnicki (2003). The similarities and differences of these two ap-
proaches can be found in Guéguen & Bésuelle (2007).

Compaction is sometimes induced by the production of reser-
voirs (Fredrich et al. 2000). It can cause subsidence (e.g.
Morton et al. 2006), which requires to redesign offshore platforms,
or induce seismicity (e.g. Segall 1989) and well failure (e.g. Bruno
et al. 1992), among other problems (Nagel 2001). For low porosity
(i.e. φ < 20 per cent) limestones, the present model can provide
insights into the macroscopic mechanical behaviour of reservoirs.
Moreover, as shown by David et al. (1994) among others, com-
paction can lead to changes of permeability that can impact aquifer
and reservoir production. As the present model is micromechani-
cally derived and based on damage theory, coupling it with perme-
ability models (e.g. Guéguen & Dienes 1989; Simpson et al. 2001;
Ghabezloo et al. 2009; Perol & Bhat 2016) could provide insights
into the joint evolution of damage and permeability of reservoirs
(e.g. Brehme et al. 2016).

5 C O N C LU S I O N S

The complex general trends of stress–strain relations of low-
porosity limestones is reproduced by a model based on (1) brit-
tle crack propagation, (2) a plasticity law for porous media with
hardening and (3) crack nucleation due to dislocation pile-ups. The
model is based on (i) three parameters relevant to the brittle be-
haviour (pre-existing crack length and density, sliding coefficient on
these cracks), as previously developed by Ashby & Sammis (1990),
(ii) two parameters relevant to the microplastic flow in the solid non-
porous medium (a reference strain rate and an initial yield stress),
and (iii) a parameter characterising the density of large pile-ups.
Parameters relevant to the brittle behaviour can be determined from

observations of the microstructure. The parameters relevant to the
ductile behaviour are fitted to experimental data. Note that the three
free parameter values related to the semi-brittle behaviour are iden-
tified for a given semi-brittle experiment (at the highest confining
pressure). Predictions for other confining pressures are using these
three identified parameter values.

Despite the limited number of parameters, the model adequately
predicts a brittle behaviour at low confining pressures, which
switches to a semi-brittle behaviour characterized by inelastic com-
paction followed by dilatancy at higher confining pressures. This
suggests that the microphysical phenomena responsible for the de-
formation are sufficient well captured. Possible applications include
reservoir management. More generally, predicting the complex rhe-
ology of porous limestones in various conditions is possible through
this model.
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Guéguen, Y. & Kachanov, M., 2011. Effective elastic properties of cracked
rocks - an overview, in Mechanics of crustal rocks, CISM Courses and
Lectures, 533, 73–125.
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A P P E N D I X A : D E R I VAT I O N O F T H E
I N I T I A L E L A S T I C M O D U L I O F T H E
C R A C K E D P O RO U S RO C K

Section 2.1 describes the evolution of the elastic moduli dur-
ing deformation of the rock, based on the initial elastic mod-
uli of the cracked porous medium. If the initial moduli are un-
known, they can be calculated as a function of the initial crack
density (ρi

c) and porosity (p). Following Fortin et al. (2007),
in the dry case, for an isotropic distribution of cracks ori-
entations, the initial shear modulus Gi and bulk modulus Ki

of a medium containing spheroidal pores and cracks can be
expressed as:

G0

Gi
= 1 + ρi

c

1 − p

h

1 + ν0

(
1 − ν0

5

)
+ p

1 − p

15(1 − ν0)

7 − 5ν0
, (A1)

K0

Ki
= 1 + ρi

c

1 − p

h

1 − 2ν0

(
1 − ν0

2

)
+ p

1 − p

3(1 − ν0)

1 − 2ν0
, (A2)

where G0 and K0 are the shear and bulk moduli of the crack- and
porosity-free matrix, and ν0 is the Poisson coefficient of the matrix.
The factor h describes the penny-shaped geometry and is given in
the main text (eq. 3). Once the initial moduli are calculated, eq. (2)
can be used to compute their evolution with deformation. Note that
eq. (2) comes from the fact that G0/Gi and K0/Ki are linear with
respect to ρc for constant p.

Elastic moduli of the crack-free porous medium are needed to cal-
culate strain energy density due to crack propagation (Section 2.2).
These crack-free porous medium moduli (Gu, Ku) can be calcu-
lated as a function of G0, K0 and p with eqs (A1) and (A2), simply
considering that ρc = 0.

A P P E N D I X B : C O N S TA N T S U S E D T O
C A L C U L AT E M A C RO S C O P I C S T R A I N S
R E L AT E D T O C R A C K G ROW T H

In this appendix, the reader can find the expressions of the
constants used to calculate the macroscopic strains related to
crack growth (Section 2.2). The derivation of these constants
can be found in Deshpande & Evans (2008). The constants
related to the generalization to arbitrary stress states of the
growth of wing cracks from pre-existing flaws are (Deshpande &
Evans 2008):

A = c1(c2 A3 − c2 A1 + c3), (B1)

B = c1√
3

(c2 A3 + c2 A1 + c3), (B2)

C = A + γ

√
α

(
D

D0

)1/3

, (B3)

F2 = B2C2

C2 − A2
, (B4)

where α = cos ψ , D0 and D are the initial and current damage,
respectively, and:

c1 = 1

π 2α3[(D/D0)1/3 − 1 + (β/α)]3/2
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, (B5)
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where μ is the Coulomb friction coefficient on the sliding faces of
the initial crack and β is a constant found to be equal to β = 0.27
for 2-D and 3-D cases (Ashby & Sammis 1990). The values given
to the parameters relevant to crack propagation can be found in
Section 3.2.

A P P E N D I X C : F RO M D I S L O C AT I O N
S L I P T O A P L A S T I C I T Y L AW

The plastic strain-rate ε̇ p induced by dislocation slip (assuming all
dislocations to be mobile) is (Orowan 1954):

ε̇ p = ε̇d = ρd bv, (C1)

where ρd is the dislocation density, b is their Burger vector and
v their average slip velocity. This approach is valid for stationary
average microstructures with mobile dislocations. At low tempera-
ture in calcite, dislocations are blocked at obstacles such as grain
boundaries and local defects, implying that (1) ρd is not constant
and (2) dislocations are not all mobile. Furthermore, (3) dislocation
slip motions are confined on specific planes. To deal with these
complexities, let us separate dislocations into mobile and immobile
ones: ρd = ρmd + ρ id, where ρmd and ρ id are mobile and immobile
dislocation densities, respectively. Mobile dislocations are respon-
sible for the deformation whereas immobile ones are trapped and
are assumed to contribute for a negligible strain. Thus, ρd is re-
placed by ρmd in eq. (C1). Under the assumption that dislocation
slip motions are isotropic because of the random grain orientation,
the microplastic flow due to mobile dislocations is approximately:

ε̇md = ρmd bv, (C2)

Although interactions of dislocations can lead to complex patterns
(e.g. Miguel et al. 2001), at low temperature, the mean disloca-
tion velocity is assumed to follow a power law stress-dependence
(Meyers et al. 1999):

v = V0

(
σ

σ0

)m

, (C3)

where V0 is a temperature-dependent parameter, σ is applied stress,
and σ 0 is the stress at which v = V0. Combining eqs (C2) and (C3),
one gets:

ε̇md = ρmd bV0

(
σ

σ0

)n

= (ρd − ρid )bV0

(
σ

σ0

)n

. (C4)

The amplitude of any stress component induced by a dislocation
at a distance r is σ = Gb/(2πr), (Hirth & Lothe 1982) and the
total dislocation density is ρd = 1/h2, where h is the mean spacing
between dislocations. Thus, the average internal stress amplitude
is:

σ = Gb

2π
ρ

1/2
d = Gb

2π
(ρid + ρmd )1/2. (C5)

Using eq. (C2), ρmd can be calculated from the microplastic strain
rate. Let us separate immobile dislocations into initially present ones
and newly nucleated ones: ρid = ρ ini

id + ρnew
id . Mobile dislocations

are assumed to be trapped when they cross another dislocation. The
probability for a dislocation to be trapped can thus be assumed to be
proportional to the mobile dislocation density and to their velocity.
We define a characteristic time constant for dislocation movements
as:

τd = Lg

v
, (C6)

where Lg is the grain size. Using this characteristic time, the increase
rate of immobile dislocations is approximated as:

dρid

dt
= ρmd

τd
= ε̇md

bLg
. (C7)

Integrating eq. (C7) over time, one gets ρnew
id = εmd/(bLg), and

finally:

ρid = ρ init
id + εmd

bLg
. (C8)

Combining eqs (C4), (C5), and (C8), one gets:

ε̇md =
[(

2π

Gb

)2

σ 2 −
(

ρ init
id + εmd

bLg

)]
bV0

(
σ

σ0

)n

. (C9)

Defining the following constants:

Ap =
(

2π

Gb

)2

;

Bp = ρnew
id ;

Cp = 1

bLg
;

Dp = bV0

(
1

σ0

)n

, (C10)

we get the following polynomial expression for the plastic strain
rate:

ε̇md = [Apσ
2 − Bp − Cpε

md ]Dpσ
n, (C11)

in which hardening is introduced through Cpε
md. However, the

assumptions made for the development of the micromodel have
led to introduce four constants (eqs C10), out of which only
two are known (Ap and Cp). The physical law (eq. C11) is dif-
ferent from the empirical law (eq. 10) but describes a simi-
lar hardening, as discussed below. The empirical law (eq. 10)
is used in the study because it limits the number of free
parameters.

Hardening is produced by an increase of the internal stress,
resulting from dislocation density increase. Let us compare the
hardening law (eq. 11) with the evolution of internal stress. Lo-
cal stresses due to pile-ups are not considered at this point. Using
eqs (C2), (C5), and (C8), it leads to the following internal stress
evolution:

σi = Gb

2π

[
ρ init

id + ε̇md

bv
+ εmd

bLg

]1/2

. (C12)

All the parameters are described in Table 1. We find experimental
results presented in Taylor (1934) for stress–strain relation in single
crystals if we assume a negligible ρ id and ε̇md = Cst . Assuming a
significant immobile dislocation density, eq. (C12) is similar to that
derived in Kassner (2004) for a stationary regime (constant ε̇md ). For
polycrystals of calcite, De Bresser (1996) showed that experimental
results are in agreement with this relation for mean stresses above
40 MPa, which is the case here.

From eq. (C12), defining σ i
i = [Gb(ρ init

id )1/2]/(2π ), ε̇0 = bvρ init
id

and ε0 = bLgρ
init
id , one gets the macroscopic internal stress harden-

ing law:

σi = σ i
i

[
1 + ε̇ p

ε̇0
+ ε p

ε0

]1/2

. (C13)
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Using eqs (C2) and (C13), one gets:

ε̇ p/ε̇0

ε p/ε0
= bρmd Lg

ε p
. (C14)

Using b = 10−10 m, εp = 10−2, ρmd = 10−12 m−2 (see
Figure 13), and Lg = 10−6 m, one gets (ε̇ p/ε̇0)/(ε p/ε0) = 10−2,
and ε̇ p/ε̇0 can be neglected with respect to εp/ε0. Thus, the sec-

ond term of eq. (C13) has been neglected, which seems accept-
able for low strain rates and is in good agreement with experi-
mental results from Kassner (2004). Eq. (C13) becomes similar
to the strain hardening power law (eq. 11), with a strain harden-
ing exponent M = 1/2. Note that this microderived internal stress
law could be modified in order to take into account temperature
effects.
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