
HAL Id: hal-03978448
https://cnrs.hal.science/hal-03978448

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispersion and attenuation measurements of the elastic
moduli of a dual-porosity limestone

J V M Borgomano, L Pimienta, J Fortin, Y Guéguen

To cite this version:
J V M Borgomano, L Pimienta, J Fortin, Y Guéguen. Dispersion and attenuation measurements of
the elastic moduli of a dual-porosity limestone. Journal of Geophysical Research : Solid Earth, 2017,
122, pp.2690 - 2711. �10.1002/2016jb013816�. �hal-03978448�

https://cnrs.hal.science/hal-03978448
https://hal.archives-ouvertes.fr


Journal of Geophysical Research: Solid Earth

Dispersion and attenuation measurements of the elastic
moduli of a dual-porosity limestone

J. V. M. Borgomano1 , L. Pimienta1, J. Fortin1, and Y. Guéguen1

1Laboratoire de Géologie de l’ENS, PSL Research University, Paris, France

Abstract The dispersion and the attenuation of the elastic moduli of a Lavoux limestone have been
measured over a large frequency range: 10−3 Hz to 101 Hz and 1 MHz. The studied sample comes from
a Dogger outcrop of Paris Basin and has the particularity to have a bimodal porosity distribution, with
an equal proportion of intragranular microporosity and intergranular macroporosity. In addition to
ultrasonic measurements, two different stress-strain methods have been used in a triaxial cell to derive all
the elastic moduli at various differential pressures. The first method consists of hydrostatic stress oscillations
(f ∈ [0.004; 0.4] Hz), using the confining pressure pump, from which the bulk modulus was deduced.
The second method consists of axial oscillations (f ∈ [0.01; 10] Hz), using a piezoelectric oscillator on top
of the sample, from which Young’s modulus and Poisson’s ratio were deduced. With the assumption of an
isotropic medium, the bulk modulus (K) and the shear modulus (G) can also be computed from the axial
oscillations. The sample was studied under dry, glycerin- and water-saturated conditions, in order to scale
frequency by the viscosity of the fluid. Results show a dispersion at around 200 Hz for water-saturated
conditions, affecting all the moduli except the shear modulus. This dispersion is related to the
drained/undrained transition, and the bulk modulus deduced from the axial and hydrostatic oscillations
are consistent with each other and with Biot-Gassmann’s equations. No dispersion has been detected
beyond that frequency. This was interpreted as the absence of squirt flow or local diffusion between
the microporous oolites and the macropores.

1. Introduction

In fluid-saturated porous media, the dependence to frequency of the body wave velocities (VP and VS) rises
questions on how to compare low-frequency field measurements (100 Hz for seismic data and 10 kHz for
sonic logs) to conventional high-frequency measurements in the laboratory (1 MHz for ultrasonic). These dis-
persions in elastic wave velocities are related to the dispersion of the elastic moduli, which can be affected by
fluid flows occurring at different scales in the porosity [Batzle et al., 2006; Muller et al., 2010; Sarout, 2012].

When the porous medium is submitted to an oscillating stress field, the deformation of the solid frame may
induce a fluid pressure variation if the fluid has no time to diffuse through the pore network. In fully saturated
conditions, this fluid diffusion can occur at different scales [Sarout, 2012]: global within the wavelength scale
or local within a representative elementary volume (REV). Local flow, or squirt flow, may equalize the fluid pres-
sure between compliant cracks and rounded pores within one REV [Mavko and Jizba, 1991], whereas global
flow equalizes pressure through all the connected REVs. Three fluid flow regimes can be considered from this:
drained, undrained, and unrelaxed regimes [Pimienta et al., 2016a]. The undrained and unrelaxed regimes
refer to, respectively, the saturated isobaric and the saturated isolated regimes described by O’Connell and
Budiansky [1977]. The drained regime occurs when the fluid has time to diffuse by local and global flow
through all the REVs. The elastic properties of the porous medium are similar to dry conditions. Then, when the
frequency increases, the fluid stops diffusing at wavelength scale, letting place to the undrained regime. In this
regime, the REVs are as disconnected from each other and remain isobaric. Because of the deformation of the
frame, the fluid pressure increases in the porosity, therefore increasing the stiffness of the medium. The two
previous regimes are well accounted for in quasi-static poroelasticity [Gassmann, 1951]. Finally, when the fre-
quency is high enough, pressure may not equilibrate by local flow within the REVs. This is the case, for example,
of squirt flow between cracks and stiff pores, leading to the unrelaxed regime [Dvorkin et al., 1995; Shafiro
and Kachanov, 1997]. In this regime, the fluid can be considered immobile, and higher pressure gradients are

RESEARCH ARTICLE
10.1002/2016JB013816

Special Section:
Rock Physics of the Upper Crust

Key Points:
• Elastic moduli dispersion and

attenuation have been measured
on a limestone, using stress-strain
oscillations and ultrasonic
measurements

• The drained/undrained transition
has been measured for all
moduli and is consistent with
Biot-Gassmann’s predictions

• There is no dispersive transition
beyond the undrained regime,
meaning no squirt flow or local
diffusion between the micropores
and macropores

Correspondence to:
J. V. M. Borgomano,
borgomano@geologie.ens.fr

Citation:
Borgomano, J. V. M., L. Pimienta,
J. Fortin, and Y. Guéguen (2017),
Dispersion and attenuation
measurements of the elastic
moduli of a dual-porosity limestone,
J. Geophys. Res. Solid Earth, 122,
2690–2711, doi:10.1002/2016JB013816.

Received 1 DEC 2016

Accepted 26 MAR 2017

Accepted article online 7 APR 2017

Published online 22 APR 2017

©2017. American Geophysical Union.
All Rights Reserved.

BORGOMANO ET AL. ELASTIC MODULI DISPERSION IN A LIMESTONE 2690

 21699356, 2017, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2016JB

013816 by C
ochrane France, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9356
http://orcid.org/0000-0002-6332-1878
http://dx.doi.org/10.1002/2016JB013816
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9356/specialsection/UPPERCRUST1


Journal of Geophysical Research: Solid Earth 10.1002/2016JB013816

maintained in the cracks. This increases further the stiffness of the medium. Effective medium theories are
possible tools to predict the elastic properties in this last regime [e.g., Adelinet et al., 2011].

While the elastic properties are not frequency dependent within a specific regime, they show dispersion and
attenuation in the transitions between these regimes [Pimienta et al., 2015a]. The two cutoff frequencies, f1

and f2, respectively for the drained/undrained transition and undrained/unrelaxed transition, can be ex-
pressed as follows [O’Connell and Budiansky, 1977; Cleary, 1978]:

f1 =
4kKd

𝜂L2
and f2 =

Ks𝜉
3

𝜂
, (1)

where k is the permeability, Kd is the drained bulk modulus, Ks is the skeleton’s bulk modulus, 𝜉 the average
crack aspect ratio, 𝜂 the fluid’s dynamic viscosity, and L the wavelength. At low frequencies in the laboratory,
the corresponding wavelength is generally larger than the sample’s length, in which case L is taken equal to
the sample’s length. When there is dispersion of an elastic modulus M, in other words, when there is viscous
dissipation in the fluid, the rheology of the medium is similar to that of a viscoelastic material [O’Connell and
Budiansky, 1977]. One can measure a phase shift Δ𝜙 between the stress and the strain response. The dissi-
pation related to M is usually quantified from the inverse of the quality factor Q−1

M , such that [O’Connell and
Budiansky, 1978]:

Q−1
M = tan(Δ𝜙). (2)

Carbonate rocks are characterized by complex microstructures and heterogeneous pore types [Lucia, 1995].
For a given porosity, carbonate rocks were shown to exhibit a wide range of P wave and S wave velocities, due
to the large variety of pore types [Eberli et al., 2003]. Their elastic properties are affected by the pore network
and the mineralogy, which can be modified through diagenetic processes [Fournier and Borgomano, 2009].
Several studies have attempted to understand the relationship between seismic wave velocity and porosity
[e.g., Anselmetti and Eberli, 1993; Verwer et al., 2010] or to verify the applicability of Biot-Gassmann’s fluid sub-
stitution theory [e.g., Baechle et al., 2009; Fabricius et al., 2010]. Very few studies aimed at characterizing the
dispersion and the attenuation at seismic frequencies in carbonate rocks, due to the interplay between
microstructure and fluid flow [e.g., Adam et al., 2006, 2009; Mikhaltsevitch et al., 2016a]. This is, however, essen-
tial in hydrocarbon exploration and reservoir characterization, to improve the inversion of the rock properties
using seismic data. In this study, we present our first measurements of dispersion and attenuation of the elastic
moduli of a pure calcite oolitic limestone from Lavoux (France).

2. Experimental Setup

To measure the dispersion and the attenuation of the elastic moduli over a large frequency range, we used the
stress-strain method, combined with ultrasonic measurements, in a triaxial cell at the ENS of Paris (Figure 1)
[Fortin et al., 2005, 2014; Adelinet et al., 2010; David et al., 2013]. The detailed experimental protocol and the
calibration of the apparatus on standard materials can be found in Pimienta et al. [2015a] and Pimienta et al.
[2015b]. With this apparatus, two types of stress oscillations can be achieved: hydrostatic (Figure 1a) to mea-
sure the bulk modulus (K) and axial (Figure 1b) to measure the Young’s modulus (E) and the Poisson’s ratio (𝜈).
To investigate the effect of the fluid’s viscosity, the sample’s properties were measured under dry, glycerin-
saturated and finally water-saturated conditions. At room temperature (22∘ C), the viscosity of pure glycerin
and water is, respectively, 𝜂gly = 1 Pa s and 𝜂water = 10−3 Pa s [Segur and Oberstar, 1951] . We also studied the
effect of the boundary conditions on the measured elastic properties, with two different configurations
for the drainage system: (1) open (drained conditions) and (2) closed (undrained for the system {sample +
dead volumes}) (Figure 1a). Pimienta et al. [2016b] demonstrated that the effect of the dead volumes on the
measured properties depends upon the ratio of the storage capacities of the sample and the drainage system.
In the drained frequency range, the measured properties would tend to their undrained value if the dead
volumes tend to zero. The dead volumes of the closed drainage system (second case) were measured at about
Vd =3.3 mL for the top and bottom end platens [Pimienta et al., 2016b]. Pimienta et al. [2016b] showed that if
the dead volumes are greater than 10Vd , the measured properties converge to the fully drained values. For our
experiments, when the drainage system is open (first case), the dead volumes are in fact much larger and cor-
respond to the volume of all the hydraulic tubings added to the volume of fluid in the Quizix pumps (∼60 mL).
During the stress oscillations, the pore pressure pumps are shut off, to avoid a fluid-induced response back to
the sample.
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Figure 1. Schematics of the experimental setup for (a) hydrostatic oscillations and (b) axial oscillations, in the triaxial
cell at the ENS of Paris. The hydrostatic oscillations were imposed by the confining pump, in the frequency range of
[0.004; 0.4] Hz. The axial oscillations were imposed by a piezoelectric actuator mounted over the top end platen,
in the frequency range of [0.01; 10] Hz. Strains are measured by axial and radial strain gauges bonded on the sample
at midheight. Ultrasonic transducers are settled in the end platens to obtain the P and S wave velocities at 1 MHz.

The sample is 8 cm long and 4 cm diameter cylinder. To measure the strains, four pairs of 350Ωmetal foil strain
gauges with axial and radial orientations are glued at midheight all around the lateral surface (Figure 1). Axial
strain (𝜀ax) and radial strain (𝜀rad) are averaged from all the strain gauges. The sample is under a rubber jacket
that separates the pore pressure (pf ) from the confining pressure (Pc) (Figure 1a). When the sample is fluid
saturated, the pore pressure is controlled by a Quizix dual pump system connected to the top and bottom of
the sample through a drainage circuit (Figure 1a). Throughout all the measurements, the pore pressure was
maintained at 2 MPa. Measurements at different differential pressures (Pdiff = Pc − pf ) were done, in a range
below the pore-collapse pressure (P∗) of the sample.

2.1. Hydrostatic Stress Oscillations—Bulk Modulus
The hydrostatic stress oscillations give a direct measurement of the bulk modulus Khyd [Pimienta et al., 2015a].
The oscillations are obtained from the confining pressure ΔPc that oscillates with an amplitude of 0.2 MPa
around a mean value Pc (Figure 1a). This amplitude value has been calibrated in order to obtain small strains on
the sample (𝜀∼10−6) to remain in the linear elastic domain (Figure 2a) [Winkler and Murphy, 1995]. The fre-
quency of these hydrostatic oscillations is between 4×10−3 Hz and 4×10−1 Hz. The induced volumetric strain
signal (𝜀vol) is calculated by 𝜀vol =𝜀ax+2𝜀rad. Thus, the bulk modulus Khyd is obtained from the measured stress
ΔPc and the measured strain 𝜀vol such that

Khyd =
−ΔPc

𝜀 vol
, (3)

with the convention ΔPc =−𝜎ii∕3. A linear regression of the stress signal versus the strain signal is then
processed to calculate Khyd (Figure 2b).

2.2. Axial Stress Oscillations—Young’s Modulus and Poisson’s Ratio
In order to perform axial stress oscillations [e.g., Batzle et al., 2006; Mikhaltsevitch et al., 2014; Tisato and
Madonna, 2012; Madonna and Tisato, 2013; Pimienta et al., 2015b; Szewczyk et al., 2016], we used a piezoelec-
tric actuator that is mounted between the axial piston of the triaxial cell and the top end platen (Figure 1b).
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Figure 2. Example of stress and strain versus time recordings during (a, b) hydrostatic oscillations and (c, d) axial
oscillations. The elastic moduli are calculated from the linear regressions of the stress versus strain curves
(Figures 2b–2d). The ellipse shapes (hysteresis) result from the phase shift between stress and strain when
dispersion occurs, similarly to viscoelastic materials.

A small deviatoric stress of 1 MPa is maintained on the assemblage in order to have a good contact. The fre-
quency range of the oscillations applied on the Lavoux sample is 10−2 Hz to 10 Hz. The top end platen is made
out of AU4G aluminum and is bonded with two axial strain gauges acting as a axial stress sensor (Figure 1b).
During the measurements, the two axial strains are averaged (𝜀alu) and the axial stress is computed from
𝜎ax = Ealu.𝜀alu (Figure 2c), where Ealu is the Young’s modulus of AU4G (Ealu=72 GPa). With the measurements
of the axial strain (𝜀ax) and the radial strain (𝜀rad) of the sample (Figure 2c), we can directly obtain the Young’s
modulus (E) and the Poisson’s ratio (𝜈) of the sample:

E =
𝜎ax

𝜀ax
and 𝜈 = −

𝜀rad

𝜀ax
. (4)

E and 𝜈 are determined by linear regression of the signals, respectively, 𝜎ax over 𝜀ax and −𝜀rad over 𝜀ax

(Figure 2d). A bulk modulus (Kax) and a shear modulus (Gax) are calculated, with the assumption of an isotropic
medium:

Kax =
E

3 (1 − 2𝜈)
and Gax =

E
2 (1 + 𝜈)

. (5)

Kax can then be compared to the bulk modulus Khyd obtained from the hydrostatic oscillations to validate the
assumption of isotropy and to check the consistency of the results.

2.3. Attenuation—Q−1 Measurements
The factor Q−1 measures the elastic energy dissipation within the sample. When this dissipation occurs, the
rheology of the medium is similar to a viscoelastic material [O’Connell and Budiansky, 1977]. The stress-strain
curve presents an elliptic shape that clearly highlights the nonelastic behavior (e.g., Figures 2b and 2d). This
results from the phase shift between the stress and the strain (equation (2)). During a dynamic oscillation
of frequency f , the complex stress can be expressed as 𝜎̄ = 𝜎ei(2𝜋ft+𝜙𝜎 ) and the resulting complex strain
𝜀̄=𝜀ei(2𝜋ft+𝜙𝜀), where 𝜙𝜎 and 𝜙𝜀 are the phases of 𝜎̄ and 𝜀̄. For each elastic modulus, the calculation of the Q−1

factor is based on the causality principle, where the complex modulus M̄ relates the stress 𝜎̄ to its resulting
strain 𝜀̄:

𝜎̄ = M̄𝜀̄. (6)
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The factor Q−1
M of the modulus M̄ is then defined as follows [O’Connell and Budiansky, 1978]:

Q−1
M = Im(M̄)

Re(M̄)
=

Im ( 𝜎̄∕𝜀̄)
Im ( 𝜎̄∕𝜀̄)

= tan
(
𝜙𝜎 − 𝜙𝜀

)
, (7)

In the case of the bulk modulus measured from hydrostatic oscillations, Q−1
Khyd

is deduced from the phase shift
between the hydrostatic stress −ΔPc, with the convention ΔPc =−𝜎ii∕3, and the volumetric strain 𝜀vol. With
the combination of equations (3) and (7), we obtain the following:

Q−1
Khyd

= tan
(
𝜙−ΔPc

− 𝜙𝜀vol

)
. (8)

The Young’s modulus and Poisson’s ratio factors Q−1
E and Q−1

𝜈
are deduced from equations (4) and (7):

Q−1
E = tan

(
𝜙𝜎ax

− 𝜙𝜀ax

)
and Q−1

𝜈
= tan

(
𝜙𝜀ax

− 𝜙𝜀rad

)
. (9)

To derive Q−1 for Kax and Gax, with the assumptions of isotropy and small strains, we combine equations (4)
and (5) as follows:

Kax =
1
3
.

𝜎ax

𝜀ax + 2𝜀rad
and Gax =

1
2
.

𝜎ax

𝜀ax − 𝜀rad
. (10)

For both Kax and Gax the stress is 𝜎ax and the resulting strains are, respectively, 𝜀ax + 2𝜀rad and 𝜀ax − 𝜀rad. After
combining equations (7) and (10), the related attenuations are as follows:

Q−1
Kax

= tan
(
𝜙𝜎ax

− 𝜙𝜀ax+2𝜀rad

)
and Q−1

Gax
= tan

(
𝜙𝜎ax

− 𝜙𝜀ax−𝜀rad

)
(11)

Three different methods can be used to calculate the Q−1 factors [e.g., Tisato and Madonna, 2012]. The first
method consists of fitting two sine functions y=A sin(2𝜋f+𝜙) through the stress and strain signals and extract
𝜙 from each signal to calculate the phase shift 𝜙𝜎 − 𝜙𝜀. The second method consists in extracting the phases
from a Fourier analysis of the signals. For this purpose a fast Fourier transform (FFT) algorithm is applied on
the stress and strain signals. And finally, the last method is based on the definition of Q−1 factor that relates
Q−1 to the dissipated elastic energy (ΔE) during a stress-strain cycle and to the average elastic energy stored
(Em) as follows [O’Connell and Budiansky, 1978]:

Q−1 = ΔE
4𝜋Em

. (12)

When viscous dissipation occurs in the fluid, the stress-strain curve presents an elliptic shape, similarly to
viscoelastic materials (e.g., Figures 2b and 2d). The dissipated energy ΔE is equal to the surface of this ellipse,
and Em is equal to the average surface under the stress-strain curve. The surfaces that represent ΔE and Em

can be calculated from the stress versus strain curve by numerical integration [Tisato and Madonna, 2012]:

ΔE =
N−1∑
n=1

(
𝜎n+1 + 𝜎n

) (
𝜀n+1 − 𝜀n

)
2Nc

and Em =
N∑

n=1

𝜎n𝜀n

2N
, (13)

where 𝜎n and 𝜀n are all the data points of, respectively, 𝜎̄ and 𝜀̄ signals during one recording, N is the total
number of sampled data and Nc = f .ttot is the number of cycles, f being the frequency of the oscillation,
and ttot the total time of the sequence. For simplicity, the three methods presented above are, respectively,
denominated as “Sines,” “FFT,” and “Ellipse” methods in the following text. The experimental measurements
presented later in the results section were calculated from the Ellipse method, and comparison between the
three methods will be provided for the axial oscillations.

The relation between the dispersion and the attenuation of the complex modulus, M̄, arises from the
causality principle between the stress and strain that is expressed through the Kramers-Kronig equations
[Mikhaltsevitch et al., 2016b]. If M̄ = MR + iMI, with i the imaginary unit, MR the real part, and MI the imaginary
part of M̄, an approximation of the Kramers-Kronig equations was found by O’Donnell et al. [1981]:

MI(𝜔) =
𝜋

2
𝜔

dMR(𝜔)
d𝜔

, (14)
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Figure 3. Zener’s viscoelastic model used to calculate the attenuation from the dispersion. (a) Model applied to the
dispersion of the modulus M of relaxed value M0 and unrelaxed value M1. (b) Spring-damper representation of Zener’s
model, with the relationships between the springs elastic moduli (Ma and Mb) and dispersion’s relaxed and unrelaxed
values (M0 and M1). The viscosity (𝜂b) of the damper is a function of M1 and the cutoff frequency fc : 𝜂b = M1∕2𝜋fc .

where 𝜔 = 2𝜋f . The major drawback of applying equation (14) to experimental data is that an accurate
calculation of the derivative dMR∕d𝜔 by finite difference requires a good resolution in 𝜔.

Because our experimental measurements did not necessarily have a proper resolution in 𝜔, the consistency
between the measured dispersion and attenuation was verified instead with a Zener viscoelastic model
[Pimienta et al., 2015a]. The equivalent spring-damper model is represented in Figure 3b, and its transfer
function M̄ can be expressed with the viscoelastic parameters of the system:

M̄ = 1 + i𝜔𝜏(
1

Ma
+ 1

Mb

)
+ i𝜔𝜏

Ma

, (15)

where Ma and Mb are the moduli of the two springs and 𝜏 = 𝜂b

/
Mb where 𝜂b is the viscosity of the dashpot

element (Figure 3b). This model follows the assumption that only one viscous dissipation mechanism is
involved. With the approximation Ma << Mb, equations (7) and (15) give the following:

Q−1
M ≃ 𝜔𝜏

1 + 𝜔2𝜏2

Ma

Mb
. (16)

If we consider a dispersive transition where the sample’s modulus (M̄) varies from M0 to M1 around the cutoff
frequency fc (Figure 3a), the elastic parameters of the Zener model become Ma =M1 and Mb

−1 =M0
−1 − M1

−1,
and the viscosity of the dashpot becomes 𝜂b = M1∕2𝜋fc (Figure 3b). Therefore, only three parameters are
required to calculate the Q−1 factor from Zener’s model: the moduli M0 and M1 and the cutoff frequency fc. It is
to note here that if the dispersion is related to the global flow, M0 and M1 would be the drained and undrained
(isobaric) moduli. If the dispersion is related to squirt flow, M0 and M1 would be the undrained (isobaric) and
unrelaxed (isolated) moduli.

2.4. Ultrasonic Measurements
In addition to the stress-strain oscillations, the apparatus enables the measurement of ultrasonic (∼ 1 MHz)
moduli from P and S wave transducers, glued in the end platens at both ends on the sample (Figure 1a). P and
S wave velocities VP and VS are inferred from the traveltime (Δt) of the ultrasonic waves through the sample’s
length (L = 80 mm), after correction of the traveltime through the end platens. The arrival times of the P and
S waves are handpicked with a maximum error of ±0.1μs. The velocity (V) is then calculated by V =L∕Δt. With
a maximum error on L of ±0.01 mm, the relative uncertainty on the velocities is about ΔV∕V = 0.5%. The
high-frequency moduli KHF and GHF are obtained by the well-known formulas:

KHF = 𝜌

(
VP

2 − 4
3

VS
2
)

and GHF = 𝜌VS
2, (17)

where 𝜌sample is the density of the medium, calculated from the density of the dry sample 𝜌dry = 2160 kg m−3,
the density of the saturating fluid 𝜌fluid, and the porosity 𝜙 by 𝜌sample =𝜌dry + 𝜙.𝜌fluid. The densities of glycerin
and water are, respectively, 𝜌gly = 1250 kg/m3 and 𝜌water = 1000 kg/m3 [Bosart and Snoddy, 1927]. With a
relative uncertainty on 𝜌 estimated around 1%, the relative uncertainty of the product 𝜌V2 is about 2%. From
this we can deduce the relative uncertaintiesΔKHF∕KHF ≃4% andΔGHF∕GHF ≃2 for, respectively, the ultrasonic
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Figure 4. SEM photomicrograph of the Lavoux sample. The sample is a
pure calcite grainstone composed of microporous oolites (marker A),
surrounded by macropores (marker B). The average size of the oolites is
around 300μm.

bulk and shear modulus. Before measur-
ing the traveltimes of the elastic waves
in the sample, an aluminum standard
(2007A/AU4G) of 80 mm length was mea-
sured to calibrate the traveltimes in the
top and bottom end platens.

3. Sample Description

The studied sample is a Lavoux limestone
that was quarried in Paris Basin and was
extensively studied in the literature [e.g.,
Fabre and Gustkiewicz, 1997; Rasolofosaon
and Zinszner, 2002; Youssef et al., 2008;
Bemer and Lombard, 2010; Vincent et al.,
2011; Zinsmeister, 2013]. It is from Dogger
age and is considered as an analogue to
the White Oolitic Formation of Paris Basin
[Bemer and Lombard, 2010]. It is a pure cal-
cite oolitic grainstone with intergranular

macroporosity and intragranular microporosity (Figure 4). Mercury porosimetry measurements from Zinsmeis-
ter [2013] or Vincent et al. [2011] confirm the presence of a connected bimodal porosity distribution with pore
entry diameters around 0.6 μm and 20 μm, which corresponds, respectively, to the intra-oolite micropores
and the interoolite macropores. Moreover, the NMR unimodal distribution results from Vincent et al. [2011]
were interpreted as indicating a good connectivity between the intragranular-micropore network and the
intergranular-macropore network.

The porosity was measured around 23% from the triple-weight method, where the sample’s mass is mea-
sured under three different conditions: dry, fluid saturated, and suspended in the saturant. Image analysis
of the SEM photomicrograph enables to evaluate the proportion of macroporosity in the total porosity.
A threshold was applied on the gray scale of the photomicrograph to turn it into a binary image showing
solely the macropores (Figure 5). The macropores’ proportion in the binary image, combined with the previous

Figure 5. Determination of the proportion macroporosity/microporosity in the sample from the gray scale analysis
of the SEM photomicrograph. A threshold is applied on the initial photomicrograph (left), to create a binary image
representing solely the macropores (right). The porosity of the macropores is calculated from the number of black
pixels over the total number of pixels of the image, evaluated at 10.35%. With a total porosity of 23% measured
experimentally, the proportion of macroporosity over microporsity is therefore around 45/55.
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Figure 6. Intrinsic permeability of the Lavoux sample as a function
of differential pressure. The measurements were obtained by
Darcy’s law under water-saturated conditions. The results show
no dependence to the effective pressure.

experimental porosity, gives a contribution
to the total porosity of 45% and 55% for
the macroporosity and the microporosity,
respectively. The permeability was measured
to be around 10 mD, under water-saturated
conditions, and shows no dependence to dif-
ferential pressure (Figure 6).

4. Results
4.1. Pressure Dependence of the
Sample’s Elastic Properties
Ultrasonic measurements and the axial oscil-
lations have been performed at differen-
tial pressures from 2.5 MPa to 20 MPa, to
check the pressure dependence of the elastic
moduli. The traveltimes measured for the
Lavoux limestone are reported in Table 1,
along with the deduced P wave and S wave

velocities and high-frequency moduli KHF and GHF (equation (17)). KHF and GHF for dry-, water-, and glycerin-
saturated conditions as a function of differential pressure are represented in Figure 7. No variation in pres-
sure is to be noted. KHF is constant at about 14.5 GPa, 21.5 GPa, and 25.5 GPa, respectively, for the dry-, water-,
and glycerin-saturated conditions. We can see that the fluid nature strongly affects the high-frequency bulk
moduli. On the other hand, GHF remains constant at 9.5 GPa, with no sensitivity to the fluid nature.

For the axial oscillations at different pressures, the Young’s modulus (E) and Poisson’s ratio (𝜈) results measured
at 5 × 10−2 Hz, 10−1 Hz, and 5 Hz are presented in Figure 8. Again, no dependence to differential pressure
is observed, either for Young’s modulus (Figure 8a) or Poisson’s ratio (Figure 8b). Under dry conditions, no
dependence to f is observed. Under glycerin-saturated conditions, nearly no dependence to f is observed on
E (Figure 8a), but a large one is observed on 𝜈 (Figure 8b).

We can conclude that, similarly to the permeability, the elastic properties of the Lavoux limestone seem to
not depend on the differential pressure. Therefore, in the following, all the results will be presented solely for
a differential pressure of 2.5 MPa and can be considered as independent of differential pressure.

4.2. Axial Stress Oscillations Results at Pdiff = 2.5 MPa
The dispersion and attenuation results from the axial and the hydrostatic oscillations under dry-, water-, and
glycerin-saturated conditions are presented in Figures 9–11. The results are represented as a function of an

Table 1. Ultrasonic Measurements (1 MHz) on the Lavoux Limestone Under Dry-, Water-, and Glycerin-Saturated
Conditionsa

Saturating Fluid Pdiff (MPa) tP (μs) tS (μs) VP (m s−1) VS (m s−1) KHF (GPa) GHF (GPa)

2.5 23.0 38.5 3520 2103 14.0 9.6

Dry 5 22.4 38.0 3614 2131 15.4 9.8

𝜌sample = 2160 kg m−3 10 23.0 38.0 3520 2131 13.7 9.8

15 22.4 38.0 3614 2131 15.1 9.8

20 22.5 38.0 3598 2131 14.9 9.8

Water 2.5 21.4 40.8 3783 1984 21.7 9.4

𝜌sample = 2391 kg m−3 10 21.5 40.6 3766 1994 21.2 9.5

2.5 20.6 42.3 3930 1914 25.9 9.0

Glycerin 5 20.4 42.2 3969 1918 26.5 9.0

𝜌sample = 2448 kg m−3 10 20.8 42.0 3892 1928 25.0 9.1

15 20.7 41.6 3911 1946 25.1 9.3

20 20.6 41.4 3930 1956 25.3 9.4
aThe traveltimes tP and tS were corrected from the traveltimes in the end platens. The length of the sample

is 80 mm. KHF and GHF are deduced from equation (17).
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Figure 7. Ultrasonic results (1 MHz) at different differential pressures (Pdiff =Pc − pf ) for (left) the bulk modulus (KHF)
and (right) the shear modulus (GHF), for dry-, water-, and glycerin-saturated conditions.

apparent frequency f ∗ = f .(𝜂fluid∕𝜂water) to take into account the effect of the fluid’s viscosity, with water as the
reference fluid (𝜂water =10−3 Pa s). For dry conditions, the viscosity of air is considered at about 𝜂air = 10−5 Pa s.
The Q−1 factor results are calculated from the Ellipse method and are systematically compared to Zener’s
viscoelastic model. The measurements are done with the valves of the drainage circuit open (Figure 1a), i.e.,
in drained boundary conditions, with a pore pressure of pf =2 MPa.

The Young’s modulus and Poisson’s ratio dispersion and attenuation results from the axial oscillations at
Pdiff =2.5 MPa are presented in Figure 9. The Young’s modulus (E) is constant around 22.5 GPa between
10−3 Hz and 102 Hz, with a good agreement between the dry, water, and glycerin saturations (Figure 9a). Then,
E increases slightly between 102 Hz and 103 Hz from 22.5 GPa to 24 GPa (Figure 9a). The factor Q−1

E results
are consistent with the dispersion data: no attenuation under 102 Hz, a small peak around Q−1

E = 0.025 at
3 × 102 Hz, and no more attenuation beyond 103 Hz (Figure 9b). Moreover, the results are in good agreement
with Zener’s model, using the parameters M0 =22.5 GPa, M1 =24 GPa, and fc =220 Hz (Figure 3).

Similarly to E, the Poisson’s ratio (𝜈) below 102 Hz shows no dispersion, but a slight disagreement subsists
between the dry- (𝜈 = 0.25) and the water- and glycerin-saturated results (𝜈 = 0.275) (Figure 9c). Then 𝜈

increases from 0.275 to 0.35 between 5 × 101 Hz and 103 Hz (Figure 9c), in correlation with a Q−1
𝜈

peak of 0.08
at around 3×102 Hz (Figure 9d). For this case, Zener’s model seems to overpredict the attenuation. The Zener
peak is around 0.13 at 3 × 102 Hz, with the parameters M0 =0.275 and M1 =0.35. (Figure 9d).

Assuming isotropic conditions, the dispersion and attenuation results of the bulk modulus and the shear mod-
ulus, deduced from E and 𝜈, are presented in Figure 10. The bulk modulus deduced from the axial oscillations
(Kax) shows a large dispersion from 16 GPa to 26 GPa between f ∗ = 5 × 101 Hz and f ∗ = 103 Hz, visible under
glycerin-saturated conditions (Figure 10a). The corresponding attenuation peak reaches Q−1

Kax
=0.225 around

f ∗ =3×102 Hz with a good fit with Zener’s model with the parameters M0 =16 GPa and M1 =26 GPa. The shear

Figure 8. Axial oscillations results at different differential pressures (Pdiff =Pc − pf ) for (a) Young’s modulus (E) and
(b) Poisson’s ratio (𝜈). The results for dry- and glycerin-saturated conditions are presented, for 0.05 Hz, 0.1 Hz, and 5 Hz.
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Figure 9. (a) Young’s modulus E, (b) Q−1
E , (c) Poisson’s ratio 𝜈, and (d) Q−1

𝜈
resulting from the axial oscillations at

Pdiff = 2.5 MPa, under dry-, water-, and glycerin-saturated conditions. The frequency is scaled with the viscosity of the
saturating fluid 𝜂fluid. The factors Q−1

E and Q−1
𝜈

are compared to Zener’s model. The range for the drained/undrained
cutoff frequency f∗1 is represented by the gray area.

modulus Gax shows no dispersion at all, with a constant value around Gax = 9 GPa (Figure 10c). Consistently,
the related attenuation Q−1

Gax
is nil throughout the whole frequency range (Figure 10d).

4.3. Hydrostatic Oscillations Results at Pdiff = 2.5 MPa
The results of the purely hydrostatic oscillations at Pdiff = 2.5 MPa are presented in Figure 11. The measured
bulk modulus Khyd shows a dispersion from 16 GPa to 25 GPa between f ∗ =2×101 Hz and f ∗ =4×102Hz, visible
under glycerin-saturated conditions (Figure 11a). The related factor Q−1

Khyd
has a peak at about Q−1

Khyd
=0.22 around

f ∗ =2 × 102 Hz and is nil elsewhere (Figure 11b). The attenuation seems to compare well with Zener’s model
with the parameters used previously for Kax (M0 =16 GPa, M1 =26 GPa) (Figure 11b).

4.4. Uncertainty Analysis
For the hydrostatic oscillations, the uncertainty on the bulk modulus measurements (𝛿K) depends on the
confining pressure uncertainty (𝛿P) and the uncertainty of the strain measurements (𝛿𝜀). From equation (3),
the relative uncertainty on K is given by:

𝛿Khyd

Khyd
= 𝛿P

P
+ 𝛿𝜀

𝜀
. (18)

The pressure sensor of the confining cell is capable to measure pressure with a resolution of 𝛿P = 0.001 MPa.
The amplitude of the confining pressure oscillations being around 0.2 MPa, the relative uncertainty on pres-
sure becomes 𝛿P∕P = 0.005, which can be considered negligible. Therefore, the uncertainty on the bulk
modulus highly depends on the quality of the strain measurement. The higher the number of strain gauges,
the lower this uncertainty becomes. A total of n = 8 strain gauges was used (four axial and four radial). When
proceeding with the oscillations, the amplitude of the strain gauges may vary slightly from one another. These
variations could be related to the quality of the contact between the strain gauge and the sample or to small
heterogeneities in the sample despite being considered perfectly homogeneous. Although the orientation
of the strain gauges relatively to the vertical and horizontal axis can be determinant for axial oscillations, it is
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Figure 10. (a) Bulk modulus Kax, (b) Q−1
Kax

, (c) shear modulus Gax, and (d) Q−1
Gax

deduced from the results of the axial
oscillations (Figure 9). Kax and Gax are deduced from E and 𝜈 (equation (5)) under the assumption of an isotropic
medium. Q−1

Kax
and Q−1

Gax
, deduced from equations (10) and (11), are compared to Zener’s model. The frequency is

scaled with the viscosity of the saturating fluid 𝜂fluid. The range for the drained/undrained cutoff frequency f∗1 is
represented by the gray area.

irrelevant for hydrostatic oscillations on an isotropic medium. For the hydrostatic oscillations at f = 0.004 Hz
and Pdiff =2.5 MPa, the average of the eight measured strain was 𝜀=2.22 μm/m, with a standard deviation of
std=0.266μm/m. The error on the average strain (𝛿𝜀) can be calculated from 𝛿𝜀=std∕

√
n=0.094μm/m. From

equation (18), we deduce the relative uncertainty on Khyd for the hydrostatic oscillations: 𝛿Khyd∕Khyd = 4.2%.
This corresponds to an error of about ± 0.3 GPa for Khyd.

The similar approach can be done to calculate the uncertainties for the axial oscillations results. From
equation (4), we can deduce the following:

𝛿E
E

=
𝛿𝜀alu

𝜀alu
+

𝛿𝜀ax

𝜀ax
and

𝛿𝜈

𝜈
=

𝛿𝜀rad

𝜀rad
+

𝛿𝜀ax

𝜀ax
. (19)

With two strain gauges measuring 𝜀alu, four measuring 𝜀ax, and four measuring 𝜀rad, the relative uncertainties
on E and 𝜈 were found to be 𝛿E∕E=12% and 𝛿𝜈∕𝜈=8%. These uncertainties correspond to errors of± 1.3 GPa
for E and ± 0.01 for 𝜈. We can then use equation (5) to propagate the error to Kax and Gax. This gives an error
of ± 1.5 GPa for Kax and ± 0.6 GPa for Gax.

4.5. Comparison of the Three Methods Used to Infer Q−1

Q−1 factors of all the elastic properties deduced from the axial oscillations at Pdiff = 2.5 MPa under glycerin-
saturated conditions were also calculated using the Sines and the FFT method. Those are compared to the
previously presented results from the Ellipse method (Figure 12). For E, Kax, and Gax (respectively Figures 12a,
12c, and 12d) the three methods compare well over the experimental frequency range f ∈ [2 × 10−2 ; 5] Hz.
In case of 𝜈 (Figure 12b), the FFT and Ellipse methods are consistent with each other but not with the Sines
method. The results obtained with the Sines method for 𝜈 are unstable and give erratic results with data points
off the chart (Figure 12b). The Sines method shows also some slight inconsistencies with the other methods at
10−2 Hz for E and Kax (Figures 12a and 12c). We can therefore conclude that only the Ellipse and FFT methods
are reliable to calculate Q−1 in our case.
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Figure 11. (a) Bulk modulus Khyd and (b) Q−1
Khyd

resulting from the hydrostatic oscillations at Pdiff =2.5MPa, under dry-,

water-, and glycerin-saturated conditions. The frequency is scaled with the viscosity of the saturating fluid 𝜂fluid.
The factor Q−1

Khyd
is compared with Zener’s model. The range for the drained/undrained cutoff frequency f∗1 is

represented by the gray area.

5. Discussion
5.1. The Drained and Undrained Regimes
With respect to the cutoff frequencies (equation (1)), and especially the drained/undrained cutoff frequency,

a viscosity contrast for the fluid results in a shift in frequency of the transition. The results presented with the

three different saturating fluids show a good continuity in scaled frequency (Figure 13). A slight discrepancy

exists between the dry- and water-saturated conditions, the dry bulk modulus being about 2.5 GPa lower

than the water-saturated bulk modulus (Figure 13a). This discrepancy is seen in both the hydrostatic and

axial oscillations and seems larger than the uncertainties of the measurements (Figure 13a). It is possible that

the sample was not fully dry during the measurements, with the presence of moisture that would induce

a weakening effect. Although this effect is known to be important in sandstones and rather negligible in

limestones [Clark et al., 1980; Pimienta et al., 2014], measurements on a Leuders limestone from Clark et al.

[1980] still show an increase of about 5 GPa for K and 0.04 for 𝜈 when going from a relative humidity of 35%

(ambient room) to a vacuum state.

The drained/undrained cutoff frequency (f1) was experimentally measured around 2 × 10−1 Hz in glycerin-

saturated conditions, which is a frequency that is equivalent to 2 × 102 Hz in water-saturated conditions.

Therefore, when studying dispersion and attenuation phenomenon related to diffusion processes at differ-

ent scales, the experimental frequencies can be scaled by the dynamic viscosity of the fluid 𝜂 [Pimienta et al.,

2015a, 2015b, 2016a; Spencer and Shine, 2016]. This has the major advantage to increase the apparent fre-

quency range reachable by the experimental setup up, in our case for the axial oscillations from 10−2 −101 Hz

to 10−4 − 104 Hz, and therefore characterize the dispersion of the sample over a much larger frequency band.
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Figure 12. Comparison of the three methods used to calculate Q−1: Sines, FFT, and Ellipse methods. Example for the
axial oscillations at Pdiff = 2.5 MPa under glycerin-saturated conditions, for (a) Young’s modulus, (b) Poisson’s ratio,
(c) bulk modulus, and (d) the shear modulus.

5.1.1. Elastic Moduli
The common elastic modulus we can extract from the hydrostatic and axial oscillations is the bulk modulus,
respectively, Khyd and Kax (deduced from E and 𝜈). The comparison between the dispersion and Q−1 of both
moduli at Pdiff =2.5 MPa is presented in Figure 13. The hydrostatic and axial results compare well over their
overlapping frequencies, both for the dispersion (Figure 13a) and for Q−1 (Figure 13b). This tends to validate
our hypothesis of an isotropic medium and shows a good consistency between both stress-strain methods
for the drained and undrained regimes.

Using the measured permeability value (i.e., 𝜅 = 10−14 m2) and the dry bulk modulus (i.e., Kd=15 GPa) and
assuming a diffusion length L in the sample between 40 mm and 80 mm, the expected cutoff frequency f ∗1 for
the drained/undrained transition (equation (1)) is between 102 Hz and 4×102 Hz. All the previous dispersions
and Q−1 results are in agreement with this frequency transition (Figures 9–11, and 13). The maximum Q−1

peaks for E, 𝜈, Kax, and Khyd, and the dispersion slopes of the elastic moduli are systematically in the expected
range of f ∗1 (Figures 9–11, and 13).

The undrained elastic properties of a rock are generally deduced from the drained (or dry) properties using
Biot-Gassmann relations [Gassmann, 1951]:

Ku = Kd +
Kf

(
1 − Kd

KS

)2

Φ +
((

1 − Kd

KS

)
− Φ

)
Kf

KS

and Gu = Gd, (20)

where Kd and Gd are, respectively, the drained bulk modulus and shear modulus, Φ the porosity, Kf the
saturating fluid’s bulk modulus, KS the skeleton bulk modulus, and Ku and Gu, respectively, the undrained
bulk modulus and shear modulus. The Biot-Gassmann predictions for the bulk modulus with water- and
glycerin-saturated conditions are presented in Figure 13a, using the parameters Kd = 15 GPa, Φ = 23%,
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Figure 13. (a) Comparison of the hydrostatic, the axial, and the ultrasonic measurements for the bulk modulus and
(b) the bulk modulus Q−1 factor deduced from the hydrostatic and axial oscillations for dry-, water-, and glycerin-
saturated conditions at Pdiff = 2.5 MPa. Biot-Gassmann’s predictions for water and glycerin are represented for the
undrained regime in addition to the ultrasonic results (Figure 13a). The frequency is scaled with the viscosities
of the saturating fluids.

Kf−water =2.21 GPa, Kf−glycerin =4.36 GPa [Bridgman, 1931], and KS =77 GPa, which is the bulk modulus of calcite
[Mavko et al., 2009]. The predictions give an undrained bulk modulus with water of Ku−wat =20.8 GPa and with
glycerin Ku−gly =25.8 GPa. These results are consistent with the bulk modulus results independently obtained
from the stress-strain oscillations under glycerin-saturated conditions (Figure 13a). Moreover, the shear mod-
ulus Gax deduced from the axial oscillations is constant over the frequency range of the drained/undrained
transition (Figure 10c), which is again consistent with Biot-Gassmann’s theory.
5.1.2. Q−1 Factors
The Zener viscoelastic model (Figure 3), used to calculate Q−1 from the modulus’ dispersion, gives accurate
results for the Young’s modulus (Figure 9b), the bulk modulus (Figures 10b and 11b), and the shear modulus
(Figure 10d). However, the model seems to overpredict Q−1 for the Poisson’s ratio (Figure 9d), with a peak value
of 0.13 instead of 0.09. These results, added to similar observations in Fontainebleau sandstones [Pimienta
et al., 2015a], show the general good applicability of Zener’s model to the drained/undrained transition.

In an isotropic medium, we previously showed that the bulk modulus and the shear modulus can be deduced
from axial solicitations and that the bulk modulus gives consistent results with the hydrostatic measurements
in the drained and undrained regimes. Therefore, the axial oscillations allow to measure all the moduli if we
measure the axial and radial strains. The Young’s modulus Q−1

E and Poisson’s ratio Q−1
𝜈

are directly measured
from the phase shifts between the output signals 𝜎ax, 𝜀ax and 𝜀rad (equation (9)). We presented a method
to deduce the bulk modulus Q−1

Kax
and the shear modulus Q−1

Gax
from different combinations of the previous

output signals (equation (11)). It is therefore of great interest to check the consistency of these Q−1 values
with existing equations that give relationships between Q−1 of all the different moduli. Our aim is to calculate
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Figure 14. Comparison between Q−1
Kax

and Q−1
Gax

obtained experimentally (equation (11)) with the FFT and the Ellipse
methods for the drained/undrained transition under glycerin-saturated conditions at Pdiff = 2.5 MPa (Figures 12c and
12d) and the same factors deduced from Q−1

E , Q−1
𝜈

, and 𝜈 (equations (22) and (23)).

Q−1
K and Q−1

G from the measured Q−1
E and Q−1

𝜈
. Such relationships have been given by Winkler and Nur [1979]

but with the hypothesis of a constant Poisson’s ratio 𝜈. Pimienta et al. [2016c] introduced a dispersive 𝜈 into
Winkler and Nur’s [1979] equations and obtained the following relationship between 𝜈, Q−1

𝜈
, Q−1

E , and Q−1
G :

Q−1
𝜈

[
𝜈 + Q−1

G

(
(1 + 𝜈)Q−1

E − Q−1
G

)]
= (1 + 𝜈)Q−1

E − (1 + 𝜈)Q−1
G . (21)

For our purpose, the previous equation can be turned into a second-order polynomial on Q−1
G :

− Q−1
𝜈

[
Q−1

G

]2 + (1 + 𝜈)
(

1 + Q−1
𝜈

Q−1
E

) [
Q−1

G

]
+
(
𝜈Q−1

𝜈
− (1 + 𝜈)Q−1

E

)
= 0, (22)

which admits two solutions that can be numerically calculated. The order of magnitudes of these two solu-
tions is around Q−1

G ∼0.01 and Q−1
G ∼ 10. The second solution being unrealistic as it would give a phase shift

between the stress and the strain of nearly𝜋∕2, we keep only the first one. We then calculate the bulk modulus
attenuation Q−1

K with the relationship from Winkler and Nur [1979]:

Q−1
K = 3

1 − 2𝜈
Q−1

E − 2 (1 + 𝜈)
1 − 2𝜈

Q−1
G . (23)

For the axial oscillations, in the frequency range of the drained/undrained transition under glycerin-saturated
conditions at Pdiff = 2.5 MPa, the results for Q−1

K and Q−1
G deduced from equations (22) and (23) are reported

in Figure 14, along with Q−1
Kax

and Q−1
Gax

obtained experimentally from the output signals with the FFT and the
Ellipse method (equation (11) and Figures 12c and 12d). The results show a general good match between
the two methods to calculate Q−1

K and Q−1
G . Q−1

K as deduced from Q−1
EEllipse

and Q−1
𝜈Ellipse

through equations (22)
and (23), seems to be a bit lower than the direct experimental result, with a value of 0.15 instead of 0.22 at
f =0.3 Hz (Figure 14). This error is solely related to the small difference that was measured between Q−1

𝜈Ellipse
and

Q−1
𝜈FFT

(Figure 12b). Note that Q−1
EEllipse

=Q−1
EFFT

(Figure 12a). We can therefore conclude that, in an isotropic medium
and for the drained/undrained transition, the axial oscillations allow to measure all moduli and their respective
Q−1 factors, directly calculated either from 𝜎ax, 𝜀ax, and 𝜀rad (equation (11)) or from the relationships relating
𝜈, Q−1

E , Q−1
𝜈

, Q−1
K , and Q−1

G (equations (22) and (23)).

5.2. Absence of Dispersion at Higher Frequencies
Once the drained and undrained properties of the rock are clearly identified, one can investigate the possible
existence of other dispersive transitions at higher frequencies. This concerns a possible unrelaxed (saturated
isolated) regime.
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Figure 15. Model of the Lavoux, composed of spherical microporous oolites surrounded by macropores. The global
diffusion within the REV and the local diffusion in the oolites are represented. The oolites’ porosity (𝜙oolite) is deduced
from the experimental total porosity (23%) and from the ratio macroporosity/microporosity (45∕55), calculated from the
photomicrograph’s analysis (Figure 5). A 1-D pipe model (equation (24)) is used to calculate the local permeability of the
oolites (𝜅oolite). The obtained results are 𝜙oolite = 14.2% and 𝜅oolite = 1.6 × 10−15 m2. The calculated local permeability
of the micropores (𝜅oolite) is smaller than the sample’s permeability measured experimentally (𝜅 = 10−14 m2).

5.2.1. No Squirt Flow—Absence of Cracks
Undrained/unrelaxed transitions can exist when local flows occur within the REV in the undrained regime,
for instance, squirt flows from compliant cracks to rounded pores [Mavko and Jizba, 1991]. The only high-
frequency properties available to us in this study are the ultrasonic results (1 MHz) reported Table 1. The high-
frequency bulk modulus KHF for dry-, water-, and glycerin-saturated conditions are reported in Figure 13a.
In dry conditions, the ultrasonic result corresponds clearly to the drained properties. For water- and glycerin-
saturated conditions, the ultrasonic results show a good correspondence with the undrained properties or
the Biot-Gassmann’s predictions (Figure 13a). We can conclude that no distinct unrelaxed regime is expected
beyond the drained/undrained transition for this dual-porosity limestone. In the Lavoux limestone, the elastic
moduli are independent of the differential pressure (Figures 7 and 8), suggesting the absence of cracks. Con-
sistently, no squirt flow is thus possible between cracks or from cracks to rounded pores. This is corroborated
by the sample’s permeability that is also independent of differential pressure (Figure 6) [Gueguen et al., 2011].
5.2.2. No Local Diffusion Between the Microporosity and the Macroporosity
In a bimodal porosity medium, question rises whether there could be a local diffusion between the macro-
porosity and the microporosity, delayed relative to the global diffusion, due to a lower permeability of the
micropores contained in the oolites. The macroporosity of the Lavoux limestone being connected indepen-
dently of the microporosity, we can model this grainstone as a pile of spherical microporous oolites, of diame-
ters 100μm to 500μm, solely surrounded by macropores (Figure 15). The REV of the Lavoux would be a volume
containing a few oolites separated by macropores, as no heterogeneity larger than the oolites seems to exist
(Figure 4). At f =1 MHz in saturated conditions, the ultrasonic velocities of both the P and S waves are greater
than 1914 m s−1 (Table 1) corresponding to a minimum wavelength of approximately 2 mm. This wavelength
represents a square area similar to half the area of the photomicrograph presented in Figure 4, containing
at least a dozen of oolites. Thus, we can safely assume that, during the propagation of the ultrasonic P and
S waves, the volume of the oscillating stress field is much larger than the limestone’s REV. In the undrained
regime, the pore pressure is isobaric in the REV [Gassmann, 1951], meaning that the fluid’s pressure in the
macropores (pf−Macro) is equal to the fluid’s pressure in the oolites’ micropores (pf−micro) (Figure 15).

Similar to the drained/undrained transition characterized by the cutoff frequency f ∗1 that concerns the global
fluid flow, a local cutoff frequency f ∗1 oolite

could characterize the fluid flow occurring locally from the oolites to
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the macropores. The permeability of the oolites 𝜅oolite should be lower than the total permeability of the sam-
ple because of a much smaller pore entry radius compared to the macropores (Figure 4). A 1-D permeability
model from Gueguen and Dienes [1989] can be used to have an estimation of 𝜅oolite. The oolite’s microporous
network is modeled as a set of pipes of variable radii r and lengths 𝜆, isotropically distributed (Figure 15).
If we assume that all the pipes are connected, with respect to the definition of percolation theory, Gueguen
and Dienes [1989] showed that the permeability of the medium can be given by:

𝜅oolite = r̄2

32
Φoolite. (24)

The porosity of the oolite Φoolite is calculated from the proportion of microporosity in the total porosity,
which was deduced from the SEM image analysis at about 55% (Figure 5), and the total porosity measured
experimentally at about 23%. If we consider all the microporosity to be in the oolites and the total volume
Vtot =VMacropores + Voolites, we can deduce Φoolite =14.2%. The average radius r̄ is taken as the pore entry radius
of the micropores measured from the porosimetry measurements from Zinsmeister [2013], and corroborated
with the SEM photomicrograph (Figure 4), at about r̄=0.6 μm. Therefore, equation (24) gives a permeability of
𝜅oolite =1.6×10−15 m2, which is smaller than the sample’s global permeability (𝜅 = 10−14 m2). Now if we apply
the drained/undrained cutoff frequency (equation (1)) to the oolite, with a diffusion length L of about 300μ m
(Figure 15) and a drained bulk modulus Kd taken as 15 GPa, we obtain f ∗1 oolite

= 106 Hz in scaled frequency,
which is far above the cutoff frequency of the global diffusion (f ∗1 =2 × 102 Hz). This frequency measures the
minimum timescale that allows total diffusion in the oolite and therefore to equilibrate the inner pore pressure
pf−micro and the surrounding pore pressure pf−Macro (Figure 15). Above f ∗1 oolite

, no fluid exchange by diffusion
is possible between the oolites and the macropores.

The only measurement we have above f ∗1 oolite
is the ultrasonic measurement in glycerin-saturated conditions

(f ∗ =109 Hz). The bulk modulus and shear modulus KHF−gly and GHF−gly of the sample were found to be equal to
their respective undrained values (Table 1 and Figures 10a and 10c). Therefore, no dispersion is visible around
f ∗1 oolite

, which suggests that there is no flow between the oolites and the macropores in the undrained regime
(f ∗ > f ∗1 ). This is consistent with the idea that the micropores and the macropores have similar aspect ratios
(𝜉 = 1), implying no pressure gradients to relax, and that the fluid is isobaric in the REV because the sample
is already in the undrained regime. If f ∗1 oolite

had been less than f ∗1 , one could imagine a “partially undrained”
regime, for a frequency between f ∗1 oolite

and f ∗1 , where the oolites are undrained while the macropores are still
drained. A local transition around f ∗1 oolite

could then be expected with dispersion and attenuation.

5.3. Effect of the Boundary Conditions—1-D Diffusion Model for the Drained and Undrained Regimes
The effect of the boundary conditions on the elastic properties has been studied, with two different config-
urations for the drainage system: (1) open (drained conditions) and (2) closed (undrained conditions for the
system sample + dead volumes) (Figure 1a). We recall that all the results presented previously were obtained
in the first configuration. Because the dead volumes are very large in that case (∼ 60 mL), the boundary con-
ditions can be assimilated to drained boundary conditions [Pimienta et al., 2016b]. Analogue measurements,
using axial and hydrostatic oscillations for a glycerin-saturated sample, have been performed in the closed
configuration, with dead volumes of 3.3 mL. The results for the bulk modulus at Pdiff = 2.5 MPa are reported
in Figure 16b, along with the previous results obtained with fully drained conditions (Figure 16a). With dead
volumes, the drained/undrained transition is visible around the same cutoff frequency as in the first case,
but the dispersion is smaller (Figure 16b). In the drained frequency range, the bulk modulus measured in
the second case is higher than in fully drained conditions. Its value is 22 GPa (Figure 16b) instead of 16 GPa
(Figure 16a). In the undrained frequency range, the bulk modulus of the sample is independent of the bound-
ary conditions, with a value of 26 GPa in both configurations (Figures 16a and 16b), which is consistent with
the definition of the undrained regime.

In the second configuration, the pore pressure in the drainage circuit (pf
∗) was monitored during the stress

oscillations. In order to have a nonzero measurement, pf
∗ has to be measured in a closed volume to allow

for pressure buildup when fluid drains out of the sample. The volumetric strain (𝜀vol), induced by hydrostatic
stress oscillations (𝜎ii∕3), generates a flux of fluid going in and out of the sample, into the dead volumes. This
volumetric strain is defined as follows:

𝜀vol =
1
K

(𝜎ii

3
− 𝛼Δpf

)
, (25)
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Figure 16. Effect of the two types of experimental boundary conditions on the measured bulk modulus and comparison with the 1-D diffusion model:
(a) drained conditions and (b) system sample + dead volumes undrained. The experimental results are from the hydrostatic and axial oscillations in glycerin-
saturated conditions at Pdiff = 2.5 MPa. The model is calculated from local strains at different positions (0.5 L, 0.25 L, and 0.1 L) and from global strain.
The experimental results are from strains measured at z = 0.5 L. (c) Measurements of the ratio pore pressure over hydrostatic stress (3p∗

f
∕𝜎ii) in the second

type of boundary conditions are compared to the 1-D model, at the limit z = 0. For the hydrostatic oscillations 𝜎ii∕3 = ΔPc and for the axial oscillations
𝜎ii∕3 = 𝜎ax∕3.

where 𝛼 is the Biot coefficient andΔpf is the oscillation amplitude of the pore pressure in the medium. Experi-
mentally, when we apply the hydrostatic oscillations on the sample, we have𝜎ii∕3=ΔPc. This pressure induces
the volumetric strain 𝜀vol. On the other hand, when we apply the axial oscillations in an isotropic medium, the
equivalent hydrostatic stress to obtain the same volumetric strain 𝜀vol is 𝜎ii∕3=𝜎ax∕3 (equation (25)). Here we
assume that the stress 𝜎 is positive in compression and represents the amplitude of oscillation and that the
radial stress is constant during the axial stress oscillations (𝜎rad =0). For both stress oscillations at Pdiff =2.5 MPa
on glycerin-saturated sample, the ratio between the amplitude of the oscillating fluid pressure Δpf

∗ and the
amplitude of the equivalent hydrostatic stress oscillation 𝜎ii∕3 is equal to 3Δpf

∗∕𝜎ii . This ratio is reported in
Figure 16c as a function of frequency. For both hydrostatic and axial oscillations, the ratio tends to zero as the
frequency crosses the drained/undrained transition range ([5 × 10−2; 1] Hz). In the drained frequency range
(f <5×10−2 Hz), the ratio measured with hydrostatic measurements is slightly higher than with the axial oscil-
lation, respectively, 0.55 and 0.41 (Figure 16c). This ratio was defined as the “pseudo-Skempton” coefficient
B∗ =Δpf

∗∕ΔPc by Pimienta et al. [2015a] in the case of hydrostatic oscillations or the “pseudo-consolidation”
parameter 𝛾∗ =Δpf

∗∕𝜎ax in case of axial oscillations in Pimienta et al. [2015b]. This hydraulic parameter cannot
be considered as the real Skempton coefficient (B) of the sample, because B is solely defined for an undrained
REV, and pf

∗ does not measure the pore pressure pf inside the sample, unless the sample is fully drained.

A 1-D diffusion model has been developed by Pimienta et al. [2016b] to take into account these effects of the
boundary conditions and has been compared to the previous experimental results (Figure 16). The principle
of the model is to find the steady state solution of the diffusion equation for the pore pressure pf , when the
sample undergoes hydrostatic pressure oscillations Pc. Because the lateral surface of the sample is jacketed
and the drainage system acts on the top and bottom faces (Figure 1), it was proposed by Pimienta et al. [2016b]
to solve only the 1-D diffusion along the vertical axis (z) of the sample. For the sake of simplicity, pf =pf (z, t)−p̄f

and Pc = Pc(t) − P̄c, where p̄f and P̄c are the mean pressures during the oscillations, such that Pdiff = P̄c − p̄f .
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The 1-D diffusion equation writes as follows:

𝜕pf

𝜕t
= 𝜅

𝜂Ss

𝜕2pf

𝜕z2
+ B

𝜕Pc

𝜕t
, (26)

where Ss is the storage coefficient of the sample, B the Skempton coefficient, and 𝜅 the permeability. Accord-
ing to the poroelastic relationships provided by Kumpel [1991], B=(1∕Kd−1∕Ku)∕(1∕Kd−1∕KS) and Ss =𝛼∕BKd .
For the model, Ku is deduced from Biot-Gassmann’s relationship (equation (20)) to limit the number of adjust-
ment parameters. The applied stress Pc(t) is supposed to be of sinusoidal form such that Pc(t)=ΔPcei𝜔t . For a
sample of length L, Pimienta et al. [2016b] give the steady state solution of equation (26) for drained boundary
conditions (pf (0, t)=pf (L, t) = 0):

pf (z, t) = BΔPcei𝜔t

[
1 − sinh (a (L − z)) + sinh (az)

sinh (aL)

]
, (27)

with a = (1 + i)
√
𝜔𝜂Ss∕2𝜅. With symmetric dead volumes on top and bottom of the sample, the solution

becomes [Pimienta et al., 2016b]:

pf (z, t) = BΔPcei𝜔t

⎡⎢⎢⎢⎣
1 −

cosh
(

a
(

L
2
− z

))
b. sinh

(
a L

2

)
+ cosh

(
a L

2

)
⎤⎥⎥⎥⎦
, (28)

with b = (1 − i)A
(

Ss∕S
)√

2𝜅∕𝜔𝜂Ss, A being the cross-sectional area of the sample, and S = Vdead vol.∕Kf the
storage capacity of the dead volumes. Then, the local volumetric strain is obtained from 𝜀vol(z, t) = Kd

−1(
Pc(t) − 𝛼pf (z, t)

)
, which is a local result. A global volumetric strain can be calculated from 𝜀̄vol(t) =

1
L
∫ L

0 𝜀vol(z, t)dz and can be used to calculate a global bulk modulus. For local or global strain, the bulk modu-
lus is deduced from Kmodel = − ||Pc

|| ∕ ||𝜀̄vol
||. Thanks to the model, the ratio fluid pressure over hydrostatic stress

(3pf∕𝜎ii) could be calculated along the z axis of sample, but for the comparison with the fluid’s pressure mea-
sured in the dead volumes (pf

∗), the ratio is evaluated for z = 0, i.e., (3pf
∗∕𝜎ii)model = ||pf (0, t)|| ∕ ||Pc(t)||. Here

we assume that the pore pressure at the boundary is the fluid pressure in the dead volume.

The model’s predictions in both configurations for a glycerin-saturated sample are presented in Figure 16.
The model has been calculated for local strains at three different positions (0.5 L, 0.25 L, and 0.1 L) and for the
global strain. We recall that the experimental results are deduced from local strains measured at z = 0.5 L.
The parameters used for the model predictions were L = 80 mm, A = 𝜋(40)2 = 5027 mm2, Kd = 16 GPa,
KS=77 GPa, Kf = 4.36 GPa, 𝜂 = 1.083 Pa s, Φ= 24%, 𝜅 = 10−14 m2, and Vdead vol. = 3.3 mL. Concerning the bulk
modulus in the drained frequency range, the model predicts Kmodel = 24 GPa for the second configuration
(Figure 16b). This is slightly above the experimental result of 23 GPa (Figure 16b). The bulk modulus Kmodel

is 16 GPa in fully drained conditions (Figure 16a). In the undrained frequency range, the model predicts
Kmodel =26 GPa (Figure 16a), which by construction of the model corresponds to Biot-Gassmann’s prediction.
For the ratio 3pf

∗∕𝜎ii , the model predicts a value of 0.41 in the drained frequency range, which corresponds to
the experimental measurement done with axial oscillations (Figure 16c). For the drained/undrained transition,
the ratio (3pf

∗∕𝜎ii)model decreases down to 0 consistently with the axial experimental results (Figure 16c).

When comparing the model and the experimental results both deduced from local strain at z=0.5 L, we can
see a frequency shift of nearly 1 order of magnitude (Figures 16a and 16b). The predicted cutoff frequency is
around 0.04 Hz for the model, and the experimental value is 0.2 Hz (Figures 16a and 16b). The model calculated
from local strain at z=0.1 L seems to fit better the experimental results. However, no shift in frequency appears
for the ratio (3pf

∗∕𝜎ii) (Figure 16c). The position of the local strain mainly affects the measured cutoff fre-
quency of the transition: the closer to the boundary, the higher the cutoff frequency. In other words, when the
frequency of the stress oscillations increases, the REVs at the center of the sample become undrained before
the REVs close to the open boundaries. However, the amplitude of the dispersion is unchanged. Pimienta et al.
[2016b] compared the model to experimental results on Fontainebleau sandstones and found that the cutoff
frequency of the bulk modulus was in their case consistent with the experimental results. However, in their
case, it was the ratio 3Δpf

∗∕𝜎ii that had a frequency shift of 1 order of magnitude compared to the experi-
mental results. Therefore, there seems to be a systematic frequency shift between the bulk modulus and the
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ratio 3Δpf
∗∕𝜎ii predicted by the model. This could be due to the limitation to a 1-D diffusion. Experimentally,

radial diffusion may occur near the end platens because of the sample’s cross section being much larger than
the exit holes for the fluid.

6. Conclusion

The elastic moduli (E, 𝜈, K , and G) dispersion and their associated Q−1 factors have been measured on a Lavoux
limestone, using stress-strain oscillations and ultrasonic measurements in a triaxial cell. The sample was mea-
sured under dry-, water-, and glycerin-saturated conditions, which enabled to extend the apparent frequency
range of our measurements. Two types of stress oscillations were performed: axial and hydrostatic.

The bulk modulus obtained from both the axial and hydrostatic oscillations compared well over their mutual
frequency range, confirming the consistency of both methods when applied on an isotropic material in the
drained and undrained regimes. Therefore, the axial oscillations enable to calculate all the moduli and Q−1

factors. The formalized relationships between the Q−1 factors [Winkler and Nur, 1979; Pimienta et al., 2016c]
are in agreement with the experimental results, with the condition of a dispersive Poisson’s ratio.

The drained/undrained transition has been successfully characterized, with a dispersive effect on all the elas-
tic moduli except for the shear modulus. The Q−1 factors were also measured and correlate well with the
measured dispersions. The dispersion on K and G is consistent with Biot-Gassmann’s theory, either in the
water-saturated sample or the glycerin-saturated sample. Experimentally, the boundary conditions around
the sample were either drained or undrained for the system sample + dead volumes. A 1-D diffusion model
was used to successfully take into account the effect of these boundary conditions on the measured drained
moduli.

No other dispersive transitions are detected above the drained/undrained cutoff frequency. We interpret this
as an absence of squirt flow due to the absence of cracks. This is corroborated by the fact that the elastic prop-
erties and the permeability are independent of effective pressure. We conclude that both the intragranular
micropores and intergranular macropores are rounded pores (𝜉Macro = 𝜉micro = 1). The sample has a bimodal
porosity distribution. Local diffusion between the oolites’ micropores and the surrounding macropores is
however faster than the global diffusion. In other words, the cutoff frequency of the global flow (drained/
undrained transition) f ∗1 is lower than the theoretical cutoff frequency of the local flow in the oolites f ∗1 oolite

.

The drained/undrained transition is measurable in the laboratory. Its critical frequency concerns a global dif-
fusion process on a small length scale, which in our case is the size of the sample L. In the field, with seismic or
sonic logs, the global diffusion process would occur within the scale of the wavelength, which is far larger than
L for frequencies under 105 Hz. Therefore, at the seismic and sonic frequencies, the medium would always be
in the undrained regime and be nondispersive. This would not be the case if an open, or drained, boundary
condition would exist, for example, a permeable fault.
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