
HAL Id: hal-03978799
https://cnrs.hal.science/hal-03978799

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact computations with quasiseparable matrices
Clément Pernet, Hippolyte Signargout, Gilles Villard

To cite this version:
Clément Pernet, Hippolyte Signargout, Gilles Villard. Exact computations with quasiseparable ma-
trices. ISSAC’23: the 2023 International Symposium on Symbolic and Algebraic Computation, Jul
2023, Tromso, Norway. pp.480-489, �10.1145/2930889.2930915�. �hal-03978799�

https://cnrs.hal.science/hal-03978799
https://hal.archives-ouvertes.fr


Exact computations with quasiseparable matrices
Clément Pernet

Grenoble INP, Univ. Grenoble Alpes
CNRS, LJK, UMR 5224

Grenoble, France

Hippolyte Signargout
ENS de Lyon, U. Lyon, CNRS, Inria,
UCBL, LIP UMR 5668 Lyon and LJK

UMR 5224 Grenoble, France

Gilles Villard
CNRS, U. Lyon, Inria, ENS de Lyon,

UCBL, LIP UMR 5668
Lyon, France

ABSTRACT
Quasi-separable matrices are a class of rank-structured matrices
widely used in numerical linear algebra and of growing interest
in computer algebra, with applications in e.g. the linearization of
polynomial matrices. Various representation formats exist for these
matrices that have rarely been compared.

We show how the most central formats SSS and HSS can be
adapted to symbolic computation, where the exact rank replaces
threshold based numerical ranks.We clarify their links and compare
them with the Bruhat format. To this end, we state their space and
time cost estimates based on fastmatrixmultiplication, and compare
them, with their leading constants. The comparison is supported
by software experiments.

We make further progresses for the Bruhat format, for which we
give a generation algorithm, following a Crout elimination scheme,
which specializes into fast algorithms for the construction from a
sparse matrix or from the sum of Bruhat representations.
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1 INTRODUCTION
Quasiseparable matrices arise frequently in various problems of
numerical analysis and are becoming increasingly important in
computer algebra, e.g. by their application to handle linearizations
of polynomial matrices [2]. Structured representations for these
matrices and their generalisations have been widely studied but
to our knowledge they have not been compared in detail with
each other. In this paper we aim to adapt SSS [9] and HSS [5, 16],
two of the most prominent formats of numerical analysis to exact
computations and compare them theoretically and experimentally
to the Bruhat format [21].These formats all have linear storage
size in both the dimension and the structure parameter. We do
not investigate the Givens weight representation [7] as it strongly
relies on orthogonal transformations in C, which transcription in
the algebraic setting is more challenging. See [13, 25, 26] for an
extensive bibliography on computing with quasiseparable matrices.

Definition 1.1. An 𝑛 × 𝑛 matrix 𝐴 is 𝑠-quasiseparable if for all

𝑘 ∈ J1, 𝑛K, rank(𝐴1..𝑘,𝑘+1..𝑛) ≤ 𝑠 and rank(𝐴𝑘+1..𝑛,1..𝑘 ) ≤ 𝑠 .

Complexity bound notation.We consider matrices over an abstract
commutative field K, and count arithmetic operations in K. Our
detailed comparison of formats aims in particular to determine the
asymptotic multiplicative constants, an insightful measure on the
algorithm’s behaviour in pratice. In this regard, we will use the
leading term in the complexities as the measure for our compar-
ison: namely a function TXXX (𝑛, 𝑠) such that the number of field
operations for running Algorithm XXX with parameters 𝑛, 𝑠 is
TXXX (𝑛, 𝑠) + 𝑜 (TXXX (𝑛, 𝑠)) asymptotically in 𝑛 and 𝑠 . We proceed

similarly for the space cost bounds with the notation SXXX (𝑛, 𝑠). We
denote by 𝜔 a feasible exponent for square matrix multiplication,
and 𝐶𝜔 the corresponding leading constant; namely, using above
notation, TMM (𝑛) = 𝐶𝜔𝑛𝜔 , where MM corresponds to the operation
𝐶 = 𝐶+𝐴𝐵 with𝐴, 𝐵,𝐶 ∈ K𝑛×𝑛 . The straightforward generalization
gives TMM (𝑚,𝑘, 𝑛) = 𝐶𝜔𝑚𝑛𝑘 min(𝑚,𝑘, 𝑛)𝜔−3 for the product of an
𝑚 × 𝑘 by a 𝑘 × 𝑛 matrix.

1.1 Rank revealing factorizations
Space efficient representations for quasiseparable matrices rely on
rank revealing factorizations: a rank 𝑟 matrix 𝐴 ∈ K𝑚×𝑛 is repre-
sented by two matrices 𝐿 ∈ K𝑚×𝑟𝑅 ∈ K𝑟×𝑛 such that 𝐴 = 𝐿𝑅. In
exact linear algebra, such factorizations are usually computed using
Gaussian elimination, such as PLUQ, CUP, PLE, CRE decomposi-
tions [8, 15, 24], which we will generically denote by RF.

Cost estimates of the above factorization algorithms are either
given as𝑂 (𝑚𝑛𝑟𝜔−2) orwith explicit leading constants TRF (𝑚,𝑛, 𝑟 ) =
𝐾𝜔𝑛

𝜔 under genericity assumptions:𝑚 = 𝑛 = 𝑟 and generic rank
profile [8, 15]. We refer to [20] for an analysis in the non-generic
case of the leading constants in the cost of the two main variants
of divide and conquer Gaussian elimination algorithms. We may
therefore assume that TRF (𝑚,𝑛, 𝑟 ) = 𝐶RF𝑚𝑛𝑟𝜔−2 for a constant𝐶RF,
for 𝜔 ≥ 1 + log2 3, which is the case for all pratical matrix multipli-
cation algorithm. Note that for 𝜔 = 3, these costs are both equal to
2𝑚𝑛𝑟 . Unfortunately, the non-predictable rank distribution among
the blocks being processed leads to an over-estimation of some
intermediate costs which forbids tighter constants (i.e. interpolat-
ing the known one 𝐾3 = 2/3 in the generic case). The algorithms
presented here still carry on for smaller values of 𝜔 , but we chose
to skip the more complex derivation of estimates on their leading
constants for the sake of clarity.

Our algorithms for SSS and HSS can use any rank revealing
factorization. On the other hand, the Bruhat format requires one
revealing the additional information of the rank profile matrix, e.g.
the CRE decompositions used here (See [8]).

Theorem 1.2 ([8, 17]). Any rank 𝑟 matrix 𝐴 ∈ K𝑚×𝑛 has a CRE

decomposition 𝐴 = 𝐶𝑅𝐸 where 𝐶 ∈ K𝑚×𝑟 and 𝐸 ∈ K𝑟×𝑛 are in

column and row echelon form, and 𝑅 ∈ K𝑟×𝑟 is a permutation matrix.

The costs we give in relation to Bruhat generator therefore rely
on constants 𝐶RF from factorizations allowing to produce a CRE
decomposition, like the ones in [20].

1.2 Contributions
In Section 2 we define the SSS, HSS and Bruhat formats. We then
adapt algorithms operating with HSS and SSS generators from the
literature to the exact context. The HSS generation algorithm is
given in a new iterative version and the SSS product algorithm has
an improved cost. We focus for SSS on basic bricks on which other
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Table 1: Summary of operation and storage costs

𝜔 𝜔 = 3
SSS HSS Bruhat SSS HSS Bruhat

Storage 7𝑛𝑠 18𝑛𝑠 4𝑛𝑠 7𝑛𝑠 18𝑛𝑠 4𝑛𝑠
Gen. from Dense 2𝐶RF𝑛2𝑠𝜔−2 2𝜔𝐶RF𝑛2𝑠𝜔−2 𝐶RF𝑛

2𝑠𝜔−2 4𝑛2𝑠 16𝑛2𝑠 2𝑛2𝑠
× Dense block vector(𝑛 × 𝑣) 7𝐶𝜔𝑛𝑠𝑣𝜔−2 18𝐶𝜔𝑛𝑠𝑣𝜔−2 8𝐶𝜔𝑛𝑠𝑣𝜔−2 14𝑛𝑠𝑣 36𝑛𝑠𝑣 16𝑛𝑠𝑣
Addition (10 + 2𝜔 )𝐶𝜔𝑛𝑠𝜔−1

(
9·2𝜔−2−8
2𝜔−2−1 𝐶𝜔 + 2𝐶RF

)
𝑛𝑠𝜔−1 log𝑛/𝑠 36𝑛𝑠2 24𝑛𝑠2 log𝑛/𝑠

Product (31 + 2𝜔 )𝐶𝜔𝑛𝑠𝜔−1 78𝑛𝑠2

operations can be built. This opens the door to adaptation of fast
algorithms for inversion and system solving [3, 4, 10] and format
modeling operations such as merging, splitting andmodel reduction
[4]. In Section 3.3 we give a generic Bruhat generation algorithm
from which we derive new fast algorithms for the generation from
a sparse matrix and from a sum of matrices in Bruhat form.

Table 1 displays the best cost estimates for differents operations
on an 𝑛 ×𝑛 𝑠-quasi-separable matrix in the three formats presented
in the paper. The best and optimal storage size is reached by the
Bruhat format which also has the fastest generator computation
algorithm. However, this is not reflected in the following opera-
tion costs as applying a quasiseparable matrix to a dense matrix
is least expensive with an SSS generator and addition and product
of 𝑛 × 𝑛 matrices given in Bruhat form is super-linear in 𝑛. We
notice in Proposition 2.5 that HSS is twice as expensive as SSS and
gives no advantage in our context. We thus stop the comparison
at the generator computation. We still give in Table 1 the cost of
quasiseparable × dense product which is proportional to the gener-
ator size [16]. We complete this analysis with experiments showing
that despite slightly worse asymptotic cost estimates, SSS performs
better than Bruhat in practice for the construction in Section 3.5
and the product by a dense block vector in Section 4.3.

2 PRESENTATION OF THE FORMATS
2.1 SSS generators
Introduced in [9], SSS generators were later improved indepen-
dently in [10] and [4] using block-versions, which we present here.
In particular, the space was improved from 𝑂 (𝑛𝑠2) to 𝑂 (𝑛𝑠).

An 𝑠-quasiseparable matrix is sliced following a grid of 𝑠 × 𝑠
blocks. Blocks on, over and under the diagonal are treated separately.
On one side of the diagonal, each block is defined by a product
depending on its row (left-most block of the product), its column
(right-most block), and its distance to the diagonal (number of
blocks in the product).

Definition 2.1. Let𝐴 =

[
𝐴1,1 · · · 𝐴1,𝑁
...

...
𝐴𝑁,1 · · · 𝐴𝑁,𝑁

]
∈ K𝑛×𝑛 with 𝑡×𝑡 blocks

𝐴𝑖, 𝑗 for 𝑖, 𝑗 < 𝑁 and 𝑁 = ⌈𝑛/𝑡⌉. 𝐴 is given in sequentially semi-

separable format of order 𝑡 (𝑡-SSS) if it is given by the 𝑡 × 𝑡 matrices

(𝑃𝑖 ,𝑉𝑖 )𝑖∈J2,𝑁 K, (𝑄𝑖 ,𝑈𝑖 )𝑖∈J1,𝑁−1K , (𝑅𝑖 ,𝑊𝑖 )𝑖∈J2,𝑁−1K , (𝐷𝑖 )𝑖∈J1,𝑁 K s.t.

𝐴𝑖, 𝑗 =


𝑃𝑖𝑅𝑖−1 . . . 𝑅 𝑗+1𝑄 𝑗 if 𝑖 > 𝑗

𝐷𝑖 if 𝑖 = 𝑗

𝑈𝑖𝑊𝑖+1 . . .𝑊𝑗−1𝑉𝑗 otherwise

(1)

Proposition 2.2. Any 𝑛×𝑛 𝑠-quasiseparable matrix has an 𝑠-SSS
representation. It uses SSSS (𝑛, 𝑠) = 7𝑛𝑠 field elements.

Proof. Direct consequence of Proposition 3.1. □

2.2 HSS generators
The HSS format was first introduced in [6], although the idea origi-
nated with the uniformH -matrices of [12] and in more details with
theH2

-matrices of [14], with algorithms relying on [23]. TheH2

format is slightly different from HSS, more details in [13].
The format is close to SSS (see Proposition 2.4) as the way of

defining blocks is similar. Yet, the slicing grid is built recursively
and the definition of blocks product depends on the path to follow
in the recursion tree. Also, both sides of the diagonal are treated
jointly and the format is therefore less compact, which as will be
shown makes HSS less efficient.

The structure is complex and notations differ in the literature.We
made the following choices: we avoid the recursive tree definition
inherited from the Fast MultipoleMethod [6] and thus only consider
constant-depth recursive block divisions. We made this choice to
focus on linear algebra and quasiseparable matrices with no pre-
requisites (no notion of where the rank is). For the same reason
we focus on uniform subdivisions. Most literature on HSS uses non-
uniform grids in order to adapt to matrices with a structure within
the quasiseparable rank structure [6]. Despite being more general,
this adds confusion which is not needed in our case.

We use a notation similar to [27] with transition matrices.

Definition 2.3. Let 𝐴 ∈ K𝑛×𝑛 and the uniform block divisions

𝐴 =


𝐴𝑘 ;1,1 · · · 𝐴𝑘 ;1,2𝑘
...

...
𝐴
𝑘 ;2𝑘 ,1 · · · 𝐴𝑘 ;2𝑘 ,2𝑘

 . (2)

𝐴 is given in hierarchically semi-separable format of order 𝑡 (𝑡-HSS) if
it is given by the 𝑡×𝑡 matrices

(
𝑈𝐾 ;𝑖 ,𝑉𝐾 ;𝑖 , 𝐷𝑖

)
𝑖∈J1,𝑁 K,

(
𝑅𝑘 ;𝑖 ,𝑊𝑘 ;𝑖

)
𝑘∈J2,𝐾K
𝑖∈J1,2𝑘K

and

(
𝐵𝑘 ;𝑖

)
𝑘∈J1,𝐾K
𝑖∈J1,2𝑘K

with 𝑁 = ⌈𝑛/𝑡⌉ and 𝐾 ≥ log𝑁 such that for

𝑖 ∈ J1, 𝑁 K, 𝐴𝐾 ;𝑖,𝑖 = 𝐷𝑖 and if we define recursively for 𝑘 from

𝐾 − 1 to 1 and 𝑖 ∈ J1, 2𝑘K, 𝑈𝑘 ;𝑖 =

[
𝑈𝑘+1;2𝑖−1𝑅𝑘+1;2𝑖−1
𝑈𝑘+1;2𝑖𝑅𝑘+1;2𝑖

]
and 𝑉𝑘 ;𝑖 =[

𝑊𝑘+1;2𝑖−1𝑉𝑘+1;2𝑖−1 𝑊𝑘+1;2𝑖𝑉𝑘+1;2𝑖
]
then

𝐴𝑘 ;2𝑖−1,2𝑖 = 𝑈𝑘 ;2𝑖−1𝐵𝑘 ;2𝑖−1𝑉𝑘 ;2𝑖
𝐴𝑘 ;2𝑖,2𝑖−1 = 𝑈𝑘 ;2𝑖𝐵𝑘 ;2𝑖𝑉𝑘 ;2𝑖−1

(3)
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The HSS generator can be seen as a recursive SSS generator with
two differences : the use of the𝐵matrices, and the distribution of the
translation matrices. The similarity is made clear in Proposition 2.4.

Proposition 2.4. Let𝑈𝐾 ;𝑖 ,𝑉𝐾 ;𝑖 , 𝐷𝑖 , 𝑅𝑘 ;𝑖 ,𝑊𝑘 ;𝑖 , 𝐵𝑘 ;𝑖 for appropriate

𝑘 ≤ 𝐾, 𝑖 ≤ 2𝑘 a 𝑡-HSS generator for 𝐴. Let 𝐼 , 𝐽 ∈ J1, 2𝐾 K and 𝑘 the

highest level of recursion for which𝐴𝐾 ;𝐼 ,𝐽 is not included in a diagonal

block. For 𝑖1 = ⌊𝐼/2𝐾−𝑘−1⌋, 𝑖0 = ⌊𝐼/2𝐾−𝑘 ⌋ and 𝑗1 = ⌊𝐽/2𝐾−𝑘−1⌋ we
have

𝐴𝐾 ;𝐼 ,𝐽 = 𝑈𝐾 ;𝐼𝑅𝐾 ;𝐼 ...𝑅𝑘+1;𝑖1𝐵𝑘 ;𝑖0𝑊𝑘+1;𝑗1 ...𝑊𝐾 ;𝐽𝑉𝐾 ;𝐽 . (4)

Proof. By induction on Equation (3). □

Proposition 2.5. Any 𝑛×𝑛 𝑠-quasiseparable matrix has a 2𝑠-HSS
representation. This is the optimal block parameter and the represen-

tation uses SHSS (𝑛, 𝑠) = 18𝑛𝑠 field elements.

Proof. Consequence of Proposition 3.2. For optimality let 𝐴 be
𝑠-quasiseparable given in 𝑡-HSS form. We use Proposition 2.4:[

𝐴𝐾 ;3...4,1...2 𝐴𝐾 ;3...4,5...6
]
=

[
𝑈𝐾 ;3𝑅𝐾 ;3
𝑈𝐾 ;4𝑅𝐾 ;4

]
𝐻 (5)

where 𝐻 ∈ 𝐾𝑡×4𝑡 . The quasi-separability of 𝐴 bounds the rank
of the left part of Eq. (5) by 2𝑠 while the one of the right side is
bounded by 𝑡 . When the first bound is tight we get 𝑡 ≥ 2𝑠 . □

2.3 Bruhat generators
The Bruhat generator was first defined in [19, 21]. Contrarily to
SSS and HSS, it does not use on a pre-defined grid but relies on the
rank profile information contained in the rank profile matrix [8] of
the lower and upper triangular parts of the quasiseparable matrix.

Recall from [21] that a matrix is 𝑡-overlapping if any subset of
𝑡 + 1 of its non-zero columns (resp. rows) contains at least one
whose leading non-zero element is below (resp. before) the trailing
non-zero element of another. We call J𝑛 the anti-identity matrix of
dimension 𝑛 and define the Left operator : K𝑛×𝑛 → K𝑛×𝑛 s.t.

(𝐴)𝑖, 𝑗 =
{
𝐴𝑖, 𝑗 if 𝑖 + 𝑗 ≤ 𝑛

0 otherwise . (6)

Definition 2.6. An 𝑛 × 𝑛 matrix 𝐴 is represented in 𝑡-Bruhat
format if it is given by a diagonal matrix 𝐷 ∈ K𝑛×𝑛 and 6 matrices

𝐶 (𝐿) , 𝑅 (𝐿) , 𝐸 (𝐿) ,𝐶 (𝑈 ) , 𝑅 (𝑈 ) , 𝐸 (𝑈 )where 𝐶 (𝐿) ∈ K𝑛×𝑢 and 𝐶 (𝑈 ) ∈
K𝑛×𝑣 are in column echelon form and 𝑡-overlapping, 𝐸 (𝐿) ∈ K𝑢×𝑛

and 𝐸 (𝑈 ) ∈ K𝑣×𝑛 are in column echelon form and 𝑡-overlapping and

𝑅 (𝐿) ∈ K𝑢×𝑢 , 𝑅 (𝑈 ) ∈ K𝑣×𝑣 are permutation matrices and satisfy

𝐴 = 𝐷 + J𝑛
(
𝐶 (𝐿)𝑅 (𝐿)𝐸 (𝐿)

)
+

(
𝐶 (𝑈 )𝑅 (𝑈 )𝐸 (𝑈 )

)
J𝑛

Proposition 2.7. Any 𝑛 × 𝑛 𝑠-quasiseparable matrix has an 𝑠-

Bruhat representation. It uses SBruhat (𝑛, 𝑠) = 4𝑛𝑠 field elements

which is optimal.

Proof. By [21, Theorem 20]. As 2𝑛𝑠 coefficients are necessary
to represent all rank 𝑠 triangular matrices, 4𝑛𝑠 is optimal. □

3 CONSTRUCTION OF THE GENERATORS
3.1 SSS generator from a dense matrix
We recall in Algorithm DenseToSSS the construction of an SSS
generetor from a dense 𝑠-quasiseparable matrix 𝐴 ∈ K𝑛×𝑛 . It is
adapted from [4, §6.1] and [10, Alg. 6.5] where the SVD based
numerical rank revealing factorizations are replaced by RF.

The blocks 𝐷𝑖 are directly extracted from the dense matrix in
Line 3. Each block-triangular part is then compressed independently.
Each step eliminates a chunk made of a block-row of A and a
remainder from the previous step. The result is three blocks of the
generator and a remainder to be eliminated at the subsequent step.

Algorithm 3.1 DenseToSSS
Input: 𝐴 an 𝑛 × 𝑛 𝑠-quasi-separable matrix with 𝑠 ≤ 𝑡
Output: 𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖 ,𝑈𝑖 ,𝑉𝑖 ,𝑊𝑖 , 𝐷𝑖 for appropriate 𝑖 ∈ J1, 𝑁 K a 𝑡-SSS

representation of 𝐴

1: 𝐴 =

[
𝐴1,1 · · · 𝐴1,𝑁
...

...
𝐴𝑁,1 · · · 𝐴𝑁,𝑁

]
, 𝐻 =

[
𝐻0,1 · · · 𝐻0,𝑁
...

...
𝐻𝑁,1 · · · 𝐻𝑁,𝑁

]
← 0

2: for 𝑘 = 1 . . . 𝑁 − 1 do
3: 𝐷𝑘 ← 𝐴𝑘,𝑘

4:

( [
𝑊𝑘
𝑈𝑘

]
,
[
𝑉𝑘+1 𝐻𝑘,𝑘+2...𝑁

] )
← RF

( [
𝐻𝑘−1,𝑘+1...𝑁
𝐴𝑘,𝑘+1...𝑁

] )
5:

( [
𝑄𝑘+1

𝐻𝑘+2...𝑁 ,𝑘

]
,
[
𝑅𝑘 𝑃𝑘

] )
← RF ( [ 𝐻𝑘+1...𝑁 ,𝑘−1 𝐴𝑘+1...𝑁 ,𝑘 ])

6: 𝐷𝑁 = 𝐴𝑁,𝑁

Proposition 3.1. Algorithm DenseToSSS computes a 𝑡-SSS gen-

erator for an 𝑠-quasiseparable matrix (𝑠 ≤ 𝑡) in TDenseToSSS (𝑛, 𝑡) =
2𝐶RF𝑛2𝑠𝜔−2

field operations.

Proof. For 𝑘 ∈ J1, 𝑁 − 1K, the dimensions of the output of
Lines 4 and 5 are sufficient since the input of the factorisation is
a concatenation of a block of 𝐴 with a rank-revealing factor of
another block of 𝐴 on the same side of the diagonal, and is hence
of rank at most 𝑠 .

Let 𝑖, 𝑗 ∈ J1, 𝑁 K. If 𝑖 = 𝑗 Line 3 for 𝑘 = 𝑖 gives 𝐷𝑖 = 𝐴𝑖,𝑖 . If 𝑖 < 𝑗 ,
Line 4 gives

𝑊𝑗−1𝑉𝑗 = 𝐻 𝑗−2, 𝑗 (7)
𝑊𝑘𝐻𝑘,𝑗 = 𝐻𝑘−1, 𝑗 (𝑘 ∈ J1, 𝑗 − 2K) (8)
𝑈𝑖𝐻𝑖, 𝑗 = 𝐴𝑖, 𝑗 (𝑖 < 𝑁 ) (9)
𝑈𝑖𝑉𝑖+1 = 𝐴𝑖,𝑖+1 (10)

which combines to𝑈𝑖𝑊𝑖+1 . . .𝑊𝑗−1𝑉𝑗 = 𝐴𝑖, 𝑗 . The same way, if 𝑖 > 𝑗

then 𝑃𝑖𝑅𝑖−1 . . . 𝑅 𝑗+1𝑄 𝑗 = 𝐴𝑖, 𝑗 .
The cost is

∑𝑁−1
𝑘=1 2TRF (𝑡 (𝑁 − 𝑘), 2𝑡, 𝑠) = 2𝐶RF𝑛2𝑠𝜔−2. □

3.2 HSS generator from a dense matrix
The first construction algorithm for a general quasiseparable ma-
trix is presented in [6]. We present in Algorithm DenseToHSS an
iterative version of the faster and simpler algorithm of [27].

Each step of the loop on 𝑘 passes block-row-wise and block-
column-wise on the matrix inherited from the previous step, fac-
torising block rows and block columns two by two. At each step
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each block is hence factorised twice, producing transition matrices
𝑅 and𝑊 , the remainder being either passed to the following step
or finally stored as a 𝐵 matrix.

Algorithm 3.2 DenseToHSS
Input: 𝐴 an 𝑛 × 𝑛 quasiseparable matrix of order s
Output: 𝑈𝐾 ;𝑖 ,𝑉𝐾 ;𝑖 , 𝐷𝑖 , 𝑅𝑘 ;𝑖 ,𝑊𝑘 ;𝑖 , 𝐵𝑘 ;𝑖 for appropriate 𝑘 ≤ 𝐾, 𝑖 ≤ 2𝑘

a 𝑡-HSS representation of 𝐴 with 𝑡 ≥ 2𝑠
1: 𝐻 ← 𝐴 ⊲ Use the block division of Eq. (2) with 𝑘 = 𝐾

2: for 𝑖 = 1 . . . 2𝐾 do
3: 𝐷𝑖 ← 𝐴𝐾 ;𝑖,𝑖

4: for 𝑘 = 𝐾 . . . 1 do
5: for 𝑖 = 1 . . . 2𝑘 do ⊲ All operations are in this loop

⊲ 𝑅𝐾+1;2𝑖 (resp.𝑊𝐾+1;2𝑖 ) has row (resp. column) dimension 0

6:

( [
𝑅𝑘+1;2𝑖−1
𝑅𝑘+1;2𝑖

]
,

[
𝐻 ′′
𝑘 ;𝑖,1...𝑖−1 𝐻 ′

𝑘 ;𝑖,𝑖+1...2𝑘
] )

←

RF ( [ 𝐻 ′𝑘 ;𝑖,1...𝑖−1 𝐻𝑘 ;𝑖,𝑖+1...2𝑘 ])

7:

( [
𝐻 ′′
𝑘 ;1...𝑖−1,𝑖

𝐻 ′
𝑘 ;𝑖+1...2𝑘 ,𝑖

]
, [𝑊𝑘+1;2𝑖−1 𝑊𝑘+1;2𝑖 ]

)
← RF

( [
𝐻 ′
𝑘 ;1...𝑖−1,𝑖

𝐻
𝑘 ;𝑖+1...2𝑘 ,𝑖

] )
8: for 𝑖 = 1 . . . 2𝑘−1 do ⊲ Only renaming from here

9: 𝐵𝑘 ;2𝑖−1 ← 𝐻 ′′
𝑘 ;2𝑖−1,2𝑖

10: 𝐵𝑘 ;2𝑖 ← 𝐻 ′′
𝑘 ;2𝑖,2𝑖−1

11: for 𝑗 = 1 . . . 2𝑘−1, 𝑗 ≠ 𝑖 do

12: 𝐻𝑘−1;𝑖, 𝑗 ←
[
𝐻 ′′
𝑘 ;2𝑖−1,2𝑗−1 𝐻 ′′

𝑘 ;2𝑖−1,2𝑗
𝐻 ′′
𝑘 ;2𝑖,2𝑗−1 𝐻 ′′

𝑘 ;2𝑖,2𝑗

]
13: 𝐻𝑘−1:𝑗,𝑖 ←

[
𝐻 ′′
𝑘 :2𝑗−1,2𝑖−1 𝐻 ′′

𝑘 :2𝑗−1,2𝑖
𝐻 ′′
𝑘 :2𝑗,2𝑖−1 𝐻 ′′

𝑘 :2𝑗,2𝑖

]
14: for 𝑖 = 1 . . . 2𝐾 do
15: 𝑈𝐾 ;𝑖 ← 𝑅𝐾+1;2𝑖−1
16: 𝑉𝐾 ;𝑖 ←𝑊𝐾+1;2𝑖−1

Proposition 3.2. Algorithm DenseToHSS computes a 𝑡-HSS gen-

erator for an 𝑠-quasiseparable matrix if 2𝑠 ≤ 𝑡 in 𝐶RF𝑛2𝑡𝜔−2
field

operations. For 𝑡 = 2𝑠 , this is TDenseToHSS (𝑛, 𝑠) = 2𝜔𝐶RF𝑛2𝑠𝜔−2
.

Proof. Let 𝑘 ∈ J1, 𝐾K, 𝑖 ≠ 𝑗 ∈ J1, 2𝑘K. The dimensions of the
output in Lines 6 and 7 is sufficient since the matrices being factor-
ized are each time a concatenation of two blocks of rank at most 𝑠
and are hence of rank at most 2𝑠 ≤ 𝑡 . If |𝑖 − 𝑗 | = 1, the instructions
give

𝐻𝑘 ;𝑖, 𝑗 =

[
𝑅𝑘+1;2𝑖−1
𝑅𝑘+1;2𝑖

]
𝐵𝑘 ;𝑖

[
𝑊𝑘+1;2𝑗−1 𝑊𝑘+1;2𝑗

]
. (11)

Otherwise,

𝐻𝑘 ;𝑖, 𝑗 =

[
𝑅𝑘+1;2𝑖−1
𝑅𝑘+1;2𝑖

]
𝐻 ′′
𝑘 ;𝑖, 𝑗

[
𝑊𝑘+1;2𝑗−1 𝑊𝑘+1;2𝑗

]
. (12)

Let now 𝐼 , 𝐽 ∈ J1, 𝑁 K. If 𝐼 = 𝐽 , Line 3 gives 𝐷𝐼 = 𝐴𝐾 ;𝐼 ,𝐽 . Otherwise,
let𝑘 be the highest level of recursion forwhich𝐴𝐾 ;𝐼 ,𝐽 is not included
in a diagonal block. From Line 1, 𝐴𝐾 ;𝐼 ,𝐽 = 𝐻𝐾 ;𝐼 ,𝐽 . Equation (12) can
be used 𝐾 − 𝑘 times, together with Line 12 to get

𝐴𝐾 ;𝐼 ,𝐽 = 𝑅𝐾+1;2𝐼−1 . . . 𝑅𝑘+2;𝑖2𝐻
′′
𝑘+1;𝑖1, 𝑗1𝑊𝑘+2;𝑗2 . . .𝑊𝐾+1;2𝐽 −1 (13)

where 𝑖2 = ⌊𝐼/2𝐾−𝑘−2⌋, 𝑖1 = ⌊𝐼/2𝐾−𝑘−1⌋, 𝑗1 = ⌊𝐽/2𝐾−𝑘−1⌋ and 𝑗2 =

⌊𝐽/2𝐾−𝑘−2⌋. 𝑅𝐾+1;2𝐼−1,𝑊𝐾+1;2𝐽 −1 and 𝐻 ′′
𝑘+1;𝑖1, 𝑗1

can be replaced in

Eq. (13) using Lines 15 and 16 and Eq. (11) (from the definition of
𝑘 we have |𝑖1 − 𝑗1 | = 1) in order to get Eq. (4); this concludes the
proof of correctness.

Line 6 at 𝑘 < 𝐾 and 𝑖 peforms a rank revealing decompositions
on an input formed by the 2𝑡 × (𝑖 − 1)𝑡 block 𝐻 ′

𝑘 ;𝑖,1...𝑖−1 and the
2𝑡×2𝑡 (2𝑘−𝑖) block𝐻𝑘 ;𝑖,𝑖+1...2𝑘 at cost TRF (𝑡 (2𝑘+1−𝑖), 2𝑡, 𝑡). The cost
is equal for Line 7. The overall cost is then

∑log2
𝑛
𝑡

𝑘=1
∑2𝑘
𝑖=1 4𝐶RF (2𝑘+1−

𝑖)𝑡𝜔 ≤ 4𝐶RF𝑛2𝑡𝜔−2 ≤ 2𝜔𝐶RF𝑛2𝑠𝜔−2 . □

Because the blocks of each side of the diagonal are defined by the
same matrices, Algorithm DenseToHSS and any HSS construction
algorithm applies rank revealing factorisations on blocks with rank
bounded by 2𝑠 for 𝑠-quasiseparable matrices instead of 𝑠 in Algo-
rithm DenseToSSS. The optimal HSS block size of 𝑠-quasiseparable
matrices is thus 2𝑠 , which makes HSS less efficient in terms of stor-
age and operation cost.

As the costs are higher and HSS has the same drawbacks as SSS,
namely needing a fixed slicing grid and a previously computed
quasiseparability order, we do not detail more algorithms for HSS.
For information in the numerical context we mainly refer to [16, 22].
Note that faster construction algorithms exist, probabilistic in [18]
and with constraints on the input in [6].

3.3 Bruhat generator from a dense matrix
The construction of a Bruhat generator from a dense matrix is
achieved by [21, Alg. 12] run twice, once for each of the upper and
lower triangular parts of the input matrix, and the diagonal matrix
𝐷 is directly extracted from the dense matrix.

We give in Algorithm LBruhatGen an updated version of [21,
Alg. 12], where Schur complement computations are delayed until
they are needed. This allows for faster computations when the input
is not given as a dense matrix and will be used for computing the
sum of two matrices in Bruhat form and generators from a sparse
matrix.

Algorithm LBruhatGen can be given any input format, provided
we have a way to compute for any submatrix 𝐵 of the input matrix

(1) CRE(𝐵,𝐺, 𝐻 ) a CRE decomposition of 𝐵 −𝐺𝐻T;
(2) for R a set of indices, 𝐵R,∗ and 𝐵∗,R the rows and columns

of 𝐵 with indices in R.
We use the notation TRSM for TRiangular SolveMatrix: TRSM(𝐿,𝐴)

outputs 𝐿−1𝐴 for 𝐿 triangular.
Proposition 3.3. An 𝑠-Bruhat generator can be computed from

an𝑛×𝑛 dense 𝑠-quasiseparablematrix in TDenseToB (𝑛, 𝑠) = 𝐶RF𝑛2𝑠𝜔−2
.

Proof. Algorithm LBruhatGen is adapted from [21, Alg. 12];
we therefore refer to the proof of [21, Theorem 24] for its correct-
ness. Apart from the order in which they are made, the operations
are the same in both algorithms when the input is dense and the
cost is hence the same. Computing a Bruhat generator from a dense
matrix is two applications of Algorithm LBruhatGen. The cost
satisfies:

TLBG (𝑛, 𝑠) ≤ 𝐶RF/4𝑛2𝑠𝜔−2 + 2TLBG (𝑛/2, 𝑠) ≤ 𝐶RF/2𝑛2𝑠𝜔−2 . □

3.4 Bruhat generator from a sparse matrix
In applications, matrices are often presented in a sparse structure.
In order to detect and/or harness their quasiseparable structure, it
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Algorithm 3.3 LBruhatGen

Input: 𝐴 ∈ K𝑚×𝑚 left triangular 𝑠𝐴-quasiseparable
Input: 𝐺,𝐻 ∈ K𝑚×𝑡 ⊲ 𝑡 = 0 on the first call

Output: 𝐶, 𝑅, 𝐸 a left-Bruhat generator for 𝐴 −
(
𝐺𝐻T

)
1: Split 𝐴 =

[
𝐴(11) 𝐴(12)

𝐴(21)

]
,𝐺 =

[
𝐺 (1)

𝐺 (2)

]
, 𝐻 =

[
𝐻 (1)

𝐻 (2)

]
where

𝐴(11) ∈ K
𝑚
2 ×

𝑚
2

2: 𝐶0, 𝑅0, 𝐸0 ← CRE(𝐴(11) ,𝐺 (1) , 𝐻 (1) )
3: R ← RRP(𝐶0);C ← CRP(𝐸0); 𝑟0 ← #R
4:

[
𝑈 𝑉

]
← 𝐸0𝑄C where𝑈 ∈ K𝑟0×𝑟0 is upper triangular.

5:

[
𝐿

𝑀

]
← 𝑃R𝐶0 where 𝐿 ∈ K𝑟0×𝑟0 is lower triangular.

6: 𝑋 ← 𝐴
(12)
R,∗ −𝐺

(1)
R,∗𝐻

(2)T

7: 𝐵 (12)← (TRSM (𝐿,𝑋 ))R,∗ ⊲ 𝐴
(12)
R,∗ =

(
𝐿𝐵 (12) +𝐺 (1)R,∗𝐻

(2) T
)
R,∗

8: 𝑌 ← 𝐴
(21)
∗,C −𝐺

(2)𝐻 (1)C,∗
T

9: 𝐵 (21)T ←
(
TRSM(𝑈 T, 𝑌T)

)
∗,C

⊲ 𝐴
(21)
∗,C =

(
𝐵 (21)𝑈 +𝐺 (2)𝐻 (1) T∗,C

)
∗,C

10: 𝐶1, 𝑅1, 𝐸1 ←
LBruhatGen

(
𝐴
(21)
∗,C

IC,∗, [𝐺 (2) 𝐵 (21) ] , I∗,C
[
𝐻
(1)
C,∗

𝑉 T
] )

11: 𝐶2, 𝑅2, 𝐸2 ←
LBruhatGen

(
I∗,R𝐴

(12)
R,∗

, I∗,R
[
𝐺
(1)
R,∗

𝑀

]
, [ 𝐻 (2) 𝐵 (12) T ]

)
12: 𝑃01 ← the permutation which sorts the rows of 𝐸0 and 𝐸1 by

increasing column of pivot
13: 𝑃02 ← the permutation which sorts the columns of 𝐶0 and 𝐶2

by increasing row of pivot
14: 𝐶 ←

[
𝐶0 𝐶2

𝐵 (21)𝑅0
T 𝐶1

] [
𝑃02

𝐼

]
15: 𝑅 ←

[
𝑃02

T

𝐼

] [ 𝑅0
𝑅2

𝑅1

] [
𝑃01

T

𝐼

]
16: 𝐸 ←

[
𝑃01

𝐼

] [ 𝐸0 𝑅0
T𝐵 (12)

𝐸1
𝐸2

]
17: return 𝐶, 𝑅, 𝐸

is crucial to exploit the sparsity in the construction of the quasisep-
arable generators.

For the construction of a Bruhat generator, the generic algorithm
AlgorithmLBruhatGen can be applied on a sparsematrix, provided
two operations are specialized:

(1) the extraction of a subset of ≤ 𝑠 rows or columns into a
dense format, which is straightforward for a sparse matrix;

(2) the computation of a CRE decompoistion, which is special-
ized in Algorithm SparseCRE which in turn uses Algorithm
SparseRankProfiles

Lemma 3.4. Algorithm SparseRankProfiles is correct with prob-

ablity at least 1 − 2𝑟/|𝑆 | and runs in TSparseRP (𝑛, 𝑟 ) = 2(𝐶𝜔 +
𝐶RF)𝑛𝑟𝜔−1 + 2𝑟 |𝐴| with 𝑟 = 𝑡 + 𝑠 .

Proof. Applying the Toeplitz pre-conditionners in Lines 3 and 4
costs 𝑛𝑡𝑟 𝑂̃ (𝑟 ) which is domintated by 𝑛𝑟𝜔−1. □

Algorithm 3.4 SparseCRE

Input: 𝐴 ∈ K𝑚×𝑚 a rank ≤ 𝑠 sparse matrix
Input: 𝐺,𝐻 ∈ K𝑚×𝑡
Output: 𝐶, 𝑅, 𝐸 such that 𝐴 = 𝐶𝑅𝐸 +𝐺𝐻T

1: R, C ← SparseRankProfiles(𝐴,𝐺,𝐻 )

2: 𝑃 =

[
IR,∗
IR,∗

]
; 𝑄 =

[
I∗,C I∗,C

]
⊲ With 𝐴(11) ∈ K|R |×|R| write 𝑃

(
𝐴 −𝐺𝐻T)𝑄 =

[
𝐴(11) 𝐴(12)

𝐴(21) 𝐴(22)

]
−[

𝐺 (1)

𝐺 (2)

] [
𝐻̄ (1)

𝐻̄ (2)

]T
3: 𝑀 (11) ← 𝐴(11) −𝐺 (1) (𝐻 (1) )T

4: 𝑀 (12) ← 𝐴(12) −𝐺 (1) (𝐻 (2) )T

5: 𝑀 (21) ← 𝐴(21) −𝐺 (2) (𝐻 (1) )T

6: (𝐿, 𝑅,𝑈 ) ← DenseCRE
(
𝑀 (11)

)
7: 𝐶 ← TRSM(𝐿, 𝑀̄ (12) ) ⊲ 𝐶 = 𝐿−1 (𝐴(12) −𝐺 (1)𝐻 (2) )
8: 𝐷 ← TRSM(𝐴(21) ,𝑈 T) ⊲ 𝐷 = (𝐴(21) −𝐺 (2)𝐻 (1) )𝑈 −1

9: 𝐸 ←
[
𝑈 𝑅T𝐶

]
𝑄T

10: 𝐶 ← 𝑃T
[
𝐿

𝐷𝑅T

]
11: return (𝐶, 𝑅, 𝐸)

Algorithm 3.5 SparseRankProfiles

Input: 𝐴 ∈ K𝑛×𝑛 a sparse matrix of rank ≤ 𝑠 .
Input: 𝐺,𝐻 ∈ K𝑛×𝑡 dense matrices
Output: R𝐴, C𝐴 the row and column rank profiles of 𝐴 −𝐺𝐻T

1: 𝑇 (1) ← a unif. random 𝑛 × (𝑠 + 𝑡) Toeplitz matrix from 𝑆 ⊆ K
2: 𝑇 (2) ← a unif. random (𝑠 + 𝑡) × 𝑛 Toeplitz matrix from 𝑆 ⊆ K
3: 𝐾 ← 𝐻T𝑇 (1)

4: 𝐿 ← 𝑇 (2)𝐺
5: 𝑃 ← 𝐴𝑇 (1) −𝐺𝐾
6: 𝑄 ← 𝑇 (2)𝐴 − 𝐿𝐻T

7: return RowRankProfile(𝑃), ColRankProfile(𝑄)

Proposition 3.5. Algorithm SparseCRE computes a CRE decom-

position of𝐴−𝐺𝐻T
with probablity at least 1−2𝑟/|𝑆 | in TSparseCRE (𝑛, 𝑟 ) =(

2𝜔−3
2𝜔−2−1𝐶𝜔 + 2𝐶RF

)
𝑛𝑟𝜔−1 + 2𝑟 |𝐴| field operations for 𝑠 + 𝑡 ≤ 𝑟 .

Proof. Let 𝜌 be the rank of 𝐴 −𝐺𝐻T.

TSparseCRE (𝑛, 𝑟 ) = 2TMM (𝑛, 𝑟, 𝑡) + TCRE (𝜌, 𝜌, 𝜌) + 2TTRSM (𝑛 − 𝜌, 𝜌)
+ TSparseRP (𝑛, 𝑟 )

≤ 𝑛𝑟𝜔−1
(
4𝐶𝜔 +

2𝐶𝜔
2𝜔−1 − 2

+ 2𝐶RF
)
+ 2𝑟 |𝐴|.

□

Proposition 3.6. Algorithm LBruhatGen computes a Left-Bruhat
generator from an sparse 𝑠-quasiseparable matrix 𝐴 ∈ K𝑛×𝑛 in

TSpGenB (𝑛, 𝑠, |𝐴|) =
(

2𝜔+1 − 9
2𝜔−1 − 2

𝐶𝜔 +𝐶RF
)
𝑛𝑠𝜔−1 log𝑛/𝑠 + 2𝑠 |𝐴|

field operations with probability at least 1 − 2𝑛/|𝑆 |.
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Proof. First, remark that the 𝐺 and 𝐻 matrices correspond to
delayed Schur complement updates for pivots processed in the
previous calls. Hence, in every call to Algorithm LBruhatGen,
these pivots are located to the left, to the top or in the left-top
corner of the work matrix. The quasiseparable condition imposes
that there are 𝑡 ≤ 2𝑠 of them. Moreover, in the call to Algorithm
SparseCRE, the ranks verify 𝑟𝐴 + 𝑟𝐵 + 𝑡 ≤ 𝑠 . Hence we can bound
𝑡 and write the cost of Algorithm LBruhatGen only in terms of
𝑛 the dimension of the matrix, 𝑠 the initial quasiseparability order,
and | · | the amount of non-zero coefficients of the submatrices we
consider.

𝑇 (𝑛, 𝑠, |𝐴|) ≤ 𝑇 (𝑛/2, 𝑠, |𝐴2 |) +𝑇 (𝑛/2, 𝑠, |𝐴3 |)
+ TSparseCRE (𝑛/2, 𝑠, |𝐴1 |)
+ 2TMM (𝑠, 2𝑠, 𝑛/2) + 2TTRSM (𝑠, 𝑛/2)

≤ 𝑇 (𝑛/2, 𝑠, |𝐴2 |) +𝑇 (𝑛/2, 𝑠, |𝐴3 |) + 2𝑠 |𝐴1 |

+
(

2𝜔+1 − 9
2𝜔−1 − 2

𝐶𝜔 +𝐶RF
)
𝑛𝑠𝜔−1 .

The failure probability is obtained by a union bound on the failure
probability of each of the 𝑛/𝑠 calls to Algorithm SparseCRE. □

We are not aware of any similar algorithm for computing an SSS
or HSS generator using the sparsity of the input matrix and can
hence only compare our result to the quadratic generation from a
dense matrix.

3.5 Experimental comparison
To complement the asymptotic cost analysis, we present in Fig. 1
experiments comparing the computation time for the construction
of SSS and Bruhat generators. The timings for Bruhat are sub-
linear in 𝑠 , as could be expected fromProposition 3.3 but also slightly
depends on 𝑟 which comes from neglected costs arising e.g. from
the numerous permutations. The SSS cost is constant on our values
for reasons we are unable to explain yet. It is almost always lower
than the Bruhat cost. Yet remember that Algorithm DenseToSSS
takes the quasiseparable order as input, so it has to be computed
first (for example with Algorithm LBruhatGen).

4 APPLICATION TO A BLOCK VECTOR
We study here the application of an 𝑠-quasi-separable matrix 𝐴 ∈
K𝑛×𝑛 given by its generators (SSS or Bruhat) to a block of 𝑣 vectors
𝐵 ∈ K𝑛×𝑣 . We give the costs for 𝑣 ≤ 𝑠 (they can be otherwise
deduced by slicing 𝐵 in blocks of 𝑠 columns).

4.1 SSS × dense
We here recall the algorithm of [4, §2] for computing the product
of an SSS matrix with a dense matrix (independently published
in [10, Alg. 7.1]). For simplicity, Algorithm LowSSSxDense only
details the computations with a strictly lower-block-triangular SSS
matrix, that is a matrix whose SSS representation is zero except
for the 𝑃𝑖 , 𝑄𝑖 and 𝑅𝑖 . Extrapolating from there to the product with
any SSS matrix can be done by transposing the algorithm for the
upper-block-triangular part, and adding the product with the block-
diagonal matrix made of the 𝐷𝑖 .

Algorithm 4.1 LowSSSxDense

Input: 𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖 for 𝑖 ∈ J1, 𝑁 K an 𝑠-SSS generator for a strictly
lower-block-triangular matrix 𝐴; 𝐵 and 𝐶 dense 𝑛 × 𝑣 matrices

Output: 𝐶+ = 𝐴𝐵

1: Split 𝐵 =


𝐵1
...

𝐵𝑁

 , 𝐶 =


𝐶1
...

𝐶𝑁

 in 𝑠 × 𝑠 blocks
2: 𝐻1 ← 𝑄1𝐵1
3: for 𝑖 = 2 . . . 𝑁 do
4: 𝐻𝑖 ← 𝑄𝑖𝐵𝑖 + 𝑅𝑖𝐻𝑖−1
5: 𝐶𝑖 ← 𝐶𝑖 + 𝑃𝑖𝐻𝑖−1

Proposition 4.1. The product of an𝑛×𝑛matrix given by its 𝑠-SSS
generator with an 𝑛 × 𝑣 dense matrix with 𝑣 ≤ 𝑠 can be computed in

TSxDense (𝑛, 𝑠, 𝑣) = 7𝐶𝜔𝑛𝑠𝑣𝜔−2
.

Proof. In Algorithm LowSSSxDense we have by induction that

for 𝑖 ∈ J1, 𝑁 K, 𝐻𝑖 =
𝑖∑︁
𝑗=1

𝑅𝑖 . . . 𝑅 𝑗+1𝑄 𝑗𝐵 𝑗 . (14)

As the blocks of the product follow

𝐶𝑖 = 𝑃𝑖

𝑖−1∑︁
𝑗=1

𝑅𝑖−1 . . . 𝑅 𝑗+1𝑄 𝑗𝐵 𝑗 , (15)

𝐻𝑖−1 can be multiplied once by 𝑃𝑖 to compute 𝐶𝑖 and once by 𝑅𝑖 to
compute the following blocks. The cost is 𝑁 × 𝐶𝜔𝑠2𝑣𝜔−2 for the
diagonal blocks and two applications of Algorithm LowSSSxDense
in which each step costs 3𝐶𝜔𝑠2𝑣𝜔−2. □

4.2 Bruhat × dense
Proposition 4.2. The product of an 𝑛 × 𝑛 matrix given by its 𝑠-

Bruhat generator by a dense 𝑛×𝑣 matrix with 𝑣 ≤ 𝑠 can be computed

in TBxDense (𝑛, 𝑠, 𝑣) = 8𝐶𝜔𝑛𝑠𝑣𝜔−2
.

Proof. This is given by [21, Alg. 14] called twice on the lower
and upper triangular part of the quasiseparable matrix. □

Note that in order to benefit from fast matrix multiplication, the
Bruhat generator (using 4𝑛𝑠 space) needs to be transfered into a
Compact-Bruhat form, by storing each echelon from into two block
diagonal matrices using twice as many field elements (additonal
ones being zeros). This compression can be done online, hence the
space storage remains 4𝑛𝑠 , but the cost of the product by a dense
matrix becomes 8𝐶𝜔𝑛𝑠𝑡𝜔−2 hence losing the advantage over the
SSS format (with cost 7𝐶𝜔𝑛𝑠𝑣𝜔−2 for the same operation).

4.3 Experimental comparison
Experimental results are given in Fig. 2 (Appendix A). As expected
from Propositions 4.1 and 4.2 we obtain costs that are linear in
𝑠; we can also observe the same slight dependance in 𝑟 of the
Bruhat cost as in Section 3.5. On the parameters we chose, SSS
is about four times faster than Bruhat. This can be explained by the
compactification of the Bruhat generator needed for the product.
This operation is free of arithmetic operations and hence does
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not appear in the cost of Proposition 4.2 but the data tranfers are
non-negligible in practice.

5 SUM OF QUASISEPARABLE MATRICES
The sum and product of two quasiseparable matrices of order 𝑠𝐵
and 𝑠𝐶 are quasiseparable matrices of order at most 𝑠𝐵 + 𝑠𝐶 . In this
section we show how to compute SSS and Bruhat generators for
the sum of two quasiseparable matrices.

The result we give in Proposition 5.1 for the sum of matrices
given in SSS form can only be used on two generators defined on
the same grid. This is a drawback of most operations in SSS which
is avoided with the Bruhat format. As a consequence, in a large
sequence of operations, the SSS grid size needs to be chosen accord-
ing to the maximal quasi-separability order among all intermediate
results, while the Bruhat always fits to the current quasiseparable
order. This can impact the overall cost. The slower original SSS
format of [9] avoids this issue, at the expense of multiplying space
and time costs by the quasiseparability order, as in [1, 2].

5.1 SSS sum
Consider two matrices 𝐵 and𝐶 with the same order 𝑠 . We first note
that the concatenation of the blocks of both input generators leads
to matrices which satisfy Eq. (1) for 𝐴 = 𝐶 + 𝐵 [4, §10.2].

Let 𝑃 (𝐾)
𝑖

,𝑉
(𝐾)
𝑖

, 𝑄
(𝐾)
𝑖

,𝑈
(𝐾)
𝑖

, 𝑅
(𝐾)
𝑖

,𝑊
(𝐾)
𝑖

, 𝐷
(𝐾)
𝑖

for appropriate 𝑖 ∈
J1, 𝑁 K be an 𝑠-SSS representation of 𝐾 for 𝐾 ∈ {𝐵,𝐶}. The follow-
ing matrices satisfy Eq. (1) with𝐴 = 𝐵+𝐶 , for appropriate 𝑖 ∈ J1, 𝑁 K.

𝑃𝑖 =

[
𝑃
(𝐵)
𝑖

𝑃
(𝐶)
𝑖

]
, 𝑄𝑖 =

[
𝑄
(𝐵)
𝑖

𝑄
(𝐶)
𝑖

]
, 𝑅𝑖 =

[
𝑅
(𝐵)
𝑖

𝑅
(𝐶)
𝑖

]
(16)

𝑈𝑖 =

[
𝑈
(𝐵)
𝑖

𝑈
(𝐶)
𝑖

]
,𝑉𝑖 =

[
𝑉
(𝐵)
𝑖

𝑉
(𝐶)
𝑖

]
,𝑊𝑖 =

[
𝑊
(𝐵)
𝑖

𝑊
(𝐶)
𝑖

]
(17)

𝐷𝑖 = 𝐷
(𝐵)
𝑖
+ 𝐷 (𝐶)

𝑖
(18)

Such sets of matrices with these dimensions satisfying Eq. (1) will
be called an (𝑠, 2𝑠)-SSS generator for 𝐴. The granularity of their
description remains that of 𝑠 × 𝑠 blocks, but the dimension of the
matrices in the representation is doubled and leads to a suboptimal
storage size. A second step is therefore to use Algorithm SssCom-
pression to obtain a 2𝑠-SSS generator for the sum and reduce the
storage size by 4𝑠 (𝑛 − 2𝑠).

Proposition 5.1. A 2𝑠-SSS representation of 𝐵 +𝐶 ∈ K𝑛×𝑛 can

be computed from 𝑠-SSS representations of 𝐵 and 𝐶 in time

TS+S (𝑛, 𝑠) ←
(
10 + 2𝜔

)
𝐶𝜔𝑛𝑠

𝜔−1 . (19)

Proof. For any 𝑠 × 𝑠 block 𝐴𝑖, 𝑗 of 𝐴 = 𝐵 +𝐶 , it can be checked
that the representation in the output of Algorithm SssCompression
called on the generator of Section 5.1 matches. The additions of
Eq. (18) are dominated by the call to Algorithm SssCompression
whose cost is of𝑀 steps with four 2𝑠 × 2𝑠 by 2𝑠 × 𝑠 products, two
2𝑠 × 2𝑠 square products, and two 𝑠 × 2𝑠 by 2𝑠 × 𝑠 products. □

Note that the (𝑠, 2𝑠)-SSS generator is intermediate between the
SSS form and the original definition of quasiseparable matrices
given in [9], where the generators are 𝑠 × 𝑠 matrices but the granu-
larity of the description is of dimension 1.

Algorithm 5.1 SssCompression

Input: 𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖 ,𝑈𝑖 ,𝑉𝑖 ,𝑊𝑖 , 𝐷𝑖 for appropriate 𝑖 ∈ J1, 𝑁 K, an (𝑠, 2𝑠)-
SSS generator for 𝐴 ∈ K𝑛×𝑛

Output: 𝑃 ′
𝑖
, 𝑄 ′
𝑖
, 𝑅′
𝑖
,𝑈 ′
𝑖
,𝑉 ′
𝑖
,𝑊 ′

𝑖
, 𝐷 ′
𝑖
for appropriate 𝑖 ∈ J1, 𝑀K, a 2𝑠-

SSS representation of 𝐴 with𝑀 = ⌈𝑁 /2⌉
1: for 𝑖 ← 1 . . . 𝑀 do

2: 𝑃 ′
𝑖
←

[
𝑃2𝑖−1
𝑃2𝑖𝑅2𝑖−1

]
3: 𝑄 ′

𝑖
←

[
𝑅2𝑖𝑄2𝑖−1 𝑄2𝑖

]
4: 𝑅′

𝑖
← 𝑅2𝑖𝑅2𝑖−1

5: 𝑈 ′
𝑖
←

[
𝑈2𝑖−1𝑊2𝑖
𝑈2𝑖

]
6: 𝑉 ′

𝑖
←

[
𝑉2𝑖−1 𝑊2𝑖−1𝑉2𝑖

]
7: 𝑊 ′

𝑖
←𝑊2𝑖−1𝑊2𝑖

8: 𝐷 ′
𝑖
←

[
𝐷2𝑖−1 𝑈2𝑖−1𝑉2𝑖
𝑃2𝑖𝑄2𝑖−1 𝐷2𝑖

]

5.2 Bruhat sum
As with SSS, the sum of two matrices in Bruhat form can be com-
puted by first concatenation of both generators, then by retrieving
the Bruhat format in a second step.

Given two left triangular matrices𝐴 and 𝐵 given by Bruhat gen-
erators 𝐶 (𝐴) , 𝑅 (𝐴) , 𝐸 (𝐴) ,𝐶 (𝐵) , 𝑅 (𝐵) , 𝐸 (𝐵) , their sum indeed writes

𝐴 + 𝐵 =

( [
𝐶 (𝐴) 𝐶 (𝐵)

] [𝑅 (𝐴)
𝑅 (𝐵)

] [
𝐸 (𝐴)

𝐸 (𝐵)

] )
. (20)

A Bruhat generator for the right side in Eq. (20) can be obtained
from a call to Algorithm LBruhatGen, viewed here as a compres-
sion algorithm. This relies on a specific CRE decomposition (Algo-
rithm BruhatSumCRE), and on having 𝐷R,∗ for 𝐷 a submatrix of a
sum given as in Eq. (20) and R a set of row indices (Proposition 5.3).

Algorithm 5.2 BruhatSumCRE

Input: 𝐴, 𝐵 ∈ K𝑛×𝑛 of rank ≤ 𝑟𝐴 and ≤ 𝑟𝐵 given by generators
𝐶 (𝐴) , 𝑅 (𝐴) , 𝐸 (𝐴) ,𝐶 (𝐵) , 𝑅 (𝐵) , 𝐸 (𝐵) s.t. 𝐴 = 𝐶 (𝐴)𝑅 (𝐴)𝐸 (𝐴) and
𝐵 = 𝐶 (𝐵)𝑅 (𝐵)𝐸 (𝐵) which are submatrices of Bruhat generators
of matrices comprising 𝐴 and 𝐵

Input: 𝐺,𝐻 ∈ K𝑛×𝑡
Output: 𝐶, 𝑅, 𝐸 such that 𝐴 + 𝐵 = 𝐶𝑅𝐸 +𝐺𝐻T

1: 𝐶 (𝑅) , 𝑅 (𝑅) , 𝐸 (𝑅) ← DenseCRE

( [
𝑅 (𝐴)𝐸 (𝐴)

𝑅 (𝐵)𝐸 (𝐵)

−𝐻T

] )
2: 𝐶 (𝐿) , 𝑅 (𝐿) , 𝐸 (𝐿) ← DenseCRE ( [𝐶 (𝐴) 𝐶 (𝐵) 𝐺 ])
3: 𝑋 ← 𝑅 (𝐿)𝐸 (𝐿)𝐶 (𝑅)𝑅 (𝑅)

4: 𝐶 (𝑋 ) , 𝑅 (𝑋 ) , 𝐸 (𝑋 ) ← DenseCRE(𝑋 )
5: 𝐶 ← 𝐶 (𝐿)𝐶 (𝑋 )

6: 𝑅 ← 𝑅 (𝑋 )

7: 𝐸 ← 𝐸 (𝑋 )𝐸 (𝑅)

Proposition 5.2. Algorithm BruhatSumCRE computes a CRE de-

composition of𝐴+𝐵−𝐺𝐻T
in TBSumCRE (𝑛, 𝑟 ) = (3𝐶𝜔 + 2𝐶RF) 𝑛𝑟𝜔−1

for 𝑟𝐴 + 𝑟𝐵 + 𝑡 ≤ 𝑟 .

Proof. The matrices 𝐶 and 𝐸 are in column and row echelon
form respectively as they are products of two echelon forms. The
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cost is that of two dense CRE decompositions of size 𝑛× (𝑟𝐴+𝑟𝐵 +𝑡)
and products of an 𝑛 × (𝑟𝐴 + 𝑟𝐵 + 𝑡) matrix by two (𝑟𝐴 + 𝑟𝐵 + 𝑡) ×
(𝑟𝐴 + 𝑟𝐵 + 𝑡) and one (𝑟𝐴 + 𝑟𝐵 + 𝑡) × 𝑛 matrices. □

Proposition 5.3. For𝐷 ∈ K𝑛×𝑛 a submatrix of a the left-triangular

part of a sum as in Eq. (20) and R a set of 𝑠 row indices, 𝐷R,∗ can be

computed in TSumExp (𝑛, 𝑠) = 𝐶𝜔𝑛𝑠𝜔−1
.

Proof. There are at most 𝑠𝐴 (resp. 𝑠𝐵 ) pivots of 𝐴 (resp. 𝐵)
impacting 𝐷 . We can thus write 𝐷 = 𝐶𝑅𝐸 with 𝐶 made of 𝑛 rows
and 𝑠𝐴 +𝑠𝐵 columns of

[
𝐶 (𝐴) 𝐶 (𝐵)

]
, 𝑅 a permutation and 𝐸 made

of 𝑛 columns and 𝑠𝐴 rows of 𝐸 (𝐴) and 𝑠𝐵 rows of 𝐸 (𝐵) . □

Proposition 5.4. The Bruhat form of the sum of two 𝑛×𝑛 matri-

ces of quasiseparable order 𝑠𝐴 and 𝑠𝐵 in Bruhat form can be computed

in TB+B (𝑛, 𝑠) =
(

9·2𝜔−2−8
2𝜔−2−1 𝐶𝜔 + 2𝐶RF

)
𝑛𝑠𝜔−1 log𝑛/𝑠 for 𝑠 = 𝑠𝐴 + 𝑠𝐵 .

Proof. Each lower and upper triangular part is converted to a
left triangular instance and computed independently. Algorithm
LBruhatGen is then called twice with 𝑡 = 0 on an input matrix in
factorized form as in (20).

The proof is the same as for Proposition 3.5 except that in the
cost, the TSparseCRE terms are replaced by TBruhatSumCRE terms and
the rows and columns of the submatrices are computed at a cost
given by TSumExp. Then we have

𝑇 (𝑛, 𝑠) ≤ 2𝑇 (𝑛/2, 𝑠) + TBSumCRE (𝑛/2, 𝑠) + 2TSumExp (𝑛/2, 𝑠, 𝑠)
+ 2TMM (𝑠, 2𝑠, 𝑛/2) + 2TTRSM (𝑠, 𝑛/2)

≤ 2𝑇 (𝑛/2, 𝑠) +
(

9 · 2𝜔−3 − 4
2𝜔−2 − 1

𝐶𝜔 +𝐶RF
)
𝑛𝑠𝜔−1

for one call to Algorithm LBruhatGen. □

6 PRODUCT IN SSS
The product of two matrices given in SSS form uses two tricks
we have seen previously. The first one is to start by computing an
(𝑠, 2𝑠)-SSS representation before compression, as in the sum. Unlike
the sum, computations are needed in addition to concatenation
to get this representation. The second trick is to speed up these
computations by using a Horner-like accumulation as in Algorithm
LowSSSxDense. This accumulation will be done on both sides for
the computation of all necessary products 𝐴𝑖,𝑘𝐵𝑘,𝑗 where 𝐴𝑖,𝑘 is
under (resp. over) the diagonal and 𝐵𝑘,𝑗 is over (resp. under) it.

Algorithm SSSxSSS details these computations, using the𝐺𝑖 and
𝐻𝑖 as accumulators. It presents an improvement over the algorithm
of [4, §3] and [10, Alg. 7.2]: 4 products have been avoided at each
step by keeping them in memory in the 𝑇𝑖 and 𝑆𝑖 . They can also be
avoided in the numerical context.

Theorem 6.1. Algorithm SSSxSSS computes a 2𝑠-SSS generator
for the product of two 𝑛 × 𝑛 matrices given in 𝑠-SSS form in

TSSSxSSS (𝑛, 𝑠) =
(
31 + 2𝜔

)
𝐶𝜔𝑛𝑠

𝜔−1 . (21)

Proof. Using Lines 2 and 4 for 𝐺𝑖 and Lines 10 and 14 for 𝐻𝑖 ,
induction on 𝑖 shows that

𝐺𝑖 =

𝑖−1∑︁
𝑘=1

𝑅
(𝐴)
𝑖−1 . . . 𝑅

(𝐴)
𝑘+1𝑄

(𝐴)
𝑘

𝑈
(𝐵)
𝑘

𝑊
(𝐵)
𝑘+1 . . .𝑊

(𝐵)
𝑖−1 (22)

Algorithm 6.1 SSSxSSS

Input: For both𝑀 ∈ {𝐴, 𝐵}, 𝑃 (𝑀)
𝑖

, 𝑄
(𝑀)
𝑖

, 𝑅
(𝑀)
𝑖

,𝑈
(𝑀)
𝑖

,𝑉
(𝑀)
𝑖

,𝑊
(𝑀)
𝑖

,
𝐷
(𝑀)
𝑖

for appropriate 𝑖 ∈ J1, 𝑁 K an 𝑠-SSS generator for𝑀
Output: A 2𝑠-SSS generator for 𝐶 = 𝐴𝐵

⊲ All values not given as input are initialised to 0

1: for 𝑖 ← 1 . . . 𝑁 do
2: 𝐺𝑖 ← 𝑄

(𝐴)
𝑖−1𝑈

(𝐵)
𝑖−1 +𝑇𝑖−1𝑊

(𝐵)
𝑖−1

3: 𝑇𝑖 ← 𝑅
(𝐴)
𝑖

𝐺𝑖

4: 𝑆𝑖 ← 𝑃
(𝐴)
𝑖

𝐺𝑖

5: 𝑄𝑖 ←
[

𝑄
(𝐵)
𝑖

𝑄
(𝐴)
𝑖

𝐷
(𝐵)
𝑖
+𝑇𝑖𝑉 (𝐵)𝑖

]
6: 𝑅𝑖 ←

[
𝑅
(𝐵)
𝑖

0
𝑄
(𝐴)
𝑖

𝑃
(𝐵)
𝑖

𝑅
(𝐴)
𝑖

]
7: 𝑈𝑖 ←

[
𝑈
(𝐴)
𝑖

𝐷
(𝐴)
𝑖

𝑈
(𝐵)
𝑖
+ 𝑆𝑖𝑊 (𝐵)𝑖

]
8: 𝑊𝑖 ←

[
𝑊
(𝐴)
𝑖

𝑉
(𝐴)
𝑖

𝑈
(𝐵)
𝑖

0 𝑊
(𝐵)
𝑖

]
9: for 𝑖 ← 𝑁 . . . 1 do
10: 𝐻𝑖 ← 𝑉

(𝐴)
𝑖+1 𝑃

(𝐵)
𝑖+1 +𝑇𝑖+1𝑅

(𝐵)
𝑖+1

11: 𝑇𝑖 ← 𝑈
(𝐴)
𝑖

𝐻𝑖

12: 𝐷𝑖 ← 𝐷
(𝐴)
𝑖

𝐷
(𝐵)
𝑖
+ 𝑆𝑖𝑉 (𝐵)𝑖

+𝑇𝑖𝑄 (𝐵)𝑖

13: 𝑃𝐶
𝑖
←

[
𝐷
(𝐴)
𝑖

𝑃
(𝐵)
𝑖
+𝑇𝑖𝑅 (𝐵)𝑖

𝑃
(𝐴)
𝑖

]
14: 𝑇𝑖 ←𝑊

(𝐴)
𝑖

𝐻𝑖

15: 𝑉𝑖 ←
[
𝑉
(𝐴)
𝑖

𝐷
(𝐵)
𝑖
+𝑇𝑖𝑄 (𝐵)𝑖

𝑉
(𝐵)
𝑖

]
16: return SssCompression((𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖 ,𝑈𝑖 ,𝑉𝑖 ,𝑊𝑖 , 𝐷𝑖 )𝑖∈J1,𝑁 K)

𝐻𝑖 =

𝑁∑︁
𝑘=𝑖+1

𝑊
(𝐴)
𝑖+1 . . .𝑊

(𝐴)
𝑘−1𝑉

(𝐴)
𝑘

𝑃
(𝐵)
𝑘

𝑅
(𝐵)
𝑘−1 . . . 𝑅

(𝐵)
𝑖+1 (23)

Combining these results with Line 3 for 𝑆𝑖 , Line 11 for𝑇𝑖 and finally
Line 12, we get that 𝐷 (𝐶)

𝑖
=
∑𝑁
𝑘=1𝐴𝑖,𝑘𝐵𝑘,𝑖 = 𝐶𝑖,𝑖 .

When 𝑖 < 𝑗 , the products 𝐴𝑖,𝑘𝐵𝑘,𝑗 take five shapes: lower block
of 𝐴 × upper block of 𝐵, diagonal block × upper block, upper ×
upper, upper × diagonal and upper × lower. The equality

𝑈
(𝐶)
𝑖

𝑊
(𝐶)
𝑖+1 . . .𝑊

(𝐶)
𝑗−1𝑉

(𝐶)
𝑗

=

𝑁∑︁
𝑘=1

𝐴𝑖,𝑘𝐵𝑘,𝑗 (24)

and its counterpart when 𝑖 > 𝑗 can be checked with tedious but
straightforward calculations.

The cost is that of 21 products and 8 sums of 𝑠 × 𝑠 matrices at
each of the 𝑁 steps and on call to Algorithm SssCompression. □

Again the result of Theorem 6.1 is limited to matrices defined
on the same grid and the result always has the same storage size,
whatever its quasi-separability order. This is also true for product
with HSS generators in numerical analysis [22]. The Bruhat format
can avoid these issues, but to our knowledge no sub-quadratic algo-
rithm exists for the product of two Bruhat generators. The method
used for the sum in Section 5.2 opens the door towards a linear or
quasi-linear product algorithm using Algorithm LBruhatGen.



Exact computations with quasiseparable matrices

A EXPERIMENTS
We report here on experiments of an implementation of algo-
rithms handling SSS and Bruhat generators over a finite field in
the fflas-ffpack library [11], at commit 33474b31aa. This library
provides efficient dense basic linear algebra routines, such as matrix
multiplication, TRSM and Gaussian elimination revealing the rank
profile matrix. It was compiled with the GNU C++ compiler g++ ver-
sion 9.3.0 and linked with the OpenBLAS library version 0.3.81.The
benchmarks are run on a single core of an Intel i5-i7300U@2.6GHz
running a Linux Mint-20 system.

For all experiments, the matrices have a fixed dimension 𝑛 =

3000, over the finite field Z/131071Z. We draw the computation
times depending on the quasiseprability orders, on three type of
instances: having a ranks of their upper and lower triangular parts
equal to 1000, 1500 and 1750.

Each point corresponds to the mean of the running times of 50
random instances with same parameters. Figure 1 compares the
running times for the generation from a dense matrix. Figure 2
compares the running times for the product by a random dense
𝑛 × 500 block vector, using the same generators.
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