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Abstract. This paper proposes a robust longitudinal registration method for Contrast Enhanced
Spectral Mammography in monitoring neoadjuvant chemotherapy. Because breast texture intensity
changes with the treatment, a non-rigid registration procedure with local intensity compensations
is developed. The approach allows registering the low energy images of the exams acquired before
and after the chemotherapy. The measured motion is then applied to the corresponding recombined
images. The difference of registered images, called residual, makes vanishing the breast texture that
did not changed between the two exams. Consequently, this registered residual allows identifying
local density and iodine changes, especially in the lesion area. The method is validated with a
synthetic NAC case where ground truths are available. Then the procedure is applied to 51 patients
with 208 CESM image pairs acquired before and after the chemotherapy treatment. The proposed
registration converged in all 208 cases. The intensity-compensated registration approach is evaluated
with different mathematical metrics and through the repositioning of clinical landmarks (RMSE:
5.9 mm) and outperforms state-of-the-art registration techniques.

Keywords: Breast imaging, Neoadjuvant Chemotherapy, Contrast Enhanced Spectral Mammography,
Longitudinal subtraction, Registration, Digital Image Correlation

1. Introduction

Neoadjuvant chemotherapy (NAC) is a therapeutic option increasingly used in the management strategy
for breast cancer. Imaging the breast before, (during) and after the chemotherapy is important to
evaluate the treatment response and future treatment planning. Lesion evolution information (e.g.,
lengths, extent, intensity) can be measured and discussed with the oncologist and surgeon during the
tumor board.
Magnetic resonance imaging, MRI (and contrast-enhanced MRI) is an excellent imaging modality to
monitor response to neoadjuvant chemotherapy [1]. Various studies have been developed to extract
quantitative features in pre-NAC and/or post-NAC images related to lesion evolution [2, 3, 4] and to
identify breast tumor bed location for adjuvant therapy.
Because pre-NAC and post-NAC images are not acquired in the same position, it is a beneficial task to
register images for easier texture-to-texture comparison. Registration in (breast) NAC-MRI has been
developed in the literature and is often based on optical flow [2]. Registered images can be used for
quantitative assessment. The intensity of the registered textures can be compared pixel-wised [4, 5]
and the identified motion (or its Jacobian [6, 7]) may be related to the dynamic of the lesion shape [8].
The lesion size change can be read as motion and/or intensity evolution. The difficulty comes when the
measured motion corrects part of the lesion shape changes without succeeding in perfectly registering
it. The lesion evolution information is hence split both in an imperfect measured motion field and in
a partially registered image. This split is not exploitable and makes the analysis more qualitative than
quantitative.
Contrast-Enhanced Spectral Mammography (CESM) provides anatomical and functional imaging of
breast tissue improving the accuracy of breast cancer diagnosis [9]. The competence of CESM in
the assessment and prediction of response to NAC has been recently studied [10, 11, 12, 13] using



2

image lesion measurements (e.g., RECIST [14]). In addition to the measurement of lesion lengths,
some studies presented a method extracting quantitative features from recombined CESM images to
evaluate residual disease extents (lesion characteristics with intensity measurements in [15, 16] and
radiomics features in [17]). In the study performed by Wang et.al [18] , the authors aimed to predict
from the radiomics extraction on the pre-NAC exam image the chemotherapy results. Because CESM
images were not textured aligned, the intensity comparison can just be global in the annotated region
of interest. Local texture changes could not be easily captured.
Developing a registration procedure was proved to be efficient in MRI for quantitative features
extraction and for identifying breast tumor bed location. Registering similar textures in CESM images
will help clinicians in identifying texture changes and will improve NAC quantification. When images
are registered, the pixel intensity differences can be read as texture differences. The major part of the
texture which is similar to the two registered images vanishes. The local texture changes are hence
highlighted.
Registration in 2D mammography has been widely studied for decades in the literature. The soft
nature of breast tissue requires the registration to be non-rigid [19]. Many registration approaches have
been developed such as feature-based [20], intensity-based [21, 22, 23] and deep-learning-based [24, 25]
methods. When registered, the image difference may be related to the time growth of a density or the
apparition of micro-calcifications [26, 27, 28].
The major limitations of state-of-the-art breast registration approaches are (i) large displacements
and (ii) important intensity variations. Those issues are exacerbated when dealing with NAC cases
composed of large tumors that may shrink or disappear (for complete pathological responses). This
bias affects the registration and limits its quantitative use.
The goal of this paper is to propose a methodology to register NAC-CESM data (i) with large
repositioning displacements, (ii) with important intensity changes, and (iii) with a high convergence rate
to be potentially used in a clinical environment. The first section presents the NAC-CESM database.
Then, different registration methods are described: a state-of-the-art TV-L1 algorithm, the global
digital image correlation (GDIC) method, and the proposed registration method (GDIC-I) enhanced
with local intensity corrections.

2. Materials

2.1. NAC clinical practice

The main goal of NAC is the reduction of tumor volume and metastasis leading to an increase in
breast-conserving surgery probabilities instead of mastectomy. NAC also allows early assessment of
the efficiency of systemic therapy in-vivo which could lead to a revision of the treatment plan in cases
that show poor response. The extent of residual invasive cancer after neoadjuvant therapy is also a
prognostic factor for the risk of recurrence.
In CESM-NAC monitoring, the patient is imaged with a CESM acquisition pre-NAC and post-NAC.
The CESM acquisition consists of a low-energy (LE) image and a high-energy (HE) image processed
into a so-called recombined image that highlights the iodine content. In our study, the image size is
2394×2850 pixels with a 100 µmm pixel pitch.
After the acquisition, lesion size and extent are reported in both pre-NAC and post-NAC studies.
Radiological response to NAC is assessed once applying the Response Evaluation Criteria in Solid
Tumor [14]: RECIST 1.1. This evaluation is using the ratio of the longest length of the lesion before
and after NAC. The ratio is read in 4 classes: complete response (pCR), partial response (more than
30% decrease), stable disease (up to 20% increase), and progressive disease. Being able to evaluate the
lesion evolution is important for patient treatment planning.

2.2. Synthetic NAC case

A test case is generated to be realistic and to provide a known ground truth of a partial NAC radiological
response (RECIST: 50% decrease). For this test case, a LE (or FFDM) acquisition f0(x) is used as
breast texture, defined on all pixels x. To create the pre-NAC image f(x), an synthetic pre-NAC lesion
Lf (x) is inserted: f(x) = f0(x) + Lf (x).
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(a) (b) (c) (d)

Figure 1. Images used in the synthetic test case: (a) pre-NAC lesion Lf (x), (b) pre-NAC
image f(x) = f0(x) + Lf (x), (c) post-NAC lesion Lg(x + ugt), and (c) post-NAC image g(x) =
f0(x + ugt) + Lg(x + ugt)

The post-NAC image is generated by adding to the breast texture image a post-NAC lesion Lg(x) and
by repositioning the image by a known 2D plane motion ugt such that g(x) = f0(x+ugt)+Lg(x+ugt).
All images are shown Figure 1. For the test case, the motion field is a uniform translation of 1 cm
(100 pixels) in both x and y spatial directions.
The lesion pre-NAC is a disk of 4 cm diameter, with a amplitude of 10% of the gray level dynamic,
convoluted by a Gaussian blur with a characteristic length of 4 mm (40 pixels). The lesion post-NAC is
a disk of 2 cm diameter, with a amplitude of 10% of the gray level dynamic, convoluted by a Gaussian
blur with a characteristic length of 4 mm (40 pixels). In this synthetic case, the simulated lesion has
shrunk without change in the bulk intensity. The RECIST would be measured to 50%.

2.3. CESM-NAC cohort

Fifty-one patients with pathologically proven breast cancer based on the tumor tissues obtained by core
needle biopsy were enrolled in this retrospective study from March 2020 to March 2022. All data were
acquired at Baheya Foundation For Early Detection And Treatment Of Breast Cancer, Giza, Egypt.
They were all planned to receive NAC in reference to the breast cancer tumor board decision. All
patients underwent two separate CESM examinations. The first examination was before beginning the
NAC course and the second examination was after completing the NAC course. As both breasts were
imaged with multiple views, 208 acquired image pairs were acquired. The study protocol was approved
by the Institutional Review Board and informed written consent was applied for the use data of the
enrolled individuals. The maximum interval between the post-NAC study and surgery was 10 days. All
52 biopsied lesions were invasive duct carcinoma. Patients who were not candidates for NAC, patients
with metastatic disease, pregnant females, and those who gave a history of allergy to contrast media,
or renal impairment were omitted from the study.
Examinations were performed with a Senographe Pristina™ (GE Healthcare, Chicago, IL, USA). The
recombination was performed using the latest available recombination algorithm: SenoBright™ HD
with NIRA giving the best CESM quality recombination images [29].
The image annotation was performed by senior radiologists specialized in breast imaging. Clinical
information on the dataset (age, lesion sizes, time between acquisitions, RECIST 1.1 grade, breast
composition, and Background Parenchymal Enhancement (BPE)) are available in Table 1.
The acquisition of a patient breast who followed a NAC path is presented in Figure 2. The first line
represents the LE acquisitions and the second line the recombined images. The two first columns are
pre-NAC acquisitions on the right breast and the two last columns are the post-NAC (respectively CC
and MLO views). The lesion, annotated in the LE appears as a contrast uptake in the recombined
images. Its size evolves with the treatment and is evaluated with the RECIST as a partial response.
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Characteristics Value ± std
Age [year] 43± 8

Average initial lesion size [mm] 54± 35
Average final lesion size [mm] 23± 30

Time between acquisitions [days] 178± 40
RECIST [14] Complete response (pCR) 18/52

Partial response 28/52
Stable disease 3/52
Progressive disease 3/52

Density A - Fatty 5/51
B - Scattered area 27/51
C - Heterogeneously dense 16/51
D - Extremely dense 3/51

BPE Minimal 9/51
Mild 34/51
Moderate 6/51
Marked 2/51

Table 1. Clinical characteristics of the NAC-CESM cohort (51 patients with 52 lesions)

Figure 2. Right breast CESM NAC case with a RECIST: 60% decrease, partial response. The
first line corresponds to low-energy images and the second to the recombined images using NIRA
processing. (a) and (b) are respectively the MLO and CC views for the pre-NAC exam, (c) and (d)
are the MLO and CC views for the post-NAC exam. The measurements correspond to the lesion
extent (green) and length of the largest contrast uptake (blue) used to compute the RECIST. Note
that, while displayed on the LE, this measurement is performed both with the LE and recombined
image.
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3. Methods

3.1. Registration

CESM data is composed of a so-called low-energy image, (similar to an FFDM) and a recombined
iodine image. The recombined image shows projected iodine content in vascularized tissues. With the
chemotherapy treatment, a significant evolution of malignant tissues is expected. Registration cannot,
therefore, be based on the iodine information. In LE images, normal fibro-glandular textures are
(globally) conserved with the chemotherapy treatment allowing to follow the internal motion between
two exams.
It is here proposed to register LE images (with local intensity corrections) and apply the obtained
transformation to the recombined images. The registration will deform the pre-NAC image onto the
post-NAC image in order to map the initial lesion and breast tumor bed onto the final acquisition.
Given a pair of image, an initial pre-NAC image f(x) and a target post-NAC acquisition g(x), the
intensity-based methods define a spatial residual ρu(x) that can be written, with u(x) the Lagrangian
displacement field.

ρu(x, f, g,u) = g(x)− f(x+ u(x)). (1)

Note that all registered images were normalized between [0-1]. The sought displacement correction
field is the one that minimizes, on the data fidelity term over a spatial region of interest (ROI), a norm
(written ‖.‖N ) of the residuals ρu

Argmin
u
{‖ρu(x, f, g,u)‖N }. (2)

Written as is, the problem is composed of too many degree of freedom and thus is severely ill-posed.
Better conditioning is required. Different approaches have been proposed in the medical and material
science literature: for example TV-L1 and Global Digital Image Correlation.

3.1.1. Total Variation Total Variation (TV)-L1 is a popular and efficient algorithm for optical flow
estimation presented in [30, 31, 32]. This approach consists of an L1 data penalty term and total
variation regularization, written with ∇ the bi-dimensional gradient operator, and λ a penalization
coefficient.

Argmin
u
{
∑

x∈ROI

λ · |ρu(x, f, g,u)|+ |∇u(x)|}. (3)

This state-of-the-art registration procedure is not adapted to all NAC-CESM registration requirements.
This formulation is sensitive to large local intensity changes and thus will not be able to correctly register
the lesion area.

3.1.2. Global Digital Image Correlation - GDIC The optical flow conservation approach is an intensity-
based registration method also called Digital Image Correlation (DIC) [33]. This approach is widely
used in material science [34] and medical-biomechanical imaging community [35].
In global DIC [36], written as GDIC in this paper, the motion support is discretized into a space of
lower dimension. One solution is to express the motion on a finite element mesh basis. This approach
highly reduces the number of degrees of freedom and provides continuous fields of adjustable complexity.
Moreover, the finite element mesh can be patient-specific by being adapted to the patient geometry.
The displacement is written as a 2D mesh kinematics composed of Nu nodes and shape functions φ(x)
for the interpolation. The motion can thus be written

u(x) =

Nu∑
l=1

ulφl(x), (4)

with ul the nodal displacements. Finally, a classical Newton-Raphson routine is used to minimize the
L2 norm

Argmin
u
{
∑

x∈ROI

‖g(x)− f(x+ u(x))‖2}. (5)
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The linearized residual reads

g(x)− f(x+ u(x) + ∂u(x)) ≈ g(x)− f̃(x)− ∂u(x)∇f̃(x), (6)

with f̃(x) = f(x+u(x)) the updated warped pre-NAC image. The minimization leads to the following
linear system:

[M ]{∂u} = {b}, (7)

with the correction vector amplitude {∂u}, [M ] the Hessian of the functional, and b the second member

Mij = 〈Si, Sj〉, (8)

bi = 〈Si, ρu〉. (9)

Si = φi ·∇f̃(x) is the nodal kinematic sensitivity fields. The notation 〈·, ·〉 denotes the inner product
(i.e., contraction over x ∈ ROI).
Because registered breast images are acquired at different time intervals, the brightness conservation
assumption is not respected due to factors extrinsic to the displacement. Those changes may come
from evolution in the breast tissue (especially when a NAC treatment is applied), changes in the
acquisition system, and parameters (compression force and thickness, tube voltage, exposure time, ...).
Those intensity variations cannot be all corrected by a single scalar gain correction (e.g., a constant
brightness coefficient) but require to be spatially adapted.

3.2. Relaxed intensity conservation - GDIC-I

To consider large local intensity changes in the lesion area an intensity compensation procedure, called
GDIC-I, is developed. The approach is based on a brightness contrast correction studied for material
science [37]. The relaxed brightness conservation assumption redefines a correction model for the
images, by compensating the intensity variations with a spatial field v(x):

f̃(x) = f(x+ u(x)) + v(x, f(x+ u(x))), (10)

where v(x, h) can be written with a polynomial correction

v(x, h(x)) =
∑
p

vp(x)hp(x). (11)

In our work, the correction is limited to the second order. The intensity corrected residual, written ρuv
reads

ρuv(x, f, g,u,v) = g(x)− (v0(x) + (1 + v1(x))f(x+ u(x))) . (12)

Note that some usual medical X-ray artifacts may require correcting the image with higher orders (e.g.,
beam hardening would require order 3 polynomial [38]).
Similarly to the kinematic model, the intensity correction can also be regularized and written in a finite
element framework

vp(x) =

Nv∑
l=1

vplψl(x), (13)

with vl the Nv nodal brightness values and ψ(x) the intensity interpolation functions.
All shape functions can be grouped into a single vector of shapes and all degrees of freedom in one
vector of parameters. The vectors Φ = (φ, ψ, ψ) represent for φ and ψ respectively the kinematics and
the intensity shape functions and a = (u, v0, v1) the correction amplitudes. The linearized problem can
be written similarly to eq.7:

[N ]{∂a} = {n}, (14)

with [N ] the hessian of the functional and n the second member

Nij = 〈Si, Sj〉, (15)

ni = 〈Si, ρu〉. (16)
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Sk = Φi · sj is the nodal sensitivity fields (with the super index k = i · j and j = [1, 2, 3]) computed
from the image derivatives.
Finally, at convergence, it can be noted that the residual of clinical interest may still be computed
as ρuv(x, f, g,u,v = 0) that highlights the intensity changes. In the case of NAC, this residual will
highlight all textures hence lesion changes. The proposed intensity corrected approach is designed not
to be biased by lesion evolution in NAC. In order to successfully register large motions, a regularization
and a multi-scale approach are used.

Regularization To make the procedure robust and to avoid possible poor conditioning, a penalization
on the functional can be added. While a classical soft Tikhonov regularization [39] could be used
(damping modes with low eigenvalues), it is preferred to introduce a penalization based on the
comparison between the estimated displacement field and that of the solution to a homogeneous elastic
problem [40]. It is important to note that this strategy does not require the studied sample to strictly
obey linear elasticity (which is not the case for (i) the breast behavior and (ii) its projected behavior).
Rather, it can be seen as a filter that locally dampens abrupt displacement gradients in order to
guarantee a smooth and differentiable displacement field.

Multi-scale approach Developing a robust method capable of dealing with all patients in the database
is a complex task because of the large range of potential repositioning, texture changes, breast size,
etc. A multi-scale approach is thus developed to consider large image differences. This procedure is
composed of two multi-scale approaches: an image multi-scale and a model multi-scale.
Image multi-scale: a pyramidal image method that consists in filtering with a Gaussian kernel and
down-scaling the images. The registration procedure starts with the filtered scales (composed of the
low image frequencies) and progressively retrieves the image details at a finer resolution level.
Kinematics multi-scale: a model whose complexity evolves with the iterations. A linear projector
matrix A is introduced with a kinematic part Au and an identity matrix of size Nv, INv

:

[A] =

[
Au 0
0 INv ,

]
(17)

with Nred the number of reduced parameter. A is of size [Nu+Nv, Nred + Nv] and allows linking the
nodal degrees of freedom together thus reducing the effective number of identified kinematics parameters
to Nred +Nv. The reduced motion field ured is written:

ured(x) =
∑
l

ūlφ̄l(x) =
∑
l

∑
i

uiA
u
il

∑
j

φj(x)Au
jl. (18)

This projector is applied for the computation of a reduced Hessian N̄kl and second member computation
n̄l

N̄kl = 〈SiAik, SjAjl〉, (19)

n̄l = 〈SiAil, ρu〉. (20)

As an example, linking all ux into a single degree of freedom is equivalent to a translation in the x
direction. Starting with coarse kinematics allows for correcting most of the motion. Then the projector
is progressively relaxed until it reaches the identity (i.e., all nodes are independent).
The kinematics model starts with rigid body motions (RBM) to coarsely position the breasts, then
affine motions are introduced, and finally, the full mesh kinematics can operate with Au = INu

, the
identity.

Transformation of CESM images After the registration of LE images, recombined pre-NAC image,
written fRec, can be transformed using the measured displacement field: fRec(x + u(x)). The
recombined residual field ρRec(x, fRec, gRec,u) is hence defined with the post-NAC recombined image
gRec such as ρRec(x, fRec, gRec,u) = gRec(x)− fRec(x+ u(x))
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3.3. Chosen parameters

The kinematic and intensity meshes were generated from the control of the nodal surface density. This
criterion is better than imposing a fixed number of nodes as the breast size varies. The kinematic mesh
density was set to 1 node / 5 cm2 resulting in a median number of 50 kinematics nodes (standard
deviation of 16 nodes) and the intensity mesh distance was set to 1 node / 2 cm2 resulting in a median
number of 120 nodes (standard deviation of 45 nodes). With this size, the mean lesion size treated with
chemotherapy is mapped with approximately 15 and 3 nodes before and after chemotherapy. Discussion
on the mesh size and its influence on the registration results is proposed in Appendix A.
To ensure convergence in all cases, the number of iterations was fixed to 50 with a fixed multi-scales
schedule: the first ten iterations are obtained with rigid body motions, the five next with affine
transforms and the rest with all free nodes.
The TV-L1 approach was applied first with a set of generic hyper-parameters as defined in [30], written:
TV-L1-a, then optimized with a better set of parameters, written TV-L1-b such that (TV-L1-a): λ = 15
and (TV-L1-b): λ = 20.

3.4. Evaluation procedure

For all the evaluated approaches, a very simple convergence validation was chosen to identify the cases
that diverged. Three criteria at the last iteration have to be reached to validate convergence. (1) The
residual norm is under the initial residual norm, (2) the residual norm does not vary more than 5%
of the reference image intensity dynamic, and (3) the motion field norm does not vary more than 5%
compared to the previous iteration. When all are respected, the case is labeled as converged. a

Residual norm: First, as it is the minimized metric, the L2 norm of the residuals is used to evaluate

the global metric convergence
∑

x∈ROI

‖ρuvx, f, g,u,v‖2 and assess the global image matching quality.

An important residual norm shows an unconverged registration.

Residual field: Second, the residual field ρu highlights local registration errors (e.g., unregistered edges,
incorrect registration of the nipple, of the pectoral muscle). The visual evaluation of the residual field
allows for validating the correction model.

Landmarks: Third, this algorithm aims to be used in a clinical environment. With the goal to locate
texture evolution between exams, an evaluation metric is the registration of clinical landmarks. 618
landmarks, written respectively xf and xg have been placed in respectively f and g on clearly identified
textures (e.g., calcification, nipple, infra-mammary fold, the center of nodules) in the LE and/or the
recombined image. The registered landmark distance d: d = ‖xg − xf − u(xf )‖L2 will be evaluated
with simple statistics: Root Mean Square Error (RMSE[d]) and maximal error (max[d]).

Evaluation of the synthetic case: Because a ground truth is known (both for the lesion size and
displacement magnitude) in the synthetic case, two additional metrics can be used. The first is the
displacement field comparison: root mean square displacement error, written RMSE[u] (and computed
for the x and y direction) and standard deviation, written std(u). The second metric is the quantification
of the lesion intensity evolution. This value is obtained when summing the residual intensity on the
lesion area.

Presented images/fields: A specific color coding is chosen for each image type and fields allowing (1)
to easily identify what image/field the reader is seeing and (2) highlighting specific behavior (e.g. ,
easy identification of positive and negative patterns).

• Mammography acquisitions (LE and Rec images). A standard gray level color-map was selected.

• Residual fields. A divergent color-map (blue/white/red) was selected as it is important to highlight
positive and negative patterns.

• Kinematics field. A hot color-map was selected.
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(a) Displacement field obtained with GDIC

(b) Displacement and intensity fields obtained with GDIC-I

Figure 3. Outputs of the registration procedure. (i) horizontal displacement ux(x), (ii) horizontal
displacement uy(x), expressed in pixels (1 pix↔0.1 mm) On the second line, GDIC-I fields are also
displayed with (iii) v0(x) and (iv) v1(x). The kinematics and intensity meshes are shown in black.

measured motion in x [pix] measured motion in y [pix]
RMSE[ux] std(ux) RMSE[uy] std(uy)

GDIC-I 0.3 1.6 0.6 1.6
GDIC 12.1 9.9 14.2 6.5

TV-L1-b 33.3 22.1 7.2 7.3

Table 2. Obtained motion metrics with GDIC-I, GDIC, and TV-L1-b for an input displacement of
100 pixels in x and y

• Intensity fields. A divergent color-map (brown/white/cyan) was selected as the intensity correction
is to be compared to 0.

4. Results

4.1. Results on the synthetic NAC case

The procedure has been applied to the synthetic case and the proposed GDIC-I method is compared
with GDIC. At the end of the procedure, the obtained displacement and intensity fields are shown
Figure 3. The GDIC-I displacements are much closer to the effective 100 pixels displacement applied
to the images than the GDIC fields. The GDIC-I field v0 shows a circular pattern with an amplitude
of 0.1 in the lesion area. This value corresponds to the simulated lesion intensity. Measured motion
metrics are shown in Table 2. The RMSE of GDIC-I motion is much smaller in both x and y directions
(respectively 0.3 and 0.6 pixels) compared to GDIC (12.1 and 14.2 pixels) and TV-L1-b approaches
(33.3 and 7.2 pixels). When registered, residual fields can be recomputed without the intensity term
ρuv(f, g,u,v = 0). Those residual fields, that aim at highlighting all texture changes are shown
Figure 4. A blue area corresponds to an intensity decrease and a red area to an intensity increase.
The obtained annulus shape is expected as it is the true difference between the two lesions (pre and
post-NAC). Because the ground truth is known, it can be subtracted to the residual field to isolate
only residuals due to incorrect motion measurement (Figure 4 (b) and (c)).
The sum of intensities of the residual field in the area of the lesion can be performed. This integral
shows intensity evolution between two acquisitions. The obtained values are compared to the ground
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(a) (b) (c) (d)

Figure 4. Residual fields (a) GDIC-I ρuv(f, g,u,v = 0) (c) GDIC ρu(f, g,u). The residuals on (b)
and (d) have been cleaned from the ground truth lesion evolution ρuv(f, g,u,v = 0)−Lf (x) +Lg(x)
and ρu(f, g,u)− Lf (x) + Lg(x).

truth evolution. The lesion intensity evolution error with GDIC-I, GDIC, and TV-L1-b are respectively
0.7 %, 34.2 %, and 11.3%.

4.2. Results on clinical data

Results on one specific NAC case Figure 5 presents registration results for one LMLO case showing a
complete pathological response (pCR). The GDIC-I registered pre-NAC image with respect to the post-
NAC images are shown in Figure 5(c) with intensity correction and (d) without applying the intensity
correction field. Figure 5(f) represents registered residual fields with intensity correction ρuv(f, g,u,v).

Figure 5. Case of a partial radiological response. First line: low-energy images, (a-b) corresponds
respectively to acquired post-NAC RMLO, pre-NAC RMLO, (c-d) are transformed pre-NAC images,
respectively with and without applying intensity correction fields. The second line corresponds to
the initial residual fields composed of high intensity differences: (e) ρuv(f, g,u = 0,v = 0), (f)
ρuv(f, g,u,v) and (g) ρuv(f, g,u,v = 0).

When registered, residual intensities are much smaller than the initial ones. No strong residuals are
located on the edges. Figure 5(g) shows the the final residual fields without applying the intensity
correction field ρuv(f, g,u,v = 0).
The displacement and intensity correction fields are shown in Figure 6. An important motion has been
captured (more than 280 pixels) with the multi-scale procedure. This motion is quite smooth (maximal
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(a) ux(x) (b) uy(x) (c) v0(x) (d) v1(x)

Figure 6. Outputs of the registration procedure for the current/prior registration of one patient. (a-
b) horizontal displacement and vertical displacement expressed in pixels (1 pix↔0.1 mm) and intensity
corrections (c-d). The kinematics and intensity meshes are shown in black.

Figure 7. The first line corresponds to recombined images (a) pre-NAC fRec and (b) post-
NAC gRec and (c) transformed pre-NAC. The second lines shows recombined residual fields (d)
ρRec(fRec, gRec,u = 0) and (e) ρRec(fRec, gRec,u)

absolute strain in xx, yy and xy (shear) are respectively 18%, 10% and 0.6%). The intensity correction
fields show an important decrease of intensity in the central lesion area (decrease of approximately
30%).
Pre-NAC, post-NAC and transformed post-NAC are shown Figure 7 respectively in Figure (a), (b) and
(c). The initial and final recombined residuals are shown in (d) and (e). From the assumption made
earlier that recombined images display projected iodine quantity, red and blue intensities highlight
respectively an increase and decrease of projected iodine between the pre and post-NAC exams.

Results on other cases Convergence was achieved for every cases (208/208) with the GDIC-I approach.
Two cases gave high final residuals because the registration was performed with two highly changed
views. One of these challenging cases is discussed in this document. The numbers of converged cases
with different methods are shown in Table 3. A data split shows converged cases when the lesion appears
in the image and when no lesion appears (e.g., , normal breast, CC view with a lesion in the axillary
area). The proposed approach limited to rigid body motion also converged in all cases (208/208). The
state-of-the-art techniques, TV-L1-a and TV-L1-b, converged in significantly fewer cases: 121/208 and
169/208 respectively. Results are shown for different RECIST evaluations (Figure 8 and Figure 9).
In those figures, the first line corresponds to LE images (a-b) and intensity compensated residuals
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Converged cases with
apparent lesion

Converged cases without
apparent lesion

Total

GDIC-I 101/101 (100%) 107/107 (100%) 208/208 (100%)
RBM 101/101 (100%) 107/107 (100%) 208/208 (100%)
GDIC 88/101 (87%) 95/107 (89%) 183/208 (88%)
TV-L1-a 39/101 (39%) 82/107 (76%) 121/208 (58%)
TV-L1-b 75/101 (75%) 94/107 (89%) 169/208 (81%)

Table 3. Converged cases with different registration methods.

Figure 8. Case of a partial response (RECIST: 83% decrease). The first line corresponds to low-
energy images with (a) the pre-NAC, (b) the post-NAC, (c) ρuv(f, g,u,v = 0) and (d) ρuv(f, g,u,v).
The second line corresponds to recombined images with (e) the pre-NAC, (f) the post-NAC, (c)
ρRec(fRec, gRec,u).

(c-d). Post-NAC recombined images (e-f) are then transformed using the displacement field measured
between LE images. The recombined residual field is displayed in (g).
The case in Figure 9 is a progressive disease and hence has a lesion more intense in the post-NAC than
in the pre-NAC. This intensity increase appears in dark red. The difference in LE shows an intensity
increase in the direction of the nipple.

Evaluation metrics The residual norm of all cases at each iteration is presented in Figure 10. The
median convergence curve is shown with a plain black line. Starting from various initial errors
(depending on the repositioning displacement state), the norm decreases with multiple plateaus for
each set of optimization parameters. The two cases with important breast areas out of the field of view
are the ones with the major residual norm.
The registration of one of those challenging cases is shown in Figure 11. An important area of the breast
is out of the field of view in the post-NAC image. The registration is challenging with a displacement
of more than 6 cm.
The comparison of the landmarks registration is presented in Table 4. This table presents the RMSE
and maximum distance for registered landmarks using different approaches. The values were computed
only on converged cases. RBM, TV-L1-a, and TV-L1-b have metrics in the same range (RMSE around
10-11 mm). GDIC and GDIC-I led to lower RMSE values, respectively 8.1 mm and 5.9 mm.
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Figure 9. Case of a progressive radiological response (RECIST = 240%). The first line corresponds
to low-energy images with (a) the pre-NAC, (b) the post-NAC, (c) ρuv(f, g,u,v = 0) and (d)
ρuv(f, g,u,v). The second line corresponds to recombined images with (e) the pre-NAC, (f) the
post-NAC, (c) ρRec(fRec, gRec,u, ).

Figure 10. Blue: envelope of the 208 L2 norms of the registered LE residuals for all computations.
Orange: mean +/- standard deviation. The black line represents the median values.

Initial RBM TV-L1-a TV-L1-b GDIC GDIC-I
RMSE[d] [mm] 19.0 10.8 11.2 10.8 8.1 5.9
Max[d] [mm] 60.6 39.1 55.1 46.2 32.2 21.3

Table 4. Registration of clinical landmarks. Note that, for TV-L1 results, values are computed only
for the cases that converged.

5. Discussion

5.1. Discussion on the synthetic case

Because of important motion, the initial residual shows important positive and negative values on the
edges, on the lesion area, and the pectoral muscle. It can be noted that the blue shape on the lesion
area is very irregular and cannot be quantitatively interpreted.
Figure 3(a) shows that GDIC is highly affected by the lesion evolution. Instead of a constant field, an
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Figure 11. Registered challenging case, using GDIC-I, with an important breast area out of the field
of view. (a-b) are the pre and post-LE images without the intensity compensation. (c) and (d) are
the initial and registered residuals. The second line shows the Recombined images.

important compression field aims at reducing its size so it better matches with the post-NAC image.
On the other side, GDIC-I displacement is much smoother and close to the ground truth of 100 pixels.
This field is not affected by the lesion change. The obtained intensity fields compensate for the lesion
evolution. The metrics of the displacement for GDIC-I are much better than GDIC. Although only v0
should be activated if the intensity correction support was perfect, it can be noted that the fields v0
and v1 are coupled.
When converged, GDIC-I residual field highlights the lesion change as it disappears when removing
the ground truth lesion change. The GDIC-I residual is then a quantitative description of the texture
evolution as it is cleaned from the motion impact. On the opposite, the GDIC residual field does not
have a smooth circular shape. This field does not correspond to the ground truth lesion change and
cannot be interpreted quantitatively.
It can be noted that very similar observations on displacement field were obtained from a real NAC
case displayed in Appendix B.
The intensity compensation appears to be important when performing the registration. It allows
quantitative information (both in residuals and displacement fields) to be read.

5.2. Discussion on the clinical cases

The proposed method achieved a high convergence rate as all cases in our database converged. The
number of iterations is intentionally large to maximize registration quality instead of computation
time. Designing a stopping criterion based on the residual value or evolution could be envisioned to
speed up the computation. In the two cases with important motion (more than 6 cm), the registration
successfully matched the breast edges. However, the inner texture may not be perfectly registered (e.g.,
important 3D repositioning motion, fibro-glandular texture changes). On all metrics, the proposed
approach outperformed other state-of-the-art approaches. For the TV-L1 and GDIC methods, the
ratio of converged cases without an appearing cancer is significantly higher than the cases where the
lesion is visible. This comes from the high impact of the cancer intensity changes. From the landmarks
measurements, it can be seen that the proposed GDIC-I approach leads to a much smaller registration



15

distance error (RMSE of 5.9 mm).
What remains in the clinical residual fields can be split into different categories:

• A physical texture difference. This difference corresponds to fibroglandular evolution, lesion
evolution, iodine changes, etc.

• A 3D motion effect that cannot be corrected by 2D in-plane procedure. The proportion of this
residual may be important when the breast is very dense.

• Noise and artifacts that cannot be registered.

In some residuals, it can be seen a vertical pattern on the image borders. This is due to a constant
intensity extrapolation pulling the breast texture inside the field of view. Note that this pattern could
be masked in clinical practice.
In general, it can be seen that the low-energy residual gives a piece of new information on the intensity
evolution. It is well correlated with the iodine residual and with the lesion annotation (represented in
the LE images with the green ellipse). Lesion intensity evolution that may be difficult to read in the LE
images can be more easily identified. Its reading is fast and enables to efficiently detect and quantify
the texture changes, lesion position, and extent. This field could be used for later clinical discussion
with the surgeon and/or the oncologist.
It can be noted from the registered residuals that the biopsy clips were inserted in the center of the
pre-NAC lesions. The clip appears as a small dark red area as it is not seen in the pre-NAC image. In
a quantitative analysis, this clip could be erased to focus on iodine evolution content.
It can be noted that LE residual norm is related to the patient breast texture. A very glandular breast
with important texture change generally has a more important residual field than a fatty breast. The
proposed approach will have lower accuracy on very dense breasts (ACR-D).
When applying the motion correction to the recombined image, the image difference shows iodine
evolution. It is hence important to use the best available recombination algorithm not to be polluted
by artifacts.
The computation time is approximately 1 min per registered pair of images on a computer with a
configuration similar to the acquisition system and a script in python. With great opportunities of
computational improvement (e.g., implementing a stopping criterion, writing the script in a more
efficient framework, and using GPU programming [41]), it is an important perspective to speed up the
procedure for clinical usage.

6. Conclusion

A robust non-rigid registration method, GDIC-I, able to handle large motion, and important intensity
changes with a high convergence rate has been proposed. The approach consists in generating smooth
intensity fields compensating for local texture changes. After registration is performed, this intensity
compensation field is removed highlighting the lesion changes. First applied on a synthetic example
where a ground truth is known, the method was executed on 208 CESM low-energy image pairs.
Cleaned from its motion, the image difference allows identifying breast texture changes thus tumor
response. After motion identification, the transformation field was applied to the recombined images.
With the same principle, the recombined image difference displayed iodine evolution.
The proposed approach was compared to the standard state-of-the-art registration techniques. Those
classical methods are very sensitive to large breast texture changes and fail when registering NAC cases
with large lesion evolution. Different metrics were used and showed better results with the proposed
approach. The residual field is a piece of interesting clinical information that reveals texture changes.
Some NAC evaluations require catching very slight lesion extent evolution, especially in LE images.
The residual map may give additional clinical help to the radiologist. In those difference map, the
radiologist may identify the lesion shrinkage pattern with the treatment, the mapping of the pre-NAC
lesion in the post-NAC view for surgical procedures, the identification of the lesion center in post-NAC
complete responses, etc.
In addition to its visual interest, a perspective of this work is to include this registration in a
quantification tool for lesion evolution. Proven to be efficient in MRI quantification, it can also be
investigated for lesion evolution quantification in CESM.
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[13] Katarzyna Steinhof-Radwańska, Anna Grażyńska, Andrzej Lorek, Iwona Gisterek, Anna Barczyk-Gutowska,
Agnieszka Bobola, Karolina Okas, Zuzanna Lelek, Irmina Morawska, Jakub Potoczny, et al. Contrast-enhanced
spectral mammography assessment of patients treated with neoadjuvant chemotherapy for breast cancer. Current
Oncology, 28(5):3448–3462, 2021.

[14] Elizabeth A Eisenhauer, Patrick Therasse, Jan Bogaerts, Lawrence H Schwartz, Danielle Sargent, Robert Ford,
Janet Dancey, S Arbuck, Steve Gwyther, Margaret Mooney, et al. New response evaluation criteria in solid
tumours: revised recist guideline (version 1.1). European journal of cancer, 45(2):228–247, 2009.

[15] Amr Farouk Ibrahim Moustafa, Rasha Mohammed Kamal, Mohammed Mohammed Mohammed Gomaa, Shaimaa
Mostafa, Roaa Mubarak, and Mohamed El-Adawy. Quantitative mathematical objective evaluation of contrast-
enhanced spectral mammogram in the assessment of response to neoadjuvant chemotherapy and prediction of
residual disease in breast cancer. Egyptian Journal of Radiology and Nuclear Medicine, 50(1):1–13, 2019.

[16] Rasha Mohammed Kamal, Sherihan Mahmoud Saad, Amr Farouk Ibrahim Moustafa, Mohammed Mohammed
Gomaa, Omniya Mokhtar, Iman Gouda, Ahmed Hassan, Amany Hilal, and Ashraf ElZayat. Predicting response



17

to neo-adjuvant chemotherapy and assessment of residual disease in breast cancer using contrast-enhanced spectral
mammography: a combined qualitative and quantitative approach. Egyptian Journal of Radiology and Nuclear
Medicine, 51(1):1–14, 2020.

[17] Dong Xing, Ning Mao, Jianjun Dong, Heng Ma, Qianqian Chen, and Yongbin Lv. Quantitative analysis of contrast
enhanced spectral mammography grey value for early prediction of pathological response of breast cancer to
neoadjuvant chemotherapy. Scientific Reports, 11(1):1–9, 2021.

[18] Zhongyi Wang, Fan Lin, Heng Ma, Yinghong Shi, Jianjun Dong, Ping Yang, Kun Zhang, Na Guo, Ran Zhang,
Jingjing Cui, et al. Contrast-enhanced spectral mammography-based radiomics nomogram for the prediction of
neoadjuvant chemotherapy-insensitive breast cancers. Frontiers in Oncology, 11:84, 2021.

[19] Saskia van Engeland, Peter Snoeren, JHCL Hendriks, and Nico Karssemeijer. A comparison of methods for
mammogram registration. IEEE Transactions on Medical Imaging, 22(11):1436–1444, 2003.

[20] Yanfeng Li, Houjin Chen, Yongyi Yang, Lin Cheng, and Lin Cao. A bilateral analysis scheme for false positive
reduction in mammogram mass detection. Computers in biology and medicine, 57:84–95, 2015.

[21] Frédéric JP Richard and Laurent D Cohen. A new image registration technique with free boundary constraints:
application to mammography. Computer Vision and Image Understanding, 89(2-3):166–196, 2003.

[22] Yago Dı́ez, Arnau Oliver, Xavier Llado, Jordi Freixenet, Joan Marti, Joan Carles Vilanova, and Robert Marti.
Revisiting intensity-based image registration applied to mammography. IEEE Transactions on Information
Technology in Biomedicine, 15(5):716–725, 2011.
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[40] Julien Réthoré, Stéphane Roux, and François Hild. An extended and integrated digital image correlation technique

applied to the analysis of fractured samples: The equilibrium gap method as a mechanical filter. European
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Appendix A. Appendix

Discussion on the mesh dependency To evaluate the impact of the kinematic support, different mesh
sizes were used and the kinematic results are shown in Figure A1. The metrics for the different mesh
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sizes are shown in Table A1.

Coarse mesh Medium mesh Fine mesh

Kinematics mesh density [cm−2] 18 5 2

Intensity mesh density [cm−2] 2 2 2
RMSE[d] [mm] 10.2 5.9 5.8
Max[d] [mm] 33.9 21.3 22.1

Nb of converged cases 207/208 (99.5%) 208/208 (100%) 208/208 (100%)

Table A1. Registration of clinical landmarks with different kinematics mesh sizes.

A very coarse mesh is essentially based on the registration of the breast edges where the image gradient
is very high. The registration metrics for the coarse mesh are hence not optimal.
When the mesh is very fine, the degrees of freedom are mainly damped by the regularization function.
The problem became not mesh dependent as the metrics are not sensitive to the mesh evolution.
Finally, from the proposed metrics, the measured kinematics is not mesh-dependent and a choice is to
select the mesh for fast computation.

Figure A1. Motion results for three mesh sizes. The top, middle, and bottom results are respectively
Fine, medium, and very coarse mesh. The results are here presented at scale 1/3 so 1 pix↔1/30 mm.

Appendix B. Appendix

Intensity correction impacts on a real case The local intensity correction allows correcting the lesion
intensity evolution. As a result, the registration is not biased by the important texture evolution. The
registration with and without intensity correction is shown in Figure B1. Without a ground truth, it
is not easy to evaluate the obtained motion. However, it can be seen that the measured motion aims
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at shrinking the lesion size (important positive and negative motion highlighting a compression field)
to reduce its intensity impact. The GDIC-I motion is much smoother and more realistic. The intensity
correction allows not to bias displacement measurement.

Figure B1. First line: a real clinical example with LE images pre-NAC (left) and post-NAC (right).
Second line: Displacement results with GDIC. This measurement is impacted by lesion evolution.
Third line: displacement with GDIC-I not impacted by the lesion evolution.
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