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Convergence of the incremental projection method

using conforming approximations

R. Eymard and D. Maltese∗
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Abstract

We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible

Navier–Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure

are discretised in conforming spaces, whose the compatibility is ensured by the existence of an interpolator for

regular functions which preserves approximate divergence free properties. Owing to a priori estimates, we get

the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on

a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate

solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the

lowest degree Taylor-Hood finite element.

1 Introduction

The Navier–Stokes equations for a homogeneous incompressible fluid can be written in a strong form as:

∂tu+ (u ·∇)u−∆u +∇p = f in (0, T )× Ω, (1a)

divu = 0 in (0, T )× Ω, (1b)

where the density and the viscosity are set to one for the sake of simplicity, and where

T > 0, and Ω is a connected, open and bounded subset of R
d, d ∈ {2, 3},

with a Lipschitz boundary ∂Ω.
(2)

The variables u and p are respectively the velocity and the pressure of the fluid, and (1a) and (1b)
respectively model the momentum conservation and the mass conservation of an incompressible fluid.
This system is supplemented with the homogeneous Dirichlet boundary condition

u = 0 on (0, T )× ∂Ω, (3)

and the initial condition
u(0) = u0 in Ω. (4)

The function u0 is the initial datum for the velocity and the function f is the source term.
While this system of equations is coupling the velocity and the pressure, projection numerical schemes,
introduced in [3] and [23], enable the successive resolution of decoupled elliptic equations for the velocity
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1 Introduction 2

and the pressure. This leads to cheaper and smaller computations than those issued from a coupled
approximation, and these methods are widely used (see [1], [11], [12], [18], [24]). Let us present the
principle of the “incremental projection method” for the approximation of (1) by a continuous-in-space
discrete-in-time scheme (see [10]):

• Prediction step : Find a function ũn+1 ∈ H1
0 (Ω)

d, which is therefore regular in space and respects
the boundary conditions but is not divergence-free, such that the following linearized momentum
equation holds in the homogeneous Dirichlet weak sense:

1

δt
(ũn+1 − un) + (un ·∇)ũn+1 −∆ũn+1 +∇pn = fn+1 in Ω, (5a)

ũn+1 = 0 on ∂Ω. (5b)

This step involves d decoupled resolution of elliptic problems for each of the components of the
velocity, in the case of the Stokes problem (neglecting the term (un ·∇)ũn+1 in the small velocities
approximation). In the Navier-Stokes problem, it leads to the resolution of an elliptic problem
coupling all the components of the velocity.

• Correction step : Find the new pressure field pn+1 ∈ H1(Ω) ∩ L2
0(Ω) (denoting by L2

0(Ω) the space
of functions of L2(Ω) with null average on Ω), and a corrected velocity un+1 ∈ V (Ω) (denoting by
V (Ω) the space of L2-divergence-free functions and null normal trace, precisely defined by (10))
therefore with a lower regularity in space and a weaker boundary condition, such that, in the
homogeneous Neumann weak sense for the unknown pn+1 − pn ∈ H1(Ω) ∩ L2

0(Ω),

1

δt
(un+1 − ũn+1) +∇(pn+1 − pn) = 0 in Ω, (6a)

divun+1 = 0 in Ω. (6b)

This step involves the resolution of an elliptic problem for finding the new pressure.

Scheme (5)-(6) is called an “incremental projection scheme”, since it is obtained by introducing the
previous pressure gradient in the prediction step and by solving the increment of the pressure in the
correction step, which is a projection step of the predicted velocity on the divergence-free functions. Such
a scheme seems to be much more efficient from a computational point of view than other projection
schemes and has been the object of several error analysis, under some regularity assumptions on the
solution of the continuous problem in the semi-discrete setting, see [14] and references therein. The non
incremental schemes have been the object of some analyses in the fully discrete setting.
Some recent papers [19, 9] propose convergence proofs for fully discrete projection schemes. In [9], the
incremental projection scheme is considered without any assumption of regularity assumptions on the
exact solution. The proof of its convergence is done both for the semi-discrete scheme and for a fully
discrete scheme using the Marker-And-Cell scheme (introduced in the seminal paper [17]). In this paper,
we extend such a proof to the case where the spatial discretisation is done using conforming methods
(in most of the cases, finite element methods or spectral methods). We refer to [16], [15], [13] using
conforming finite element methods.
We consider, for any integer N ≥ 1 defining the time step by δtN = T/N , approximation spaces XN ⊂
H1

0 (Ω)
d for the predicted velocity, MN ⊂ H1(Ω) ∩ L2

0(Ω) for the approximate pressure. Then the space
VN , defined as the space of functions which are L2-orthogonal to the gradient of the elements of MN

(it is therefore not a subset of V (Ω)) is used for the approximation of the corrected velocity. The fully
discrete incremental projection scheme is given in Section 2, and is shown to have a unique solution
(ũn

N , p
n
N ,u

n
N )n=1,...,N ∈ (XN ×MN × VN )N .

In order to prove the convergence of the incremental projection scheme, we need to prove the compactness
of the sequence of the approximate velocities in L2. The main difficulty relies in the time translate
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estimates; this difficulty is solved in the coupled case by the famous Lions’ Lemma [21, Lemme 5.1 p.58],
bounding the norm in L2 by a combination of the norm in H1 and of a semi-norm similar to a H−1

norm. In the case of the incremental projection method, the difficulty relies in the fact that there are two
different approximations for the velocities. We handle this difficulty in Section 3.3, by closely following
the method first introduced in [9]. We can then conclude the convergence proof to a solution, considered
in the weak sense given below, in Section 3.4.
It is noticeable that, for this existence and uniqueness result, no compatibility condition between MN

and XN is required. This is no longer the case in Section 3, where the convergence of the method is
proved. The compatibility condition is expressed through the existence of an interpolator ΠN : W →
XN ∩VN ∩L∞(Ω)d, whose purpose is to build approximate values in the discrete velocity spaces of some
regular functions. This interpolator replaces in this paper a Fortin interpolator (see [22, 6, 7, 8] for more
properties on such operator). In the present paper, the resquested properties are slightly different (see
Section 3.1):

• The set W is a dense subset of the set H1
0 (Ω)

d ∩ V (Ω) for the H1
0 (Ω)

d norm (see (19)).

• For any ϕ ∈ W , the convergence of ΠNϕ to ϕ is assumed to hold in H1
0 (Ω)

d, while the L∞ norm
of ΠNϕ remains bounded (see (22)).

So the hypotheses which are done on the space discretisation in this paper are not shown to be equivalent
to an inf-sup property. In Section 4, we consider the example of the lowest degree Taylor-Hood finite
element. In this section we provide all the calculations that prove the convergence property which is
requested on ΠN , since the properties which are studied in the literature are generally different. We
show that constructing ΠN and checking its properties is much simplified by the fact that we only
need to apply it on regular divergence free functions with compact support. It is in some way simpler
than the verification of the inf-sup condition for these spaces. Note that the study done in this paper
also applies to the semi-discrete scheme, since one can let XN = H1

0 (Ω)
d for the predicted velocity,

MN = H1(Ω) ∩ L2
0(Ω) for the approximate pressure (which yields VN = V for the corrected velocity),

defining W = C∞
c (Ω)d ∩ V (Ω) and ΠN = Id.

Throughout the paper, we shall assume that the data f and u0 satisfy

f ∈ L2((0, T )× Ω)d and u0 ∈ L2(Ω)d. (7)

We denote in the whole paper

∀v,w ∈ L2(Ω)d, (v,w) :=

∫

Ω

v(x) ·w(x) dx. (8)

We recall that we denote by L2
0(Ω) the space of L

2 functions with null average on Ω, which can be defined
by

L2
0(Ω) = {q ∈ L2(Ω) such that

∫

Ω

q(x) dx = 0}, (9)

and by V (Ω) the space of L2-divergence-free functions, which can be defined by

V (Ω) = {u ∈ L2(Ω)d such that (u,∇ξ) = 0 for any ξ ∈ H1(Ω)}. (10)

Recall that we can write as well [2, Definition IV.3.2 p. 248]

V (Ω) = {u ∈ Hdiv(Ω) such that divu = 0 and γνu = 0},

denoting by γν the normal trace of u on ∂Ω. Then H1
0 (Ω)

d∩V (Ω) is the subset of H1
0 (Ω)

d of divergence-
free functions. Let us define the weak solutions of Problem (1)-(4) in the sense of Leray [20].
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Definition 1.1 (Weak solution): Under the assumptions (2) and (7), a function u ∈ L2(0, T ;H1
0(Ω)

d ∩
V (Ω)) ∩ L∞(0, T ;L2(Ω)d) is a weak solution of the problem (1)-(4) if

−

∫ T

0

(u, ∂tv) dt+

∫ T

0

((u ·∇)u,v) dt+

∫ T

0

∫

Ω

∇u : ∇v dx dt

= (u0,v(0, ·)) +

∫ T

0

(f ,v) dt (11)

for any v ∈ C∞
c (Ω× [0, T ))d, such that divv = 0 a.e. in Ω× (0, T ), where

2 The projection scheme using a conforming method

2.1 Space and time discretizations

We consider a partition of the time interval [0, T ], which we suppose uniform to alleviate the notations,
so that the assumptions read (omitting in the whole paper to recall that N is assumed to be an integer):

N ≥ 1, δtN =
T

N
, tnN = n δtN for n ∈ J0, NK. (12)

We consider a sequence of velocity-pressure approximations in H1
0 (Ω)

d and H1(Ω) ∩ L2
0(Ω) respectively.

For the approximation of the predicted velocity, let

(XN )N≥1 be a sequence of
closed subspaces of H1

0 (Ω)
d.

(13)

For the approximation of the pressure, let

(MN )N≥1 be a sequence of
closed subspaces of H1(Ω) ∩ L2

0(Ω).
(14)

For the approximation of the corrected velocity we define the space of weakly divergence free functions
by

VN = {v ∈ L2(Ω)d such that (v,∇q) = 0 for any q ∈MN}. (15)

We denote by PVN
: L2(Ω)d → VN the orthogonal projection in L2(Ω)d onto the space VN . We denote

by PV (Ω) : L
2(Ω)d → V (Ω) the orthogonal projection in L2(Ω)d onto the space V (Ω).

Remark 2.1: The choice XN = H1
0 (Ω)

d, MN = H1(Ω) ∩ L2
0(Ω) (which implies VN = V (Ω)) yields the

continuous-in-space discrete-in-time scheme.

2.2 The projection scheme

Let a : H1
0 (Ω)

d ×H1
0 (Ω)

d → R be the coercive bilinear form and let b : H1
0 (Ω)

d ×H1
0 (Ω)

d ×H1
0 (Ω)

d → R

be the “skew-symmetric” trilinear form defined by

a(u,v) =

∫

Ω

∇u : ∇v dx,

b(u,v,w) =

∫

Ω

(u ·∇)v ·w dx+
1

2

∫

Ω

divu(v ·w) dx

=
1

2

∫

Ω

(

(u ·∇)v ·w − (u ·∇)w · v
)

dx.
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Using the above definitions, the first order time semi-discrete incremental projection scheme described in
the introduction of this paper reads:

Initialization:

Let u0
N = PVN

u0, ũ
n
N = 0 and p0N = 0. (17a)

Solve for 0 ≤ n ≤ N − 1 :

Prediction step:

ũn+1
N ∈ XN ,

1

δtN

(

(ũn+1
N ,v)− (un

N ,v)
)

+ b(ũn
N , ũ

n+1
N ,v) (17b)

+ a(ũn+1
N ,v) + (∇pnN ,v) = (fn+1

N ,v), for any v ∈ XN ,

Correction step:

(∇(pn+1
N − pnN ),∇q) = −

1

δtN
(q, divũn+1

N ), for any q ∈MN . (17c)

pn+1
N ∈MN , (17d)

un+1
N = ũn+1

N − δtN∇(pn+1
N − pnN). (17e)

The term fn+1
N ∈ L2(Ω)d is given by fn+1

N (x) =
1

δtN

∫ tn+1

tn
f(t,x) dt, for a.e. x ∈ Ω.

Remark 2.2: Note that un+1
N is an element of VN . In particular we have ũn+1

N = un+1
N + δtN∇(pn+1

N −pnN)
which provides a discrete Helmholtz-Leray decomposition for ũn+1

N .

2.3 Existence of a solution to the projection scheme

The following existence result allows to define the approximate solutions obtained by the projection
scheme (17).

Lemma 2.1 (Approximate solutions): Under Assumptions (2), (7), (12), (13), (14), for any N ≥ 1, there
exists a unique sequence (ũn

N ,u
n
N , p

n
N )n∈J1,NK ⊂ XN × VN ×MN satisfying (17). We then define the

functions uN : (0, T ) → VN and ũN : (0, T ) → XN by

uN (t) =
N−1
∑

n=0

1(tn
N
,t

n+1

N
](t)u

n
N , ũN (t) =

N−1
∑

n=0

1(tn
N
,t

n+1

N
](t)ũ

n+1
N . (18)

Proof. For given functions pnN ∈MN , ũn
N ∈ XN and un

N ∈ VN , Problem (17b) is under the form:

ũn+1
N ∈ XN , ∀v ∈ XN , a

n
N (un+1

N ,v) = bN (v),

where, owing to the property b(·,v,v) = 0, the continuous bilinear form anN is such that

∀v ∈ XN , a
n
N (v,v) ≥ ‖v‖2H1

0
(Ω)d .

Hence the existence and uniqueness of the solution ũn+1
N ∈ XN is given by the Lax-Milgram theorem.

For given functions pnN ∈MN , ũn+1
N ∈ XN , Problem (17c) is under the form:

pn+1
N ∈MN , ∀q ∈MN , (∇p

n+1
N ,∇q) = cN (q).

Hence the existence and uniqueness of the solution pn+1
N ∈MN is given by the fact that the bilinear form

(p, q) 7→ (∇p,∇q) is coercive on H1(Ω) ∩ L2
0(Ω). �
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3 Convergence study

3.1 Convergence assumptions

The following assumptions are done on the sequences (XN )N≥1 and (MN )N≥1 in order to prove the
convergence of the projection scheme as N → ∞. These assumptions, provided in terms of the existence
of a family of interpolators on some spaces (ΠN )N≥1, replace the standard uniform inf-sup hypothesis.
We assume that

W is a dense subset of V (Ω) ∩H1
0 (Ω)

d

for the norm of H1
0 (Ω)

d.
(19)

We define
∀N ≥ 1, EN = XN ∩ VN ∩ L∞(Ω)d, (20)

∀N ≥ 1, ∀u ∈ EN , ‖u‖E = ‖∇u‖L2(Ω)d×d + ‖u‖L∞(Ω)d . (21)

We assume that

For any N ≥ 1 there exists a mapping ΠN : W → EN such that,
for any ϕ ∈ W , (ΠNϕ)N≥1 converges to ϕ in H1

0 (Ω)
d

and the sequence (‖ΠNϕ‖E)N≥1 is bounded.
(22)

The sequence (MN )N≥1 is assumed to be such that

(PMN
(p))N≥1 converges to p in H1(Ω),

for any p ∈ H1(Ω) ∩ L2
0(Ω),

(23)

where we denote by PMN
: H1(Ω) ∩ L2

0(Ω) → MN the orthogonal projection in H1(Ω) ∩ L2
0(Ω) onto the

space MN .

Remark 3.1: Note that (23) is equivalent to the fact that

lim
N→+∞

inf
q∈MN

‖p− q‖H1(Ω) = 0 for any p ∈ H1(Ω) ∩ L2
0(Ω),

Note that the sequence (VN )N≥1 is an approximation of V (Ω).

Remark 3.2: If, for all N ≥ 1, we consider the semi-discrete case XN = H1
0 (Ω)

d, MN = H1(Ω) ∩ L2
0(Ω)

(recall that this yields VN = V (Ω)), we let W = V (Ω)∩C∞
c (Ω)d and ΠN = Id. Then all the assumptions

of this section are satisfied.

Remark 3.3: We provide in Section 4 the construction of ΠN in the case of the lowest degree Taylor-Hood
finite element. We show in Lemma 4.14 that it satisfies the assumptions given in this section, for a regular
family of meshes in the standard sense.

3.2 Space estimate

Lemma 3.1: Under Assumptions (2), (7), (12), (13), (14), for any N ≥ 1, the following relation holds for
n ∈ J0, N − 1K:

1

2δtN

(

‖un+1
N ‖2L2(Ω)d − ‖un

N‖2L2(Ω)d

)

+
δtN
2

(

‖∇pn+1
N ‖2L2(Ω)d − ‖∇pnN‖2L2(Ω)d

)

+
1

2δtN
‖ũn+1

N − un
N‖2L2(Ω)d + ‖ũn+1

N ‖2H1
0
(Ω)d = (fn+1

N , ũn+1
N ). (24)
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Consequently, there exists C1 depending only on |Ω|, on the L2-norm of u0 and on the L2-norm of f
such that the functions ũN and uN defined by (18) satisfy:

‖ũN‖L2(0,T ;H1
0
(Ω)d) ≤ C1 and ‖uN‖L∞(0,T ;L2(Ω)d) ≤ C1. (25)

‖uN − ũN‖L∞(0,T ;L2(Ω)d) ≤ C1 and ‖uN − ũN‖L2(0,T ;L2(Ω)d) ≤ C1
√

δtN . (26)

Proof. We take ũn+1
N in (17b) and we obtain for n ∈ J0, N − 1K

1

2δtN
‖ũn+1

N ‖2L2(Ω)d −
1

2δtN
‖un

N‖2L2(Ω)d +
1

2δtN
‖ũn+1

N − un
N‖2L2(Ω)d

+

∫

Ω

∇pnN · ũn+1
N dx+ ‖ũn+1

N ‖2H1
0
(Ω)d = (fn+1

N , ũn+1
N ). (27)

Squaring the relation ũn+1
N + δtN∇pnN = un+1

N − δtN∇pn+1
N , integrating over Ω, and owing to un+1

N ∈ VN ,
we get that for n ∈ J0, N − 1K,

1

2δtN
‖un+1

N ‖2L2(Ω)d +
δtN
2

‖∇pn+1
N ‖2L2(Ω)d =

1

2δtN
‖ũn+1

N ‖2L2(Ω)d

+
δtN
2

‖∇pnN‖2L2(Ω)d − (ũn+1
N ,∇pnN).

Summing the latter relation with (27) yields (24) for n ∈ J0, N − 1K. We then get Relations (25) by
summing over the time steps, using the Cauchy-Schwarz and Poincaré inequalities. �

Lemma 3.2: Under Assumptions (2), (13), (14), (19), (22), (23), let (vN )N≥1 be a sequence of functions
of L2(Ω)d such that (vN )N≥1 converges to v in L2(Ω)d. Then the sequence (PVN (Ω)vN )N≥1 converges

to PV (Ω)v in L2(Ω)d.

Proof. Using the fact that (vN )N≥1 is bounded in L2(Ω)d we obtain that the sequence (PVN (Ω)vN )N≥1

is bounded in L2(Ω)d. Hence there exists a subsequence still denoted by (PVN (Ω)vN )N≥1 that converges

to a function ṽ weakly in L2(Ω)d. Let ξ ∈ H1(Ω) ∩ L2
0(Ω). Using the fact that for any N ≥ 1 we have

PVN (Ω)vN ∈ VN and PMN
ξ ∈MN we obtain

(PVN (Ω)vN ,∇PMN
ξ) = 0, for any N ≥ 1.

Using the weak convergence of the sequence (PVN (Ω)vN)N≥1 in L2(Ω)d and the strong convergence of
the sequence (PMN

ξ)N≥1 in H1(Ω) and passing to the limit in the previous identity gives

(ṽ,∇ξ) = 0, for any ξ ∈ H1(Ω).

We then obtain that ṽ ∈ V (Ω). Let ϕ ∈ W be given. Using the fact that ΠNϕ ∈ VN for any N ≥ 1, we
obtain

(vN ,ΠNϕ) = (PVN (Ω)vN ,ΠNϕ), for any N ≥ 1.

Using the convergence to ϕ of the sequence (ΠNϕ)N≥1 in H1
0 (Ω)

d, the weak convergence of the sequence
(PVN (Ω)vN )N≥1 in L2(Ω)d and passing to the limit in the previous identity gives

(v,ϕ) = (ṽ,ϕ) for any ϕ ∈ W .

We then obtain that ṽ = PV v and the sequence (PVN (Ω)vN )N≥1 converges to PV (Ω)v weakly in L2(Ω)d.
We can write

‖PVN (Ω)vN‖2L2(Ω)d = (vN ,PVN (Ω)vN ), for any N ≥ 1.
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Using the convergence of the sequence (vN )N≥1 to v in L2(Ω)d and the weak convergence of the sequence
(PVN (Ω)vN )N≥1 to PV (Ω)v in L2(Ω)d we obtain

lim
N→+∞

‖PVN (Ω)vN‖2L2(Ω)d = (v,PV (Ω)v) = ‖PV (Ω)v‖
2
L2(Ω)d .

The weak convergence of the sequence (PVN (Ω)vN )N≥1 to PV (Ω)v in L2(Ω)d and the convergence of the
sequence (‖PVN (Ω)vN‖L2(Ω)d)N≥1 to ‖PV (Ω)v‖L2(Ω)d give the expected result. �

Lemma 3.3: Under Assumptions (2), (7), (12), (13), (14), (23), there exists u ∈ L∞(0, T ;L2(Ω)d) ∩
L2(0, T ;H1

0 (Ω)
d∩V (Ω)) such that, up to the extraction of a subsequence, the sequence (uN )N≥1 weakly

converges to u in L2(0, T ;H1
0 (Ω)

d) and (ũN )N≥1 weakly converges to u in L∞(0, T ;L2(Ω)d) for the weak
star topology.

Proof. Owing to (25), we get the existence of ũ ∈ L2(0, T ;H1
0 (Ω)

d) such that, up to the ex-
traction of a subsequence, the sequence (ũN )N≥1 weakly converges to ũ in L2(0, T ;H1

0 (Ω)
d), and of

u ∈ L∞(0, T ;L2(Ω)d) such that (uN )N≥1 weakly converges to u in L∞(0, T ;L2(Ω)d) for the weak star
topology. Let ξ ∈ H1(Ω) ∩ L2

0(Ω) and ϕ ∈ C∞
c (]0, T [) be given.

Using the fact that (17d) provides, for any N ≥ 1, that

∫ T

0

(uN ,∇PMN
ξ)ϕ(t) dt = 0, for any N ≥ 1,

Using the convergence of the sequence (PMN
ξ)N≥1 in H1(Ω), the weak convergence of the sequence

(uN )N≥1 in L2((0, T )× Ω)d and passing to the limit in the previous identity gives

∫ T

0

(u,∇ξ)ϕ(t) dt = 0, for any ξ ∈ H1(Ω).

We then obtain that u ∈ L2(0, T ;H1
0 (Ω)

d ∩ V (Ω)). Using (26), we get that ũ = u, which concludes the
proof. �

3.3 Time estimates

The weak convergence property given by Lemma 3.3 is not sufficient for passing to the limit in the scheme,
owing to the presence of the nonlinear convection term. Hence we need some stronger compactness
property on one of the subsequences (uN )N≥1 or (ũN )N≥1. We will prove this compactness property in
L2 on (ũN )N≥1.
We introduce the semi-norm | · |∗,N defined for any w ∈ L2(Ω)d by

|w|∗,N = sup{(w,v), v ∈ EN , ‖v‖E ≤ 1}. (28)

Recall that EN and ‖v‖E are defined by (20)-(21) and that the above definition remains meaningful even
if EN = {0}.

Lemma 3.4 (A first estimate on the time translates): Under Assumptions (2), (7), (12), (13), (14), there
exists C2 only depending on |Ω|, ‖u0‖L2(Ω)d and ‖f‖L2((0,T )×Ω)d such that for any N ≥ 1 and for any
τ ∈ (0, T ),

∫ T−τ

0

|ũN (t+ τ)− ũN (t)|2∗,N dt ≤ C2τ(τ + δtN ).
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Proof. Let N ≥ 2 and τ ∈ (0, T ) (for N = 1 the quantity we have to estimate is zero). Let
(χn

N,τ )n∈J1,N−1K be the family of measurable functions defined for n ∈ J1, N − 1K and t ∈ R by χn
N,τ (t) =

1(tn
N
−τ,tn

N
](t), then

ũN (t+ τ)− ũN (t) =

N−1
∑

n=1

χn
N,τ(t)(ũ

n+1
N − ũn

N ), for any t ∈ (0, T − τ). (29)

Hence, owing to (17b), we have for any v ∈ XN and for any t ∈ (0, T − τ) the following identity

(ũN (t+ τ)− ũN (t),v) = −δtN

N−1
∑

n=1

χn
N,τ(t)a(ũ

n+1
N ,v)

− δtN

N−1
∑

n=1

χn
N,τ(t)b(ũ

n
N , ũ

n+1
N ,v)− δtN

N−1
∑

n=1

χn
N,τ(t)(∇(2pnN − pn−1

N ),v)

+ δtN

N−1
∑

n=1

χn
N,τ(t)(f

n+1
N ,v).

Let v ∈ EN , and define A(t) =
(

ũN (t+ τ) − ũN (t),v
)

. Using the previous identity we obtain

A(t) = Ad(t) +Ac(t) +Ap(t) +Af (t),

with

Ad(t) = −
N−1
∑

n=1

χn
N,τ (t)δtN

∫

Ω

∇ũn+1
N : ∇v dx,

Ac(t) = −
N−1
∑

n=1

χn
N,τ(t)δtNb(ũ

n
N , ũ

n+1
N ,v),

Ap(t) =

N−1
∑

n=1

χn
N,τ(t)δtN

∫

Ω

(2pnN − pn−1
N )divv dx,

Af (t) =

N−1
∑

n=1

χn
N,τ(t)δtN (fn+1

N ,v).

Using (21) we have

Ad(t) ≤ ‖v‖E

N−1
∑

n=1

χn
N,τ (t)δtN‖ũn+1

N ‖H1
0
(Ω)d . (30)
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Using (21) and using the estimates (25)-(26) we have

Ac(t) = −
N−1
∑

n=1

χn
N,τ(t)δtN (((ũn

N − un−1
N ) ·∇)ũn+1

N ,v)

−
N−1
∑

n=1

χn
N,τ(t)δtN ((un−1

N ·∇)ũn+1
N ,v)

−
1

2

N−1
∑

n=1

χn
N,τ (t)δtN

∫

Ω

divũn
N (ũn+1

N − un
N ) · v dx

−
1

2

N−1
∑

n=1

χn
N,τ (t)δtN

∫

Ω

divũn
N un

N · v dx

≤ C1

N−1
∑

n=1

χn
N,τ (t)δtN (2‖ũn+1

N ‖H1
0
(Ω)d + ‖ũn

N‖H1
0
(Ω)d)‖v‖L∞(Ω)d

≤ C1

N−1
∑

n=1

χn
N,τ(t)δtN (2‖ũn+1

N ‖H1
0
(Ω)d + ‖ũn

N‖H1
0
(Ω)d)‖v‖E. (31)

We get from EN ⊂ VN that Ap(t) = 0. Next, we note that

Af (t) ≤ ‖v‖E

N−1
∑

n=1

χn
N,τ (t)δtN‖fn+1

N ‖L2(Ω)d . (32)

Summing Equations (30), (31), (32), we obtain

A(t) ≤ C‖v‖E

N−1
∑

n=1

χn
N,τ(t)δtN (‖ũn+1

N ‖H1
0
(Ω)d + ‖ũn

N‖H1
0
(Ω)d + ‖fn+1

N ‖L2(Ω)d)

where C = 2 + 3C1. This implies

|ũN (t+ τ)− ũN (t)|∗,N ≤ C
N−1
∑

n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖H1
0
(Ω)d + ‖ũn

N‖H1
0
(Ω)d + ‖fn+1

N ‖L2(Ω)d).

Since
∑N−1

n=1 χ
n
N,τ (t)δtN ≤ τ + δtN for any t ∈ (0, T − τ) we then obtain

|ũN (t+ τ) − ũN (t)|2∗,N ≤ 3C2(τ + δtN )

N−1
∑

n=1

χn
N,τ (t)δtN (‖ũn+1

N ‖2H1
0
(Ω)d + ‖ũn

N‖2H1
0
(Ω)d + ‖fn+1

N ‖2L2(Ω)d).

Noting that
∫ T−τ

0 χn
N,τ (t) dt ≤ τ for any n ∈ J1, N − 1K yields

∫ T−τ

0

|ũN (t+ τ)− ũN (t)|2∗,N dt

≤ 3C2(τ + δtN )

N−1
∑

n=1

δtN (‖ũn+1
N ‖2H1

0
(Ω)d + ‖ũn

N‖2H1
0
(Ω)d + ‖fn+1

N ‖2L2(Ω)d)

∫ T−τ

0

χn
N,τ(t) dt

≤ 3C2(τ + δtN )τ(2‖ũN‖2L2(0,T :H1
0
(Ω)d) + ‖f‖2L2((0,T )×Ω)d) ≤ C2τ(τ + δtN )
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which gives the expected result. �
Note that this is only an intermediate result since we seek an estimate on the time translates of the
predicted velocity in the L2(L2) norm.

Lemma 3.5 (Lions-like): Under Assumptions (2), (13), (14), (19) (22), (23), we have

∀ε > 0, ∃Cε > 0, ∃Nǫ ≥ 1, ∀N ≥ Nǫ, ∀w ∈ XN

‖PVN
w‖L2(Ω)d ≤ ε‖w‖H1

0
(Ω)d + Cε|w|∗,N . (33)

Proof. Let us assume that (33) does not hold. This means that there exists ε > 0 such that

∀C ≥ 1, ∀M ≥ 1, ∃N ≥M, ∃w ∈ XN

‖PVN
w‖L2(Ω)d > ε‖w‖H1

0
(Ω)d + C|w|∗,N . (34)

Let us set ν(0) = 0, and let us build the infinite set I = {ν(n), n ∈ N
⋆} ⊂ N

⋆ and the sequence (wN )N∈I

by induction. For n ∈ N
⋆, we select C = n and M = ν(n− 1)+1 in (34). We get the existence of a given

N ≥M and of a given w ∈ XN (Ω) such that

‖PVN
w‖L2(Ω)d > ε‖w‖H1

0
(Ω)d + n|w|∗,N .

We then define ν(n) = N andwN = w/‖PVN
w‖L2(Ω)d . Let us denote I = {ν(n) such that n ∈ N

⋆} ⊂ N
⋆.

We denote by ν−1 the reciprocal function of ν : N⋆ → I. Since the mapping ν is strictly increasing, we
then indeed get that I is infinite. We can then write, for any N ∈ I,

1 > ε‖wN‖H1
0
(Ω)d + ν−1(N)|wN |∗,N , for any N ∈ I.

It then follows from the latter inequality that the sequence (wN )N∈I is bounded in H1
0 (Ω)

d and that
|wN |∗,N → 0 as N → ∞ with N ∈ I. Hence there exists an infinite set J ⊂ I such that (wN)N∈J

converges in L2(Ω)d to a function w ∈ H1
0 (Ω)

d while |wN |∗,N → 0 as N → ∞ with N ∈ J . We notice
that ‖PVN

wN‖L2(Ω)d = 1 for all N ∈ J .

Using Lemma 3.2 we have PVN
wN → PV (Ω)w in L2(Ω)d as N → ∞ with N ∈ J , which therefore implies

‖PV w‖L2(Ω)d = 1.
Let ϕ ∈ W be given. For any N ∈ J , by definition of |wN |∗,N , we have

(wN ,ΠNϕ) ≤ |wN |∗,N‖ΠNϕ‖E.

Using the fact that, for any N ∈ J , ΠNϕ ∈ VN , we then obtain

(wN ,ΠNϕ) = (PVN
wN ,ΠNϕ) ≤ |wN |∗,N‖ΠNϕ‖E .

Since ‖ΠNϕ‖E remains bounded by assumption (22), letting N → ∞ with N ∈ J in this inequality
yields that

(PV (Ω)w,ϕ) = 0, for any ϕ ∈ W .

The density of C∞
c (Ω)d ∩V (Ω) in V (Ω) for the L2(Ω)d norm is proved in particular in [2, Lemma IV.3.5

p. 249]. Since the density of W in H1
0 (Ω)

d∩V (Ω) enables to approximate any element of C∞
c (Ω)d∩V (Ω)

as closely as desired for the L2(Ω)d norm, we get that W is dense as well in V (Ω) for the L2(Ω)d norm.
We can therefore let ϕ → PV (Ω)w in L2(Ω)d. This yields

‖PV (Ω)w‖2L2(Ω)d = 0,

which contradicts ‖PV (Ω)w‖L2(Ω)d = 1. �
Our aim is now to use Lemma 3.4 on the time translates of (ũN )N≥1 for the L2(| · |∗,N ) semi-norm and
(33) in the above lemma, in order to obtain an estimate on the time translates for the L2(0, T ;L2(Ω)d)
norm, as stated by the next lemma.
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Lemma 3.6 (L2 estimate on the time translates): Under Assumptions (2), (7), (12), (13), (14), (19), (22),
(23), the sequence (ũN )N≥1 satisfies

∫ T−τ

0

‖ũN(t+ τ) − ũN (t)‖2L2(Ω)d dt→ 0 as τ → 0, uniformly with respect to N, (35)

and is therefore relatively compact in L2(0, T ;L2(Ω)d).

Proof. Let us show that AN (τ) → 0 as τ → 0 uniformly with respect to N , where we define for any
τ ∈ (0, T )

AN (τ) :=

∫ T−τ

0

‖ũN (t+ τ)− ũN (t)‖22 dt.

For any w ∈ L2(Ω)d and v ∈ VN , we have

w = w − PVN
(w) + PVN

(w) = w − v − PVN
(w − v) + PVN

(w).

Using the fact that PVN
is an orthogonal projection, we have

‖w − v − PVN
(w − v)‖L2(Ω)d ≤ ‖w − v‖L2(Ω)d ,

which leads to
‖w‖L2(Ω)d ≤ ‖w − v‖L2(Ω)d + ‖PVN

(w)‖L2(Ω)d ,

giving
∀w ∈ L2(Ω)d, ∀v ∈ VN , ‖w‖2L2(Ω)d ≤ 2‖w− v‖2L2(Ω)d + 2‖PVN

(w)‖2L2(Ω)d .

We apply the preceding inequality, letting w = ũN (t + τ) − ũN (t) and v = uN (t + τ) − uN (t) and we
integrate on t ∈ (0, T − τ). Setting

BN (τ) =

∫ T−τ

0

‖(ũN − uN )(t+ τ)− (ũN − uN )(t)‖22 dt

we obtain

AN (τ) ≤ 2BN (τ) + 2

∫ T−τ

0

‖PVN
(ũN (t+ τ)− ũN (t))‖2L2(Ω)d dt. (36)

Let ζ > 0 be given.
From (26), we have BN (τ) ≤ 4C2

1δtN . Let NB ≥ 1 be such that 4C2
1δtN ≤ ζ for all N ≥ NB. Since

BN (τ) → 0 as τ → 0 for N = 1, . . . , NB, we can choose τB such that, for any 0 ≤ τ ≤ τB and
N = 1, . . . , NB, we have BN (τ) ≤ ζ.
This yields BN (τ) ≤ ζ for all N ≥ 1 and any 0 ≤ τ < τB.
Our aim is now to use (33) in Lemma 3.5, which implies

∀ε > 0, ∃Cε > 0, ∃Nǫ ≥ 1, ∀N ≥ Nǫ, ∀w ∈ XN

‖PVN
(w)‖2L2(Ω)d ≤ 2ε2‖w‖2H1

0
(Ω)d + 2C2

ε |w|2∗,N ,

letting w = ũN (t+ τ) − ũN (t).
From (25), we have

∫ T−τ

0

‖ũN (t+ τ) − ũN (t)‖2H1
0
(Ω)d dt ≤ 4C2

1. (37)

We then select ε such that
2ε24C2

1 = ζ. (38)
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Then there exists Cζ > 0 and Nζ such that for any N ≥ Nζ and for any τ ∈ (0, T ) and for any
t ∈ (0, T − τ),

‖PVN
(ũN (t+ τ)− ũN(t))‖2L2(Ω)d ≤ 2ε2‖ũN (t+ τ)− ũN (t)‖2H1

0
(Ω)d + C2

ζ |ũN (t+ τ)− ũN (t)|2∗,N .

Integrating the previous relation provides, using (37) and (38),

∫ T−τ

0

‖PVN
(ũN (t+ τ) − ũN (t))‖2L2(Ω)d dt ≤ ζ + 2C2

ζ

∫ T−τ

0

|ũN (t+ τ)− ũN (t)|2∗,N dt.

Thus, owing to lemma 3.6, we have for any N ≥ Nζ and for any τ ∈ (0, T )

∫ T−τ

0

‖PVN
(ũN (t+ τ)− ũN (t))‖2L2(Ω)d dt ≤ ζ + 2C2

ζC2τ(τ + δtN ),

and therefore, for any N ≥ Nζ and for any τ ∈ (0, T ), using (36)

AN (τ) ≤ 2BN (τ) + 2ζ + 4C2
ζC2τ(τ + δtN ).

We now choose τC > 0, such that, for any 0 ≤ τ ≤ τC , 4C
2
ζC2τ(τ + T ) ≤ ζ.

We then get, for any N ≥ Nζ and 0 ≤ τ ≤ min(τB , τC),

AN (τ) ≤ 2ζ + 2ζ + ζ = 5ζ.

Since AN (τ) → 0 as τ → 0 for N = 1, . . . , Nζ , we can choose τD such that, for any 0 ≤ τ ≤ τD and
N = 1, . . . , Nζ , we have AN (τ) ≤ 5ζ.
We then obtain that AN (τ) ≤ 5ζ for any τ ∈ [0,min(τB , τC , τD)] and N ≥ 1. The proof of (35) is thus
complete. �

3.4 Convergence of the projection scheme to a weak solution

By Lemma 3.3, up to a subsequence, the sequence (ũN )N≥1 converges to some limit ū in L2(0, T ;L2(Ω)d),
and owing to (26), so does the sequence (uN )N≥1. There remains to check that ū is a weak solution to
(1) in the sense of Definition 1.1.

Lemma 3.7: Under Assumptions (2), (7), (12), (13), (14), (19), (22), (23), there exist subsequences still
denoted by (ũN)N≥1 and (uN )N≥1 such that (ũN )N≥1 converges to u strongly in L2(Ω)d and (ũN )N≥1

converges to u strongly in L2(Ω)d. Moreover the function ū is a weak solution to (1) in the sense of
Definition 1.1.

Proof. We proceed in several steps.

• Step 1: compactness and convergence in L2. Using Lemma 3.6 there exist subsequences, still
denoted (uN )N≥1 and (ũN )N≥1, that converge to ū in L2(0, T ;L2(Ω)d).

• Step 2: convergence towards a weak solution. There remains to show that ū is a weak solution in
the sense of Definition 1.1 and in particular that ū satisfies (11). Let ψ ∈ C∞

c ([0, T )) and ϕ ∈ W .
Let v be the function defined by v(t,x) = ψ(t)ϕ(x) for any (t,x) ∈ [0, T ) × Ω. Let N ≥ 1. Let
(vn

N )n∈J0,NK be the sequence of functions of XN defined by vn
N = ψ(tnN )ΠNϕ for any n ∈ J0, NK.

Let vN : (0, T ) → H1
0 (Ω)

d and fN : (0, T ) → L2(Ω)d be defined by

vN (t) =

N−1
∑

n=0

1(tn
N
,t

n+1

N
](t)v

n+1
N , fN (t) =

N−1
∑

n=0

1(tn
N
,t

n+1

N
](t)f

n+1
N .
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We remark that we have

‖vN − v‖L∞(0,T ;H1
0
(Ω)d) ≤ δtN‖ψ′‖L∞(0,T )‖ΠNϕ‖E

+ ‖ψ‖L∞(0,T )‖ΠNϕ−ϕ‖H1
0
(Ω)d , for any N ≥ 1. (39)

Using (22) we obtain that the sequence (vN )N≥1 converges to v in L∞(0, T ;H1
0 (Ω)

d). We have the
sequence (fN)N≥1 converges to f in L2((0, T )×Ω)d. Multiplying (17b) by δtNvn+1

N , using the fact
that (ũn+1

N ,vn+1
N ) = (un+1

N ,vn+1
N ) for any n ∈ J0, N − 1K and summing over n ∈ J1, N − 1K yields

N−1
∑

n=0

(un+1
N − un

N ,v
n+1
N ) + δtN

N−1
∑

n=0

b(ũn
N , ũ

n+1
N ,vn+1

N )

+

∫ T

0

∫

Ω

∇ũN : ∇vN dx dt =

∫ T

0

(fN ,ϕN ) dt. (40)

Using the fact that ϕN
N = 0 in Ω the first term of the left hand side reads

N−1
∑

n=0

(un+1
N − un

N ,v
n+1
N ) = −

N−1
∑

n=0

(un
N ,v

n+1
N − vn

N )− (u0
N ,v

0
N )

= −

∫ T

0

ψ′(t)(uN (t),ΠNϕ) dt− ψ(0)(PVN
u0,ΠNϕ)

Since the sequence (uN )N≥1 converges to ū in L2(0, T ;L2(Ω)d), the sequence (ΠN (ϕ))N≥1 con-
verges to ϕ in L2(Ω)d and the sequence (PVN

u0)N≥1 converges to u0 in L2(Ω)d, we obtain

lim
N→+∞

N−1
∑

n=0

(un+1
N − un

N ,v
n+1
N ) = −

∫ T

0

(ū, ∂tv) dt− (u0,v(0, ·)). (41)

Using the fact that the initial predicted velocity is zero the second term in the left hand-side reads

δtN

N−1
∑

n=0

b(ũn
N , ũ

n+1
N ,vn+1

N ) = δtN

N−1
∑

n=1

b(ũn
N , ũ

n+1
N ,ΠNϕn+1

N )

=

∫ T

δtN

((ũN (t− δtN ) ·∇)ũN ,vN ) dt

+

∫ T

δtN

(divũN (t− δtN )ũN ,vN ) dt

The convergence of the sequence (ũN )N≥1 in L
2(0, T ;L4(Ω)d), the weak convergence of the sequence

(ũN )N≥1 in L2(0, T ;H1
0 (Ω)

d), the convergence of the sequence (vN )N≥1 in L∞(0, T ;L4(Ω)d) give

lim
N→+∞

δtN

N−1
∑

n=0

b(ũn
N , ũ

n+1
N ,vn+1

N ) =

∫ T

0

((ū ·∇)ū,v) dt. (42)

The weak convergence of the sequence (∇ũN )N≥1 in L2(0, T ;L2(Ω)d) and the convergence of the
sequence (∇vN )N≥1 in L2(0, T ;L2(Ω)d) give

lim
N→+∞

∫ T

0

∫

Ω

∇ũN : ∇vN dx dt =

∫ T

0

∫

Ω

∇ū : ∇v dx dt. (43)
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The convergence of the sequence (fN )N≥1 in L2(0, T ;L2(Ω)d) and the convergence of the sequence
(vN )N≥1 in L2(0, T ;L2(Ω)d) give

lim
N→+∞

∫ T

0

(fN ,vN ) dt =

∫ T

0

(f ,v) dt. (44)

Using (41)-(44) and passing to the limit in (40) gives the weak sense (11) with v as test function.
We get that (11) holds for all test functions by density of the set of linear combinations of such
functions.

�

4 Lowest-order Taylor-Hood finite element approximation

In this section, we show that the lowest-order Taylor-Hood element (continuous piecewise quadratic func-
tions for the approximation of the velocity and continuous piecewise affine functions for the approximation
of the pressure) satisfy the properties given in Section 2. This pair is of particular interest, since it is
the lowest-order conforming stable element that ensures the same approximation order for velocity and
pressure functions. Let us assume that the computational domain Ω is polygonal (d = 2) or polyhedral
(d = 3). We define an interpolator ΠL with approximation properties and a divergence correcting linear
operator ΠD to define the operator Π as

Π = ΠL +ΠD ◦ (Id−ΠL).

The properties of ΠL are completely standard. We recall them by giving very short proofs. On the
contrary, those of ΠD are much less known (see [5]), and the fact that we limit the application of
Π to compact support functions enables to avoid difficult properties which must be shown on Fortin
interpolators at the boundary. For this reason, we provide here the full computations concerning ΠD.

4.1 Regular simplicial mesh

We define a simplex in dimension d ≥ 1 as the interior of the convex hull of a given set of d + 1 points
(called its vertices) which are not all contained in the same hyperplane (a simplex is a triangle if d = 2
and a tetrahedron if d = 3).
We consider a regular simplicial mesh T of Ω in the usual sense of the finite element literature [4], which
means that:

• The family containing all the vertices of the elements of the mesh is denoted by (yi)i∈N . The set
N is partitioned into N = Nint ∪ Next, where (yi)i∈Next

is the set of exterior nodes and (yi)i∈Nint

is the set of interior nodes.

• For any K ∈ T , the family of the vertices of K is denoted by (yi)i∈NK
with NK ⊂ N contains

d+ 1 elements. For any K ∈ T , we denote by |K| the measure in R
d of K, by hK the diameter of

K and by ρK the diameter of the largest ball included in K. Then, we define the mesh size hT and
the mesh regularity θT by

hT = max
K∈T

hK , θT = max
K∈T

hK
ρK

.

• For any K ∈ T , the set of the faces of K is denoted by TK . For any F ∈ FK , the family of the
vertices of the simplex F is denoted by (yi)i∈NF

(then NF ⊂ NK contains d elements).
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• The set E of the edges of the elements contains all pairs {i, j} such that there exists K ∈ T with
{i, j} ⊂ NK . For any σ = {i, j} ∈ E , we denote by yσ = 1

2 (yi + yj). For all K ∈ T , we denote by
EK the subset of E containing all the edges of K.

For i ∈ N (resp. {i, j} ∈ E), we define Ti (resp. Tij) as the set of all K ∈ T such that i ∈ NK (resp.
{i, j} ∈ EK) and we denote by

ωi =
⋃

K∈Ti

K and ωij =
⋃

K∈Tij

K.

In the whole section 4, we denote by Ci, with i ∈ N, non negative real values which may depend on d
and on Ω, and increasingly on θT . The following lemma is a direct consequence of the definition of θT .

Lemma 4.1: There exists C3 such that
cardTij ≤ C3,

∀K ∈ Tij ,
1

C3
hdK ≤ |ωij | ≤ C3h

d
K ,

∀K ∈ Tij , diam(ωij) ≤ C3hK . (45)

4.2 Discrete spaces and bases

We introduce the set Pk(K) of the polynomials over K ∈ T of degree less than or equal to k, regardless
of the space dimension. We define

P
k(T ) = {p ∈ C(Ω,R) such that p|K ∈ P

k(K) for any K ∈ T }.

We denote by (ϕi)i∈N the nodal basis of P1(T ), that is, for any i ∈ N , the element ϕi of P1(T ) such
that ϕi(yi) = 1 and ϕi(yj) = 0 for all j ∈ N \ {i}.
Using the properties of the family (ϕi)i∈N we have

{x ∈ Ω such that ϕi(x) 6= 0} = ωi for any i ∈ N . (46)

Then the nodal basis of P2(T ) is given by the family
(

(ϕi(2ϕi − 1))i∈N , (4ϕiϕj){i,j}∈E

)

. Denoting this

family by (φi)i∈N∪E , for any i ∈ N ∪E , we have that φi(yi) = 1 and φi(yj) = 0 for all j ∈ (N ∪E) \ {i}.
Using (46) and using [7, Proposition 11.6] we can state the following lemma.

Lemma 4.2: There exists C4 such that

∀K ∈ T , max
i∈NK

‖∇ϕi‖L∞(ωi)d ≤
C4
hK

(47)

which leads that there exists C5

∀K ∈ T , ∀x ∈ K, ∀i ∈ NK ∪ EK , |∇φi(x)| ≤
C5
hK

. (48)

The spaces of approximation for the velocity and the pressure are defined by

X = P
2(T )d ∩H1

0 (Ω)
d and M(Ω) = P

1(T ) ∩ L2
0(Ω). (49)
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4.3 The P
2(T ) Lagrange interpolator

The Lagrange interpolator, denoted by ΠL : C∞
c (Ω)d → X, is defined by

∀v = (vk)k=1,...,d ∈ C∞
c (Ω)d, (ΠLv)k =

∑

i∈N∪E

vk(yi)φi, k = 1, . . . , d. (50)

Lemma 4.3: There exists C6 such that for any v ∈ C∞
c (Ω)d, we have

‖ΠLv‖L∞(Ω)d ≤ C6‖∇v‖L∞(Ω)d×d . (51)

Proof. Let x1, x1 ∈ R such that, for any x = (x1, . . . , xd) ∈ Ω, x1 ≤ x1 ≤ x1. Writing, for k = 1, . . . , d,

vk(yi) =

∫ (yi)1

x
1

∂1vk(s, ((yi)ℓ)ℓ=2,...,d)ds,

we get
|vk(yi)| ≤ (x1 − x1)‖∇v‖L∞(Ω)d×d .

Since |φi(x)| ≤ 1 for all x ∈ Ω, and using that the maximum number of i ∈ N ∪ E such that φi(x) 6= 0
is (d+ 1)(d+ 2)/2, we get from (50) that

|vk(x)| ≤
(d+ 1)(d+ 2)

2
(x1 − x1)‖∇v‖L∞(Ω)d×d ,

hence concluding the proof. �
We have the following results.

Lemma 4.4: There exists C7 such that for any v = (vk)k=1,...,d ∈ C∞
c (Ω)d, it holds, for any K ∈ T ,

‖v −ΠLv‖L∞(K)d ≤ C7hK‖∇v‖L∞(Ω)d×d , (52)

‖∇ΠLv‖L∞(K)d×d ≤ C7‖∇v‖L∞(Ω)d×d , (53)

‖v −ΠLv‖L∞(K)d ≤ C7h
2
K‖v‖W 2,∞(Ω), (54)

and
‖∇v −∇ΠLv‖L∞(K)d×d ≤ C7hK‖v‖W 2,∞(Ω). (55)

Proof. Let v = (vk)k=1,...,d ∈ C∞
c (Ω)d. For k = 1, . . . , d, the mean value theorem implies that there

exists xi belonging to the segment [yi,x] such that

vk(yi)− vk(x) = (yi − x) · ∇vk(xi),

which implies
|vk(yi)− vk(x)| ≤ hK‖∇v‖L∞(Ω)d×d .

Noticing that, for any K ∈ T and for all x ∈ K, we have
∑

i∈NK∪EK
φi(x) = 1, we get

|ΠLvk(x)− vk(x)| = |
∑

i∈NK∪EK

(vk(yi)− vk(x))φi(x)| ≤
(d+ 1)(d+ 1)

2
hK‖∇v‖L∞(Ω)d×d .

This yields (52) as well as

∇vk(x) =
∑

i∈NK∪EK

(vk(yi)− vk(x))∇φi(x) =
∑

i∈NK∪EK

(yi − x) · ∇vk(xi)∇φi(x).
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Applying (48), we conclude that (53) holds. Writing, for k = 1, . . . , d and any j ∈ NK ∪ EK , the Taylor
expansion

vk(yj) = vk(x) + (yj − x) · ∇vk(x) +
1

2
(yj − x)tD2vk(xj)(yj − x),

for some point xj in the segment [yj ,x], und using (50) in addition to

∑

j∈NK∪EK

φj(x) = 1 and
∑

j∈NK∪EK

φj(x)(yj − x) = 0,

we obtain (54). We deduce, from the preceding Taylor expansion, that

∑

j∈NK∪EK

vk(yj)∇φi(x) =
∑

j∈NK∪EK

vk(x)∇φi(x) +
∑

j∈NK∪EK

(yj − x) · ∇vk(x)∇φi(x)

+
∑

j∈NK∪EK

1

2
(yj − x)tD2vk(xj)(yj − x)∇φi(x).

We notice that, since the interpolation of first order polynomials is exact,

∑

j∈NK∪EK

vk(x)∇φi(x) = 0 and
∑

j∈NK∪EK

(yj − x) · ∇vk(x)∇φi(x) = ∇vk(x),

and

|
∑

j∈NK∪EK

1

2
(yj − x)tD2vk(xj)(yj − x)∇φi(x)| ≤ C8hK‖v‖W 2,∞(Ω),

which allows to conclude (55). �

4.4 Divergence correcting operator

Using (46) we have

{x ∈ Ω such that ϕi(x)ϕj(x) 6= 0} = ωij for any {i, j} ∈ E . (56)

We define the family of normalized tangential edge bubble function

∀x ∈ Ω, bi,j(x) =
(d+ 2)!

d!|wi,j |
ϕi(x)ϕj(x)(yj − yi) for any {i, j} ∈ E .

We observe that, for any {i, j} ∈ E , we have bi,j ∈ P
2(T ), and, in the case where the segment ]yi,yj [⊂ Ω,

we additionally have bi,j ∈ X (this property holds even if {i, j} ∈ Eext).

We define the divergence correcting operator ΠD : W 1,∞
0 (Ω)d → P

2(T )d for any v ∈ W 1,∞
0 (Ω)d by

∀x ∈ Ω, ΠDv(x) =
∑

i∈N

ΠD,iv(x) with ΠD,iv(x) =
∑

j∈N
{i,j}∈E

(div(ϕiv), ϕj)bj,i(x). (57)

Using the fact that bi,j = −bj,i for any {i, j} ∈ E we remark that this operator satisfies

∀v ∈ W 1,∞
0 (Ω)d, ∀x ∈ Ω, ΠDv(x) =

∑

{i,j}∈E

(v,−ϕi∇ϕj + ϕj∇ϕi)bj,i(x). (58)



4 Lowest-order Taylor-Hood finite element approximation 19

Lemma 4.5: For any v ∈ W 1,∞
0 (Ω)d and for any x ∈ Ω, if ΠDv(x) 6= 0, then there exists y ∈ B(x, C3hT )

such that v(y) 6= 0 (recall that C3 is introduced in Lemma 4.1).

Proof. If ΠDv(x) 6= 0, there exists {i, j} ∈ E such that (v,−ϕi∇ϕj + ϕj∇ϕi)bj,i(x) 6= 0, which
implies x ∈ ωij , which yields that there exists K ∈ Tij such that x ∈ K. This also implies that

∫

ωij

|v(y)|dy > 0.

Therefore there exists y ∈ ωij such that v(y) 6= 0. Remarking that (45) implies that diam(ωij) ≤ C3hK .
Hence |x− y| ≤ C3hT . �

Lemma 4.6: For any {i, j} ∈ E and for any k ∈ N we have the following relation

(divbi,j , ϕk) = δi,k − δj,k.

Proof. Let {i, j} ∈ E and let k ∈ N . Using (56) We have

(divbi,j , ϕk) =

∫

ωij

divbi,jϕk dx.

• The element k is not an element of ∪K∈Tij
NK . Using (46) we have ϕk(x) = 0 for any x ∈ ωij and

hence the expression vanishes.

• The element k is an element of ∪K∈Tij
NK . We have

(divbi,j , ϕk) = −
(d+ 2)!

d!|wi,j |

∑

K∈Tij

∫

K

ϕiϕj(yj − yi) · ∇ϕk dx

+
(d+ 2)!

d!|wi,j |

∑

K∈Tij

∑

F∈FK

∫

F

ϕkϕiϕj(yj − yi) · nF dγ(x)

For any K ∈ Tij and F ∈ FK we remark that (yj − yi) · nF = 0 in the case {i, j} ⊂ NF and
ϕi(x)ϕj(x) = 0 for any x ∈ F in the case {i, j} 6⊂ NF .

We then obtain for any K ∈ Tij and for any F ∈ FK

∫

F

ϕkϕiϕj(yj − yi) · nF dγ(x) = 0

which gives the following identity

(divbi,j , ϕk) = −
(d+ 2)!

d!|wi,j |

∑

K∈Tij

∫

K

ϕiϕj(yj − yi) · ∇ϕk dx.

For k /∈ {i, j} using ϕk(yi) = 0 and ϕk(yj) = 0 we obtain that the piecewise constant function ∇ϕk

is orthogonal to the edge vector (yj − yi) on each K ∈ Tij . Thus, the integrals vanishes and the
claim follows. For k ∈ {i, j} using ϕk(yk) = 1 we obtain for any K ∈ Tij the following identity

∇(ϕk)|K · (yj − yi) =

∣

∣

∣

∣

∣

∣

−1, for k = i,

1, for k = j.



4 Lowest-order Taylor-Hood finite element approximation 20

For k = i we obtain

(divbi,j , ϕk) =
(d+ 2)!

d!|wi,j |

∑

K∈Tij

∫

K

ϕiϕj dx = 1,

and for k = j we obtain

(divbi,j , ϕk) = −
(d+ 2)!

d!|wi,j |

∑

K∈Tij

∫

K

ϕiϕj dx = −1,

which gives the expected result.

�

We can now prove that this operator preserves the divergence in the following sense.

Lemma 4.7: For any v ∈ W 1,∞
0 (Ω)d and any ϕ ∈ P

1(T ) we have

(divΠDv, ϕ) = (divv, ϕ).

Proof. Using Lemma 4.6 we have, for any k ∈ N ,

∀i ∈ N , (divΠD,iv, ϕk) =
∑

j∈N
{i,j}∈E

(div(ϕiv), ϕj)(δj,k − δi,k).

Hence we get (divΠDv, ϕk) = T1 + T2, with

T1 =
∑

i∈N

∑

j∈N
{i,j}∈E

(div(ϕiv), ϕj)δj,k and T2 = −
∑

i∈N

∑

j∈N
{i,j}∈E

(div(ϕiv), ϕj)δi,k.

Remarking that, for any quantity Qi,j,

∑

i∈N

∑

j∈N
{i,j}∈E

Qi,j =
∑

{i,j}∈E

(Qi,j +Qj,i) =
∑

j∈N

∑

i∈N
{i,j}∈E

Qi,j ,

we obtain
T1 =

∑

j∈N

∑

i∈N
{i,j}∈E

(div(ϕiv), ϕj)δj,k = (div(
∑

i∈N
{i,k}∈E

ϕiv), ϕk).

For any x ∈ ωk, we have
∑

i∈N
{i,k}∈E

ϕi(x) = 1− ϕk(x),

which leads to
T1 = (div((1 − ϕk)v), ϕk).

Next we have
T2 = −

∑

j∈N
{k,j}∈E

(div(ϕkv), ϕj) = −(div(ϕkv),
∑

j∈N
{k,j}∈E

ϕj).

For any x ∈ ωk, we have
∑

j∈N
{k,j}∈E

ϕj(x) = 1− ϕk(x),
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which implies, since (div(ϕkv), 1) = 0 (recall that v vanishes on the boundary of Ω),

T2 = −(div(ϕkv),−ϕk) = (div(ϕkv), ϕk).

This yields
T1 + T2 = (div(v), ϕk),

which concludes the proof. �

Lemma 4.8: There exists C9 such that

∀K ∈ T , ∀{i, j} ∈ EK , ‖bij‖L∞(K)d ≤ C9h
1−d
K , (59)

and
∀K ∈ T , ∀{i, j} ∈ EK , ‖∇bij‖L∞(K)d ≤ C9h

−d
K . (60)

Proof. We have, for {i, j} ⊂ NK ,
|ϕi(x)ϕj(x)| ≤ 1

and
|wi,j | ≥ C10h

d
K ,

which leads to (59) since |yj − yi| ≤ hK . From (47), we get

|∇(ϕiϕj)(x)| ≤ 2
C4
hK

.

Combining with the preceding inequalities, we deduce (60). �

Lemma 4.9: There exists C11 such that, for any v ∈ W 1,∞
0 (Ω)d, we have

‖ΠDv‖L∞(Ω)d ≤ C11‖v‖L∞(Ω)d .

Proof. Using (58) and the definition of the tangential bubble functions we have, for x ∈ K with
K ∈ T ,

|ΠDv(x)| ≤
∑

{i,j}∈E

|(v,−ϕi∇ϕj + ϕj∇ϕi)||bi,j(x)|.

If K ⊂ ωij , then there exists C12 such that ωij ⊂ B(x, C12hK). Since m(ωij) ≥ C13h
d
K , we get the

existence of C14 such that the number of {i, j} ∈ E with bi,j(x) 6= 0 is bounded by C14. Using (59) and
(47), we obtain

|ΠDv(x)| ≤ ‖v‖L∞(Ω)dC14C9hK
C4
hK

,

which concludes the proof. �

Lemma 4.10: There exists C15 such that

∀v ∈W 1,∞
0 (Ω)d, ‖∇ΠDv‖L∞(Ω)d×d ≤ C15 max

K∈T

‖v‖L∞(K)d

hK
. (61)

Proof. Let us denote, for a given K ∈ T ,

Cv = max
K∈T

‖v‖L∞(K)d

hK
. (62)
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Using (58), we have, for x ∈ K,

∇ΠDv(x) =
∑

{i,j}∈E

(v,−ϕi∇ϕj + ϕj∇ϕi)∇bi,j(x).

We remark that, using (62) and (47) for K ⊂ ωij and x ∈ K,

|v(x)(−ϕi(x)∇ϕj(x) + ϕj(x)∇ϕi(x))| ≤ ‖v‖L∞(K)d2
C4
hK

.

This yields
|(v,−ϕi∇ϕj + ϕj∇ϕi)| ≤ 2|ωij |CvC4,

and therefore, using (60), we conclude (61). �

4.5 The operator Π

We let W = C∞
c (Ω)d ∩ V (Ω). We notice that, for any v ∈ W , then ΠLv ∈ W 1,∞

0 (Ω). One can then
consider the function ΠD(v −ΠLv) ∈ P

2(T ). We notice that this function is not necessarily null on the
boundary of the domain, and in this case, it is not an element of X .
We then define Π : W → EN = XN ∩ VN ∩ L∞(Ω)d, for any v ∈ W , by:

if ΠD(v −ΠLv) ∈ H1
0 (Ω), then Πv = ΠLv +ΠD(v −ΠLv) else Πv = 0. (63)

Lemma 4.11: For any v ∈ C∞
c (Ω)d ∩ V (Ω), we have

∀ϕ ∈ P
1(T ), (divΠv, ϕ) = 0. (64)

Proof. If ΠD(v −ΠLv) ∈ H1
0 (Ω), we get from Lemma 4.7

(divΠD(v −ΠLv), ϕ) = (div(v −ΠLv), ϕ) = −(divΠLv, ϕ),

which provides (64). Otherwise, we get (64) since Πv = 0. �

Lemma 4.12: There exists C16 such that for any v ∈ W , we have

‖Πv‖L∞(Ω)d ≤ C16‖∇v‖L∞(Ω)d×d . (65)

and
‖∇Πv‖L∞(Ω)d ≤ C16‖∇v‖L∞(Ω)d×d . (66)

Proof. It suffices to consider the case ΠD(v −ΠLv) ∈ H1
0 (Ω) (otherwise the conclusion is straightfor-

ward). We apply Lemmas 4.3 and 4.9. We then get (65).
Now applying Lemmas (52) in Lemma 4.4 and Lemma 4.10, we obtain (66). �

Lemma 4.13: There exists C17 such that, for any v ∈ W such that ΠD(v −ΠLv) ∈ H1
0 (Ω), then

‖Πv − v‖W 1,∞(Ω)d ≤ C17hT ‖v‖W 2,∞(Ω). (67)

Proof. We first remark that, from (54) and (55) in Lemma 4.4, we get

‖ΠLv − v‖W 1,∞(Ω)d ≤ C18hT ‖v‖W 2,∞(Ω).

Again applying (54) in the same Lemma, and using Lemma 4.10, we get that

‖ΠD(v −ΠLv)‖W 1,∞(Ω)d ≤ C15C7hT ‖v‖W 2,∞(Ω),

which concludes the proof of (67). �
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Lemma 4.14: Let W = C∞
c (Ω) ∩ V (Ω). Let (TN )N≥1 be a sequence of simplicial meshes in the sense of

this section, such that (hTN
)N≥1 converges to zero while (θTN

)N≥1 remains bounded. We then consider
the sequence (XN ,MN ,ΠN )N≥1 such that XN and MN are the spaces X and M defined by (49), ΠN is
defined by (63), in the case where T = TN .

Then the family
(

W , (XN ,MN ,ΠN )N≥1

)

satisfies the convergence assumptions (19)-(23) in Section 3.1.

Proof. The density of C∞
c (Ω)d ∩V (Ω) in H1

0 (Ω)
d ∩V (Ω) for the H1

0 (Ω)
d norm is proved in particular

in [2, Lemma IV.3.4 p. 249].
Let ϕ ∈ W . Applying (63), we have that ΠNϕ ∈ EN .
Indeed, if ΠD(v − ΠLv) ∈ H1

0 (Ω), then ΠD(v − ΠLv) ∈ XN as well as ΠLv ∈ XN . In this case, the
application of Lemma 4.11 yields (19).
Otherwise, if ΠD(v −ΠLv) /∈ H1

0 (Ω), then ΠNϕ = 0 ∈ EN and (19) is also satisfied.
Let v ∈ C∞

c (Ω)∩V (Ω). Since the support of v is compact, there exists a > 0 such that, for any x ∈ ∂Ω,
v = 0 on the ball B(x, a). Let N0 ≥ 1 be such that, for all N ≥ N0, hTN

≤ a/(C3 + 2). Let N ≥ N0,
and let us consider ΠL defined by (50) in the case where T = TN . Then, for any x ∈ ∂Ω, v − ΠLv = 0
on the ball B(x, a− hTN

).
We then deduce from Lemma 4.5 that, for any x ∈ Ω with B(x, hTN

) ∩ ∂Ω 6= ∅, then v − ΠLv = 0 on
the ball B(x, C3hTN

), which leads to ΠD(v −ΠLv) ∈ H1
0 (Ω) for all N ≥ N0 in the case where T = TN .

Therefore, ΠD(v − ΠLv) ∈ H1
0 (Ω) for all N ≥ N0 in the case where T = TN . This yields that, for any

N ≥ N0, the conclusion of Lemma 4.13 holds. This proves (22).
Finally, (23) is a consequence of the convergence of P1 finite elements for the Neumann problem with
null average.
�
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