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In this feature article, we provide an overview of our research on statistical copolymers as a coating material for metal oxide nanoparticles and surfaces. These copolymers contain functional groups enabling non-covalent binding to oxide surfaces and poly(ethylene glycol) (PEG) polymers for colloidal stability and stealthiness. The functional groups are organic derivatives of phosphorous acid compounds R-H2PO3, also known as phosphonic acids that have been screened for their strong affinity to metals and their ability to build multidentate binding. Herein we develop a polymer-based coating platform that shares features with the techniques of self-assembled monolayers (SAM) and Layer-by-Layer (L-b-L) deposition. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups, the implementation of simple protocols combining versatility with high particle production yields and the experimental demonstration of the colloidal stability of the coated particles. As an demonstration, coating studies are conducted on cerium (CeO2), iron (𝛾-Fe2O3), aluminum (Al2O3) and titanium (TiO2) oxides of different sizes and morphologies. We finally discuss applications in the domain of nanomaterials and nanomedicine. We evaluate the beneficial effects of coating on redispersible nanopowders, contrast agents for In Vitro/Vivo assays and stimuli-responsive particles.

∎ INTRODUCTION

Coating is a field of surface science that aims at improving the properties of micro/macroscopic surfaces. There is currently a wide variety of physical and chemical coating techniques consisting in altering the atoms and molecules at interfaces or in overcoating the existing surface with materials of the desired properties. [START_REF] Ratner | Biomaterials Science: An Introduction to Materials in Medicine[END_REF] Depending on applications, the coating thickness range from a few nanometers for ultrathin molecular films to micrometers for thick films. With the advent of nanotechnology and the reduction of material size in applications, coating strategies have evolved to accommodate the miniaturization of substrates. One area where coating has become important is that of nanoparticles (NPs). NPs are objects with at least one dimension comprised between 1 and 100 nm. The NPs are synthesized in an aqueous or organic solvent, under controlled physicochemical conditions that ensure their stability during the synthesis reaction. However, coating NPs dispersed in a solvent raises specific issues and the coating techniques for micro/macroscopic surfaces must be adapted accordingly. In particular, NPs have rotational and translational degrees of freedom that allow them to change the state of the dispersion via mechanisms such as aggregation or precipitation. [START_REF] Russel | Colloidal Dispersions[END_REF] As an illustration, we consider here two representative examples, one in the field of nanomaterial chemistry and the other in nanomedicine. Metal oxide (MOx) nanoparticles [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF] are typically synthesized in aqueous media by soft chemistry bottom-up approaches from metal salt solutions. [START_REF] Chavali | Metal Oxide Nanoparticles and their Applications in Nanotechnology[END_REF][START_REF] Sanchez | Designed hybrid organicinorganic nanocomposites from functional nanobuilding blocks[END_REF][START_REF] Uppuluri | Soft chemistry of ion-exchangeable layered metal oxides[END_REF] The nanocrystal growth is driven by homogeneous nucleation, and in many cases long-range electrostatic interactions are used to control the NP growth and ensure stability. [START_REF] Stankic | Pure and Multi Metal Oxide Nanoparticles: Synthesis, Antibacterial and Cytotoxic Properties[END_REF] Studies have shown that changing the physicochemical conditions of cationic MOx dispersions, for instance by increasing the pH or ionic strength to bring them to physiological conditions leads to the destabilization of the dispersion and to the agregation and precipitation of the NPs. [START_REF] Murdock | Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique[END_REF] In the realm of nanomedicine, NPs are put in contact with biological solvents, cells or tissues for imaging, diagnostic, therapy and engineering purposes. In these examples, they must be protected against the adsorption of endogenous biomolecules such as proteins, lipids, amino acids, nucleotides etc.. at their surface. The concept of protein corona [START_REF] Walczyk | What the Cell "Sees" in Bionanoscience[END_REF][START_REF] Walkey | Understanding and Controlling the Interaction of Nanomaterials with Proteins in a Physiological Environment[END_REF] developed circa ten years ago encompasses the above cases, and it has been shown that this adsorption can deeply modify the synthetic identity of the NPs. [START_REF] Falahati | A Health Concern Regarding the Protein Corona, Aggregation and Disaggregation[END_REF] Recent surveys have shown that nanomedicine has indeed not met initial expectations in terms of clinical translation. Based on the meta-analysis on more than 100 publications between 2005 and 2015, Wilhelm et al. have found that for the treatment of solid tumors in animal models, 99.7 % of administered particles, acting here drug vectors, were cleared from the blood circulation, and eventually miss their target, the solid tumor. [START_REF] Wilhelm | Analysis of Nanoparticle Delivery to Tumours[END_REF] One of the reasons given for this setback was that the physicochemical interactions of NPs with biological environments have been overlooked and that NP interfacial properties In Vitro/Vivo have not been studied with sufficient emphasis. [START_REF] Wilhelm | Analysis of Nanoparticle Delivery to Tumours[END_REF][START_REF] Henriksen-Lacey | Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles[END_REF] In practice, coating is necessary to make NPs compatible with the subsequent stages of their uses and transformations during their life cycle. The coating of NPs thus has several objectives that must all be achieved, by i) adjusting the interparticle interaction potential to the required physicochemical conditions, ii) preserving the size-related and surface properties of NPs, and iii) increasing the resistance to protein adsorption, a property known as anti-fouling. [START_REF] Jeon | Protein-Surface Interactions in the Presence of Polyethylene Oxide[END_REF][START_REF] Schlenoff | Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption[END_REF][START_REF] Baggerman | Romantic Surfaces: A Systematic Overview of Stable, Biospecific, and Antifouling Zwitterionic Surfaces[END_REF] For NP coating, the most common technique used to date is derived from the micro/macroscopic surface coating methods and consists in the chemical modification of the surface by adding an organic layer, or adlayer. This adlayer is made up of low molecular weight ligands, surfactants, phospholipids, oligomers or polymers of various architectures [START_REF] Boles | The surface science of nanocrystals[END_REF][START_REF] Cohen-Stuart | Emerging Applications of Stimuli-Responsive Polymer Materials[END_REF] . The addition of this organic layer is usually produced following a pathway described as two-step coating process. Here, NPs and coating molecules are synthesized separately (step 1) and later assembled following appropriate protocols (step 2). This two-step pathway actually differs from another widely used process where the organic (macro)molecules are introduced during synthesis to control the nanocrystal nucleation and growth as well as to ensure colloidal stability. The advantages of the two-step coating process are numerous and have recently led to remarkable advances. In particular, this process combines simplicity, versatility and high particle production yields. Another advantage is that it encompasses a wide range of chemical techniques, such as the grafting-from and grafting-to techniques. The latter strategy also includes ligand adsorption, polymer grafting, self-assembled monolayers, layer-by-layer deposition, and phase transfer of coatings between organic and aqueous solvents. [START_REF] Boles | The surface science of nanocrystals[END_REF][START_REF] Cohen-Stuart | Emerging Applications of Stimuli-Responsive Polymer Materials[END_REF][START_REF] Chapel | Versatile Electrostatic Assembly of Nanoparticles and Polyelectrolytes: Coating, Clustering and Layer-By-Layer Processes[END_REF][START_REF] Kim | Ceria Nanoparticles that Can Protect against Ischemic Stroke[END_REF][START_REF] Lee | Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating[END_REF][START_REF] Boyer | Surface Modification of Upconverting NaYF4 Nanoparticles with PEG-Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window[END_REF][START_REF] Laschewsky | Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference[END_REF] In this review, we will focus on the application of the two-step coating process to the class of metal oxide nanoparticles (MOx-NPs), which represent a large collection of nanostructures currently under intense research. The emphasis will be put on cerium and iron oxide NPs (CeO2 and -Fe2O3 respectively), and we will give examples of efficient coatings for titanium (TiO2) and aluminum (Al2O3) oxides. The interest in MOx-NPs comes from the combination of complementary attributes, such as nanometer size, high surface reactivity and remarkable properties in catalysis, electronics, optics and magnetism. We refer the reader to the following reviews for the applications of MOx-NPs. [START_REF] Chavali | Metal Oxide Nanoparticles and their Applications in Nanotechnology[END_REF][START_REF] Mcnamara | Nanoparticles in Biomedical Applications[END_REF] In the field of NP coating, macromolecules of synthetic and biological origin have become the most readily used species for surface modification. There are a number of underlying reasons to this: i) there exists a large library of polymer architectures including linear chains, copolymers, stars, dendrimers which can be implemented as coating; ii) the theoretical framework of polymers at interfaces is well founded and the predictions have been validated by experiments for more than 2 decades; [START_REF] Auroy | Characterization of the Brush Regime for Grafted Polymer Layers at the Solid-Liquid Interface[END_REF][START_REF] Chen | 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials[END_REF][START_REF] Zhao | Polymer Brushes: Surface-Immobilized Macromolecules[END_REF] iii) polymers are relatively inexpensive to produce and some have been approved by regulatory and control agencies for medical applications. As for polymers conformation at interfaces, Alexander and de Gennes provided the theoretical scheme for polymers tethered by one extremity and having the other extremity dangling in the solvent. [START_REF] Alexander | Adsorption of Chain Molecules with a Polar Head: a Scaling Description[END_REF][START_REF] De Gennes | Conformations of Polymers Attached to an Interface[END_REF] On flat surfaces, two main regimes were predicted. At polymer density 𝜎 such as 𝜎 < 1/𝜋𝑅 𝑔 2 (i.e. typically 𝜎 < 0.1 nm -2 ), where 𝑅 𝑔 is the gyration radius of the chain in good solvent, the polymers adopt a mushroom configuration, the adlayer thickness being then twice the gyration radius. At higher densities, 𝜎 > 1/𝜋𝑅 𝑔 2 (𝜎 > 0.1 nm -2 ), monomer-monomer excluded volume interactions induce a stretching of the chains, which enter into the brush regime. In this configuration, the height increases and varies as ℎ 2𝐷 ~ 𝜎 𝜈 𝑁, where 𝑁 is with the degree of polymerization and 𝜈 a coefficient between 1/3 and 1 depending on the solvent quality. [START_REF] Zhao | Polymer Brushes: Surface-Immobilized Macromolecules[END_REF][START_REF] Brittain | A Structural Definition of Polymer Brushes[END_REF] Polymer adlayers or brushes have been shown to form soft interfaces and efficient steric repulsive barriers. [START_REF] Jeon | Protein-Surface Interactions in the Presence of Polyethylene Oxide[END_REF] Polymer affinity towards surfaces can be enhanced by the addition of specific chemical groups that can react with the surface. For MOx-NPs, the most commonly used linkers are alcohol, acid, amine, silane and thiol compounds. [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF][START_REF] Boles | The surface science of nanocrystals[END_REF] In the above list, organic derivatives of phosphorous acid with the formula R-H2PO3, also referred to as phosphonic acids, have attracted much attention. Since the pioneer work by Schwarzenbach and coworkers, [START_REF] Schwarzenbach | Neue Derivate der Imino-Diessigsaure und ihre Erdalkalikomplexe Beziehungen zwischen Aciditat und Komplexbildung[END_REF] phosphonic acid is known to have a strong affinity toward metallic and metal oxide surfaces compared to sulfates and carboxylates. [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF][START_REF] Mutin | Hybrid Materials from Organophosphorus Coupling Molecules[END_REF][START_REF] Mosquet | Polyoxyethylene Di-Phosphonates as Efficient Dispersing Polymers for Aqueous Suspensions[END_REF][START_REF] Kousar | Protein-Resistant Behavior of Poly(ethylene glycol)-Containing Polymers with Phosphonate/Phosphate Units on Stainless Steel Surfaces[END_REF] The binding mechanisms were identified as resulting from condensation of acidic P-OH hydroxyls with surface metal hydroxyls, or from coordination of phosphoryl oxygen to Lewis acid surface sites. [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF][START_REF] Mutin | Hybrid Materials from Organophosphorus Coupling Molecules[END_REF] The prevalence of one mechanism over the other depends on the reaction conditions, and on the type of oxide. Moreover, the presence of three oxygen atoms on phosphonic acid allows multidentate binding modes, [START_REF] Mutin | Hybrid Materials from Organophosphorus Coupling Molecules[END_REF][START_REF] Brodard-Severac | High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania[END_REF] in combination with possible hydrogenbonding interactions (Fig. 1), as shown by advanced surface characterization techniques based on NMR [START_REF] Mutin | Hybrid Materials from Organophosphorus Coupling Molecules[END_REF][START_REF] Brodard-Severac | High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania[END_REF] and mass spectrometry. [START_REF] Adden | Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces[END_REF] Some authors have also suggested that the three oxygen atoms could bind to the same metal site, or to different metal atoms on the surface. [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF] Previous reports on MOx functionalization have shown that PEG polymers terminated with mono or biphosphonic acid functional groups can adsorb on particles of different composition and nature, such as calcium carbonate, [START_REF] Mosquet | Polyoxyethylene Di-Phosphonates as Efficient Dispersing Polymers for Aqueous Suspensions[END_REF] iron, 37-40 cerium [START_REF] Qi | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers[END_REF][START_REF] Chanteau | Electrosteric Enhanced Stability of Functional Sub-10 Nm Cerium And Iron Oxide Particles in Cell Culture Medium[END_REF] , titanium [START_REF] Zoulalian | Self-Assembly of Poly(ethylene glycol)-Poly(alkyl phosphonate) Terpolymers on Titanium Oxide Surfaces: Synthesis, Interface Characterization, Investigation of Nonfouling Properties, and Long-Term Stability[END_REF][START_REF] Silverman | Comparative Properties of Siloxane vs Phosphonate Monolayers on A Key Titanium Alloy[END_REF] and zinc-gallium [START_REF] Lécuyer | Persistent Luminescence Nanoparticles Functionalized by Polymers Bearing Phosphonic Acid Anchors: Synthesis, Characterization, and In Vivo Behaviour[END_REF] oxides. More recently, functional polymers with multiple phosphonic acid groups have been shown to outperform polymers with a single functional group in terms of resilient coating. [START_REF] Zoulalian | Self-Assembly of Poly(ethylene glycol)-Poly(alkyl phosphonate) Terpolymers on Titanium Oxide Surfaces: Synthesis, Interface Characterization, Investigation of Nonfouling Properties, and Long-Term Stability[END_REF][START_REF] Baldim | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media[END_REF] Figure 1: Schematic representation of mono-, bi-and tri-dentate binding modes of phosphonic acids upon adsorption on metal oxide nanoparticle surface. [START_REF] Mutin | Hybrid Materials from Organophosphorus Coupling Molecules[END_REF][START_REF] Paniagua | Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides[END_REF][START_REF] Queffélec | Surface Modification Using Phosphonic Acids and Esters[END_REF] Here we review the course of research that led to the development and application of functional polymers containing phosphonic acids as effective coating material for metal oxide nanoparticles. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups (R-H2PO3), the implementation of simple protocols combining versatility and high particle production yields and the experimental demonstration of the coated particle colloidal stability. The chosen approach is based on the aforementioned twostep coating process which allows to evaluate the intrinsic performance of a coating adlayer as an application, whether in the field of materials or nanomedicine.

∎ PHASE BEHAVIOR AND COLLOIDAL STABILITY OF COATED METAL OXIDE NANOPARTICLES

In this review, we will adopt the following notations. Oligomers or polymers terminated by a single acidic phosphonic acid will be referred to as OEGik-Ph or PEGik-Ph (Fig. 2a). For chains with multiple phosphonic acids, the abbreviation MPEGik-co-MPh will be used to describe the general class of statistical copolymers investigated. There, MPEGik denotes a PEG methacrylate monomer with a PEG molecular weight of i kDa, whereas MPh stands for a methacrylate monomer bearing a phosphonic acid functional group (Fig. 2b). In a similar way, for copolymers bearing carboxylic acid groups instead of phosphonic acid moieties will be called MPEGik-co-MA (Fig. 2c). For a specific copolymer chain with a known number n of phosphonic acid or methacrylic acid functions, (MPEGik)n-co-MPhn or (MPEGik)n-co-MAn will be used. In this review we will also highlight more complex chemical structures, such as MPEGik-co-MPEGjka-co-MPh terpolymers containing an amine-terminated PEG chain allowing chemical substitution (Fig. 2d), and MPAmco-MPh copolymers made from a methacrylate monomer bearing a propylacrylamide group (Fig. 2e). From PEGylated coating to redispersible nanopowders Our work on functional macromolecules for coating was initiated by a collaboration with Solvay® regarding the development of redispersible nanopowders. [START_REF] Van Ommen | Fluidization of Nanopowders: a Review[END_REF] From an industrial perspective, nanopowders represent an economically interesting state of matter, because of their ease of transport or handling, their increased shelf life and the possibility to formulate dispersions with various solvents. Studies have shown that when colloids are concentrated to the dry state, the van der Waals attraction tends to stick them together irreversibly, 2 a phenomenon that is further enhanced with MOx-NPs because of their high specific surface area and crystalline facets. For this first study, we considered cerium oxide (CeO2) nanoparticles (Fig. 3a) that are used in industrial applications as catalysts in the automotive and chemical-mechanical polishing sectors, and as UV absorbers in paint formulations. [START_REF] Krishnan | Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[END_REF][START_REF] Mullins | The Surface Chemistry of Cerium Oxide[END_REF] The coating molecule investigated, a phosphonic acid terminated oligo(ethylene glycol) of molecular weight 0.4 kDa (OEG0.4k-Ph, Fig. 3b) is Solvay proprietary oligomer containing 10 ethylene glycol monomers. In search for protocols with high yields and upscaling potential, the two-step coating process was implemented. With this technique, the oligomers and NPs were synthesized separately and later assembled according to a protocol described in details below. Synthesized by thermohydrolysis of cerium salt at pH 1.4, the 7.8 nm CeO2-NPs shown in Fig. 3a carry positive charges on their surface, ensuring their colloidal stability. [START_REF] Hiemstra | A Surface Structural Approach to Ion Adsorption: the Charge Distribution (Cd) Model[END_REF][START_REF] Spalla | Growth of Colloidal Aggregates through Polymer Bridging[END_REF] However, a small increase in pH, e.g. of the order of one pH-unit leads to their destabilization and aggregation. [START_REF] Sehgal | Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions[END_REF] For these reasons, we suggested that the coating protocol must be carried out under pH and salinity conditions identical to that of as-synthesized CeO2 batches. [START_REF] Qi | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers[END_REF][START_REF] Sehgal | Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions[END_REF] To study the phase behavior of CeO2 and OEG0.4k-Ph, we combine the electrostatic complexation effect between the cationic NPs and anionic oligomers with the continuous variation method developed by P. Job. [START_REF] Renny | Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry[END_REF][START_REF] Job | Studies on the Formation of Complex Minerals in Solution and on their Stability[END_REF][START_REF] Mousseau | The Role of Surface Charge in the Interaction of Nanoparticles with Model Pulmonary Surfactants[END_REF][START_REF] Oikonomou | Fabric Softener-Cellulose Nanocrystal Interaction: A Model for Assessing Surfactant Deposition on Cotton[END_REF][START_REF] Fresnais | Nanoparticle Aggregation Controlled by Desalting Kinetics[END_REF] CeO2-NPs and oligomers were prepared in the same conditions of pH (1.4) and concentration, and mixed at different volumetric ratios 𝑋. The continuous variation method allows exploring a broad range of conditions, while keeping the total concentration in the dilute range. 𝑋 is varied from 10 -3 to 10 3 , switching from a regime of excess oligomers (𝑋 ≪ 1) to a regime of excess NPs (𝑋 ≫ 1). Upon mixing the oligomers spontaneously adsorbed on the particle surface via electrostatic complexation, and form a 1.8 ± 0.2 nm layer, as shown by small-angle scattering. [START_REF] Qi | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers[END_REF] The different steps of the protocol are illustrated in Fig. 3c. Fig. 3d displays the hydrodynamic diameter map of CeO2@OEG0.4k-Ph in the (𝑋 -pH) diagram for 𝑋 varying from 0.1 to 10 and pH from 1 to 14. The region in red shows the domain of stability of the coated particles, whereas the shaded area displays the precipitated region. The major finding of this study is the existence of a critical ratio 𝑋 𝐶 , here equal to 1 below which the coated NPs are stable over a broad pH range (1 < pH < 9). For 𝑋 > 𝑋 𝐶 , the particles are aggregated or precipitated. This aggregation can be explained by the fact that the cationic sites CeOH2 + at the surface [START_REF] Spalla | Growth of Colloidal Aggregates through Polymer Bridging[END_REF] are not saturated with oligomers, and that the OEG layer is not sufficiently dense to counteract the attractive van der Waals interaction and the electrostatic charge changes (CeOH2 + becoming CeOH with increasing pH) observed upon pH increase. [START_REF] Hiemstra | A Surface Structural Approach to Ion Adsorption: the Charge Distribution (Cd) Model[END_REF][START_REF] Nabavi | Surface-Chemistry of Nanometric Ceria Particles in Aqueous Dispersions[END_REF] Light and neutron scattering data showed that at saturation there is an average of 270 OEG0.4k-Ph oligomers per particle, corresponding to an oligomer density of 𝜎 = 1.4 nm -2 and a proportion of 40% by weight of the core-shell hybrid. [START_REF] Qi | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers[END_REF] CeO2 nanopowder were obtained by freeze-drying a mixed dispersion prepared with excess oligomers following by a dialysis step to remove the unreacted species. In contrast to bare CeO2, the CeO2@OEG0.4k-Ph powder was found to redisperse readily in DI-water as well as in non water-borne solvents, [START_REF] Qi | Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles[END_REF] where dispersions exhibited non-aggregated NPs only. Interestingly, this approach allowed us to lay the basis for generic protocols that were later implemented on a wide variety of nanoparticles and macromolecular coating, with direct applications to the biomedical technologies.

Figure 3: a) Upper panel: transmission electronic image of cerium oxide nanoparticles. Lower panel: Relative frequency as a function of TEM diameter. The continous line results from nonlinear least squares analysis using a lognormal centered at 7.8 nm. b) 3-phosphonopropyl alcohol ethoxylate-10 EG, in short OEG0.4k-Ph is an oligomer containing 10 ethylene glycol monomers and terminated by a phosphonic acid group. c) Coating protocol carried out for grafting OEG0.4k-Ph at CeO2-NP surfaces. The association between anionic oligomers and cationic NPs is driven by electrostatic interaction at pH 1.4. At this pH, phopshonic acids have a deprotonation rate of 5%. 62 d) (𝑋-pH) state diagram of CeO2@OEG0.4k-Ph nanoparticles obtained by dynamic light scattering at total concentration 10 g L -1 . 𝑋 denotes the concentration ratio between NPs and oligomers.

The contour lines indicate hydrodynamic diameter 𝐷 𝐻 between 10 to 60 nm, whereas the grey region represents phase separation. 𝑋 𝐶 represents the critical mixing ratio above which NPs aggregate at physiological pH. Adapted with permission from Ref. [START_REF] Baldim | Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts[END_REF] (Copyright 2020 American Chemical Society) and Ref. [START_REF] Qi | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG Oligomers[END_REF] (Copyright 2008 American Chemical Society).

Multiple phosphonic acid PEG copolymers: a robust coating platform

Shortly after the work on redispersible nanopowders, the question of enhancing the adsorption energy of anchoring moities has been addressed, e.g. by changing the nature of the anchoring groups or increasing their numbers per chain. New PEGylated polymers with multidentate catechol [START_REF] Basti | Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents[END_REF][START_REF] Gillich | Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: Adsorption kinetics, surface characterization, and nonfouling properties[END_REF][START_REF] Na | Multidentate Catechol-Based Polyethylene Glycol Oligomers Provide Enhanced Stability and Biocompatibility to Iron Oxide Nanoparticles[END_REF][START_REF] Ryu | Polydopamine Surface Chemistry: A Decade of Discovery[END_REF] , dopamine [START_REF] Ryu | Polydopamine Surface Chemistry: A Decade of Discovery[END_REF][START_REF] Mondini | Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells[END_REF][START_REF] Schanze | Ten Years of Polydopamine: Current Status and Future Directions[END_REF][START_REF] Wang | Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems[END_REF][START_REF] Ling | Multiple-Interaction Ligands Inspired by Mussel Adhesive Protein: Synthesis of Highly Stable and Biocompatible Nanoparticles[END_REF] or phosphonic acid [START_REF] Guerrero | Phosphonate Coupling Molecules for the Control of Surface/Interface Properties and the Synthesis of Nanomaterials[END_REF][START_REF] Markiewicz | Advantages of poly(vinyl phosphonic acid)-based double hydrophilic block copolymers for the stabilization of iron oxide nanoparticles[END_REF][START_REF] Lu | Hydroxyl-PEG-Phosphonic Acid-Stabilized Superparamagnetic Manganese Oxide-Doped Iron Oxide Nanoparticles with Synergistic Effects for Dual-Mode MR Imaging[END_REF][START_REF] Baldim | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media[END_REF][START_REF] Paniagua | Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides[END_REF][START_REF] Giamblanco | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces[END_REF][START_REF] Sandiford | Bisphosphonate-Anchored Pegylation and Radiolabeling of Superparamagnetic Iron Oxide: Long-Circulating Nanoparticles for In Vivo Multimodal (T1 MRI-SPECT) Imaging[END_REF][START_REF] Das | Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging[END_REF][START_REF] Canniccioni | RAFT polymerization of dimethyl(methacryloyloxy)-methyl phosphonate and its phosphonic acid derivative: a new opportunity for phosphorus-based materials[END_REF][START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF][START_REF] Pauly | Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions[END_REF][START_REF] Kosian | Structure and Long-Term Stability of Alkylphosphonic Acid Monolayers on SS316L Stainless Steel[END_REF][START_REF] Ramniceanu | Delayed Hepatic Uptake of Multi-Phosphonic Acid Poly(Ethylene Glycol) Coated Iron Oxide Measured by Real-Time Magnetic Resonance Imaging[END_REF][START_REF] Genix | Tuning Local Nanoparticle Arrangements in TiO2-Polymer Nanocomposites by Grafting of Phosphonic Acids[END_REF] functional groups were evaluated and applied to various NPs and substrates. In this context, iron oxide nanoparticles have attracted attention and have been studied as contrast agents for magnetic resonance imaging (MRI) in biomedical applications. [START_REF] Sun | Magnetic Nanoparticles in MR Imaging and Drug Delivery[END_REF][START_REF] Reddy | Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications[END_REF][START_REF] Corot | Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging[END_REF] Our interest was focused on sub-10 nm iron oxide NPs that we sought to coat with copolymers containing multiple phosphonic acids and PEGs per chain. The synthesis was performed by free radical polymerization by Specific Polymers®, with the objective to harness the protocols set up for redispersible nanopowders. The copolymers studied consist in alternating PEG chains and phosphonic acidic moieties grafted onto a poly(methyl methacrylate) backbone, as illustrated in Fig. 4a. For the copolymer noted (MPEG2k)3-co-MPh3 investigated in this section, the number of phosphonic acids and PEG2k chains was 3.1 in average, and its weight-average molecular weight and molar mass dispersity were 13.0 ± 0.5 kDa and 1.8. (MPEG2k)3-co-MPh3 coating agent was evaluated with 6.8 nm (Fig. 4b) and 13.2 nm iron oxide nanoparticles. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF] Figs. 4c and4d displays the stability diagram of 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 mixed dispersions at the concentration of 𝑐 = 1 g L -1 and pH 8.0. In Figs. 4c, images of vials containing the dispersions at different 𝑋-values are presented. The color change of the dispersions is due to the variations of 𝛾-Fe2O3 concentration as 𝑐 𝑁𝑃 = 𝑐𝑋/(1 + 𝑋), whereas at the same time, the polymer concentration decreases as 𝑐 𝑃𝑜𝑙 = 𝑐/(1 + 𝑋). In Figs. 4d, the hydrodynamic diameter 𝐷 𝐻 is displayed as a function of 𝑋. The hydrodynamic diameters of single polymer chains and 𝛾-Fe2O3-NPs are 16 and 14 nm (squares at 𝑋 = 10 -3 and 10 3 , respectively). Upon NP addition, 𝐷 𝐻 exhibits first a plateau over 2 decades in 𝑋, and then increases sharply due to the formation of micronsized aggregates. In this range, the dispersions are turbid and sediment with time. The existence of a critical mixing ratio 𝑋 𝐶 is found again, which can be interpreted as follows. Below 𝑋 𝐶 , the polymers are in excess, the functional end-groups exceed the number of binding sites (here FeOH2 + ) [START_REF] Lucas | Surface Charge Density of Maghemite Nanoparticles: Role of Electrostatics in the Proton Exchange[END_REF] and after adsorption, coverage is maximum. Above 𝑋 𝐶 , the coverage is incomplete and the particles precipitate upon pH increase, as bare particles do. In addition to its simplicity, the previous protocol allows to determine the number of adsorbed chains per particle 𝑛 𝑎𝑑𝑠 , via the relationship: 84

𝑛 𝑎𝑑𝑠 = 1 𝑋 𝐶 𝑀 𝑛 𝑁𝑃 𝑀 𝑛 𝑃𝑜𝑙 ( 1 
)
where 𝑀 𝑛 𝑁𝑃 and 𝑀 𝑛 𝑃𝑜𝑙 are the number-averaged molecular weights of the NP and polymer, respectively. For the 6.8 nm iron oxide particles, 𝑋 𝐶 = 1.3 and 𝑛 𝑎𝑑𝑠 = 97, whereas for 13.2 nm NPs, 𝑋 𝐶 = 5 and 𝑛 𝑎𝑑𝑠 = 230. These 𝑛 𝑎𝑑𝑠 -values correspond to a copolymer density 𝜎 = 0.50 ± 0.10 nm -2 and to a PEG2k density 𝜎 𝑃𝐸𝐺 = 1.5 nm -2 , this latter value being regarded as high for a noncovalent grafting-to technique. [START_REF] Inutsuka | High Density Polymer Brush Spontaneously Formed by the Segregation of Amphiphilic Diblock Copolymers to the Polymer/Water Interface[END_REF][START_REF] Jokerst | Nanoparticle PEGylation for Imaging and Therapy[END_REF] Comparing the hydrodynamic sizes of bare and coated NPs, the PEG2k thickness was evaluated at 6 nm, an outcome consistent with partially stretched chains. [START_REF] Jeon | Protein-Surface Interactions in the Presence of Polyethylene Oxide[END_REF][START_REF] Leckband | Grafted poly(ethylene oxide) Brushes as Nonfouling Surface Coatings[END_REF] Finally, electrokinetic measurements confirmed that the PEGylated particles were globally neutral. Last but not least, the previous protocol has been later upscaled to larger volumes, resulting in quantities of 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 of the order of 1 gram (dry extract) in a single coating protocol. This property has proven to be crucial for In Vitro/Vivo assays, which requires large quantities of particles. 78 The association between anionic copolymers and cationic NPs is driven by electrostatic interaction at pH 2.0. At this pH, phosphonic acids have a deprotonation rate of 17% [START_REF] Giamblanco | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces[END_REF] . Above 𝑋 𝐶 = 1.3, dispersions are turbid due to aggregation. For large aggregates, 𝐷 𝐻 is set at 1 µm. Inset: schematic representation of a coated NP. Adapted with permission from Ref. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF] (Copyright 2014 American Chemical Society).

Metal oxide nanoparticle stability in complex media

For application in materials or biomedical science, before any use, the colloidal stability of NPs must be assessed. This assessement is realized by examining the state of the dispersion as a function of time, over periods ranging from a few seconds to several days or weeks. Among the many techniques available for this purpose, static and dynamic light scattering is one of the most convenient. [START_REF] Murdock | Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique[END_REF] A dispersion is considered stable if the scattered intensity 𝐼 𝑆 (𝑡) and the hydrodynamic diameter 𝐷 𝐻 (𝑡) obtained by light scattering are both stationary in time, and if 𝐷 𝐻 is identical to its value in DI-water. As 𝐼 𝑆 is proportional to the molecular weight of the scatterers, [START_REF] Dhont | An Introduction to Dynamics of Colloids[END_REF] its monitoring is more sensitive than that of 𝐷 𝐻 to detect slow or partial aggregation processes. [START_REF] Ould-Moussa | In Vitro Toxicity of Nanoceria: Effect of Coating and Stability in Biofluids[END_REF] For stability studies, it is recommanded to examine solvents of increasing complexity. These solvents includes brine (e.g. DI-water at 1 M NaCl), phosphate buffer saline (PBS), cell culture medium with and without serum, and plasma serum. Typical cellular media are the Dulbecco's Modified Eagle's medium, DMEM and the Roswell Park Memorial Institute medium, RPMI, which both contain inorganic salts, amnio acids, vitamins and other components such as glucose. As for the protocol, a few microliters of a concentrated dispersion (e.g. 𝑐 = 20 g L -1 in DI-water) are poured and homogenized rapidly in 1 mL of the solvent to be studied, and simultaneously 𝐼 𝑆 and 𝐷 𝐻 are measured over 2 hours and later at day 1, day 7 and day 30. The end concentration is chosen according to the concentrations used in In Vivo/Vitro assays and to the sensitivity of the light scattering spectomerter. Green squares indicate that the particles are stable, red squares unstable. Adapted with permission from Ref. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF] 

(Copyright 2014 American Chemical Society).

Here we present stability results of 6.8 and 13.2 nm 𝛾-Fe2O3 NPs coated with (MPEG2k)3-co-MPh3 and (MPEG5k)7-co-MPh7 in various solvents. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF][START_REF] Ramniceanu | Delayed Hepatic Uptake of Multi-Phosphonic Acid Poly(Ethylene Glycol) Coated Iron Oxide Measured by Real-Time Magnetic Resonance Imaging[END_REF] Fig. 5a displays the hydrodynamic diameter 𝐷 𝐻 over 7 days after their dilution in DMEM complemented with serum. Upon NP injection, 𝐷 𝐻 jumps to its value found in DI-water and remains stationary over the entire period. Subsequent measurements at 1 month confirm the long-term stability of the PEGylated NPs. In contrast, experiments performed on bare or citrate coated NPs, as well as on commercial MRI contrast agent Cliavist® exhibit a continuous increase after injection, indicating aggregation (Fig. 5b). The mechanisms responsible for aggregation are electrostatic screening due to physiological conditions and ligand exchange. [START_REF] Safi | The Effects of Aggregation and Protein Corona on the Cellular Internalization of Iron Oxide Nanoparticles[END_REF] The stability results obtained with 𝛾-Fe2O3 coated with various copolymers, including (MPEG2k)4-co-MA4 where functional groups were methacrylic acids are summarized in Fig. 5c for PBS1X, 1 M NaCl DI-water, DMEM and DMEM with serum. Following these first measures, similar studies were conducted on CeO2-NPs, TiO2 nanoclusters and Al2O3 platelets with sizes between 7 to 40 nm, and confirmed the merits of MPEGik-co-MPh copolymers for coating. In this study, MPEGik-co-MPEGjka-co-MPh terpolymers (Fig. 2d) allowing subsequent functionalization via an amine coupling were evaluated and found to be efficient as well for colloidal stability. Interestingly, it was found that the PEG layer thickness for a given PEG length was identical whatever the oxide core (i.e. made from iron, cerium, titanium and aluminum) and that NPs exposed to serum proteins were devoid of corona. [START_REF] Baldim | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media[END_REF] With MPEGik-co-MPh polymers, optimum coatings were with PEG densities of 1 nm -2 and layer thickness about 10 nm. [START_REF] Jeon | Protein-Surface Interactions in the Presence of Polyethylene Oxide[END_REF][START_REF] Brittain | A Structural Definition of Polymer Brushes[END_REF][START_REF] Emilsson | Strongly Stretched Protein Resistant Poly(Ethylene Glycol) Brushes Prepared by Grafting-to[END_REF] 

∎ POLYMERS ON FLAT SURFACES, BRUSH FORMATION AND PROTEIN RESISTANCE STUDIED BY

QCM-D Phosphonic acid PEG copolymer adsorption on Fe3O4 substrate

In the previous sections, we outlined protocols in which MPEGik-co-MPh copolymers spontaneously adsorb onto MOx-NPs surfaces, leading to the formation of a resilient protective coating. Here we pursue this approach by extending it to flat surfaces using quartz crystal microbalance with dissipation (QCM-D), a technique that allows to monitor the kinetics of adsorption with high sensititvity. [START_REF] Reviakine | Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces[END_REF] A QCM-D equipment was used in conjunction with quartz crystal sensors coated by a thin iron oxide (Fe3O4) film. Polymer solutions (1 g L -1 , pH 2.0) were injected in an exchange mode into the chamber containing the crystal sensor. Any substance adsorbing onto the crystal surface induces a decrease of the resonance frequency 𝑓 𝑛 = 𝑓 0 + ∆𝑓 𝑛 (∆𝑓 𝑛 < 0) with respect to the fundamental resonance frequency 𝑓 0 , 𝑛 being the n th -overtone. ∆𝑓 𝑛 is related to the adsorbed mass per unit area (ng cm -2 ) through the Sauerbrey equation, ∆𝑚 = -𝐶 ∆𝑓 𝑛 𝑛 ⁄ where 𝐶 = 17.7 ng s cm -2 is the Sauerbrey constant. [START_REF] Sauerbrey | Verwendung von Schwingquarzen zur Wagung Dunner Schichten und zur Mikrowagung[END_REF] Of note, the adsorbed mass also includes the water trapped hydrodynamically inside the layer. Fig. 6a displays the real-time kinetics of polymer adsorption for (MPEG1k)4-co-MPh4, (MPEG2k)3-co-MPh3 and (MPEG5k)7-co-MPh7 at pH 2.0. After injection, the areal mass density ∆𝑚 increases rapidly and reaches a stationary value that depends on the PEG molecular weight. The QCM-D data show no change in mass density upon rinsing with DI-water at pH 7.4, indicating that the polymers are strongly bound to the Fe3O4 surface. With increasing molecular weight, ∆𝑚 increases from 400 to 750 ng cm -2 , which is a typical feature for polymers adsorbing at interfaces via grafting-to mechanisms. [START_REF] Emilsson | Strongly Stretched Protein Resistant Poly(Ethylene Glycol) Brushes Prepared by Grafting-to[END_REF][START_REF] Delcroix | Quartz Crystal Microbalance Study of Ionic Strength and Ph-Dependent Polymer Conformation and Protein Adsorption/Desorption on PAA, PEO, and Mixed PEO/PAA Brushes[END_REF][START_REF] Jia | Probing the Adjustments of Macromolecules during their Surface Adsorption[END_REF][START_REF] Nalam | Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures[END_REF] To retrieve the thickness ℎ 2𝐷 of the adsorbed layer, the Voigt model [START_REF] Höök | Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: a Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study[END_REF] was applied to the dissipation data, leading to values of 4.1, 5.7 to 9.4 nm for (MPEG 1k ) 4 -co-MPh 4 , (MPEG2k)3-co-MPh3 and (MPEG5k)7-co-MPh7 respectively. [START_REF] Giamblanco | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces[END_REF] These values are in agreement with those of adsorbed polymers of similar molecular weights, [START_REF] Emilsson | Strongly Stretched Protein Resistant Poly(Ethylene Glycol) Brushes Prepared by Grafting-to[END_REF][START_REF] Nalam | Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures[END_REF] and compare well with the coating thickness ℎ 𝑁𝑃 obtained on NPs. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF][START_REF] Ramniceanu | Delayed Hepatic Uptake of Multi-Phosphonic Acid Poly(Ethylene Glycol) Coated Iron Oxide Measured by Real-Time Magnetic Resonance Imaging[END_REF] To estimate the PEG density 𝜎 𝑃𝐸𝐺 , the polymer brush theory was applied. [START_REF] Alexander | Adsorption of Chain Molecules with a Polar Head: a Scaling Description[END_REF][START_REF] De Gennes | Conformations of Polymers Attached to an Interface[END_REF][START_REF] Daoud | Star Shaped Polymers -A Model for the Conformation and its Concentration-Dependence[END_REF] In the moderate and high surface density regimes, 𝜎 𝑃𝐸𝐺 and ℎ 2𝐷 are linked through the relation: [START_REF] Brittain | A Structural Definition of Polymer Brushes[END_REF][START_REF] Kim | From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes[END_REF] ℎ 2𝐷 = ( 𝜎 𝑃𝐸𝐺 3 )

1/ 3 𝑏 2/3 𝑎𝑁 ( 2 
)
where 𝑎 = 0.28 nm and 𝑏 = 0.72 nm are respectively the chemical monomer and Kuhn lengths for PEG [START_REF] Emilsson | Strongly Stretched Protein Resistant Poly(Ethylene Glycol) Brushes Prepared by Grafting-to[END_REF] and 𝑁 the degree of polymerization of the chains. Eq. 2 leads to PEG densities of 1.55, 0.57 and 0.15 nm -2 for (MPEG1k)4-co-MPh4, (MPEG2k)3-co-MPh3 and (MPEG5k)7-co-MPh7. A commonly used parameter for quantitative characterization of polymer brushes is the reduced tethered density 𝛴 = 𝜋𝜎 𝑃𝐸𝐺 𝑅 𝑔 2 . 100 From the QCM-D data, 𝛴 is found in the range 3.8 to 11.7, corresponding to grafting densities in the moderate (methacrylic acid-PEG2k, 1 < 𝛴 < 5) and in the highly stretched regimes (phosphonic acid-PEG1k, PEG2k and PEG5k, 𝛴 ≥ 5). 30,101-102 A schematic representation of a stretched PEGylated layer is illustrated in Fig. 6b. A 10-fold decrease in 𝜎 𝑃𝐸𝐺 between (MPEG1k)4-co-MPh4 and (MPEG5k)7-co-MPh7 is attributed to excluded volume interaction and steric repulsion between chains during deposition. The already adsorbed chains act as a barrier to the incoming ones, a mechanism that is more effective for longer chains. As a result, the brush stretching and morphology are different: dense and solid-like for PEG1k and soft and viscoelastic for PEG5k. 91 

Resistance of PEGylated layers to protein adsorption

Once the polymers firmly adsorbed, we evaluated the resistance of the coating layers to proteins by injecting a physiological solution (PBS) containing fetal bovine serum (FBS) at 10 vol. % to the QCM-D chamber. Fig. 7a displays the real-time kinetics of protein adsorption illustrated by the areal mass densities ∆𝑚(𝑡) for three substrates: i) uncoated iron oxide, ii) iron oxide coated with a high density 4.1 nm (MPEG1k)4-co-MPh4 layer, and iii) iron oxide coated with the high density 9.4 nm (MPEG5k)7-co-MPh7 layer (Fig. 7b). After FBS injection on the uncoated substrate, ∆𝑚(𝑡) increases rapidly and levels off at 1020 ng cm -2 at steady state, with no modification upon rinsing with DI-water. This outcome indicates that proteins are strongly bound to the Fe3O4 film, confirming the strong affinity of proteins for untreated iron oxide surfaces. [START_REF] Emilsson | Strongly Stretched Protein Resistant Poly(Ethylene Glycol) Brushes Prepared by Grafting-to[END_REF][START_REF] Jia | Probing the Adjustments of Macromolecules during their Surface Adsorption[END_REF]103 In the presence of PEG brushes, the protein adsorption behavior changes drastically. Stationary areal mass densities ∆𝑚 for (MPEG1k)4-co-MPh4 and (MPEG5k)7-co-MPh7 are lower than those obtained with the uncoated surface. After rinsing, the residual mass densities is decreased 3 fold for (MPEG1k)4-co-MPh4, whereas it is reduced 100-fold for (MPEG5k)7-co-MPh7, to a value that is close to the QCM-D detection limitc (~ 2 ng cm -2 ). For the latter sample, QCM-D data suggest that the proteins are weakly attached to the PEG layer and removed by rinsing. Another crucial result is that the FBS addition did not modify the structure of the PEGylated layer, as fequency and dissipation return to their pre-FBS injection levels.

Fig. 7c displays an histogram of the protein areal mass densities deposited on PEG brushes before and after rinsing. The data also include the stationary ∆𝑚 for the methacrylic acid analogue, (MPEG2k)4-co-MA4. While (MPEG2k)3-co-MPh3 behaves like its 5 kDa counterpart, methacrylic acid containing polymers are less efficient against protein adsorption. Upon FBS injection, data show a continuous and irreversible degradation of the PEG layer due the competitive complexation between proteins and grafted copolymers. The protein adsorption resistance coefficient for MPEGik-co-MPh are 82%, 98% and 99% for i = 1, 2 and 5 respectively, whereas it is only 65% for (MPEG2k)4-co-MA4, demonstrating that best anti-fouling layers are made from copolymers with multiple phosphonic acid functional groups.

In conclusion of this section, we have established a parallel in the deposition of MPEGik-co-MPh copolymers on highly curved interfaces and on flat QCM-D substrates. In both, the copolymers spontaneously adsorb to the iron oxide interfaces at acidic pH and form a resilient nm-thick PEG brush. The copolymer backbone attaches to the surface via multisite bonds, and the PEG side chains organize into stretched protein-resistant brushes.

Figure 7: a) QCM-D responses of uncoated Fe3O4, Fe3O4@(MPEG1k)4-co-MPh4 and Fe 3 O 4 @(MPEG 5k ) 7 -co-MPh 7 substrates exposed to a 10 vol. % fetal bovine serum (FBS) solution. FBS contains mostly bovine serum albumin (BSA) and globulin proteins at a total concentration of 40 g L -1 . The areal mass density ∆𝑚 is obtained from the Sauerbrey equation. Arrows indicate FBS injection and rinsing. b) Illustration of the different adsorption and rinsing stages used in QCM-D, including exposition to serum proteins and rinsing for uncoated Fe3O4 (upper panel), Fe3O4@(MPEG1k)4-co-MPh4 (middle panel) and Fe3O4@(MPEG5k)7-co-MPh7 (lower panel) substrates. c) Protein areal mass densities ∆𝑚 on coated and uncoated Fe3O4 substrates.

∎ APPLICATIONS TO NANOMEDICINE AND BIOMEDICAL IMAGING

Effect of coating on In Vitro cellular uptake

Issues dealing with the impacts, fate and toxicity of NPs have become the focus of many recent researches. 104-105 Despite these efforts, the risk assessment of nanomaterials, including MOx-NPs, to human health and the environment has not been fully evaluated. The objectives of toxicological assays are the measure of the viability of living cells incubated with NPs, and of the half-inhibitory concentration, which quantifies the dose to inhibit cell growth by half after 24 hours. These studies have shown that NP cytotoxicity depends on several factors, two of which play a determining role: the amount or mass of internalized NPs at a given dose, and their localization in the cytoplasm. Regarding the uptaken amount for MOx-NPs, metal detection techniques based on mass or light spectrometry now allow an accurate measure of internalized material per cell, with an accuracy better than 10 3 to 10 4 NP units, or ~ 10 femtograms in mass. These mass-per-cell and localization results provide valuable information about the mechanisms of cell-NPs interaction, 106-107 which can then be used to design In Vivo strategies regarding organ or tissue targeting.

We illustrate here a specific feature of the NP-cell interaction, namely the role of a PEGylated coating in the stealthiness of NPs towards cells. CeO2 and 𝛾-Fe2O3-NPs presented in the previous sections are again objects of interest and we focus on various coatings, including citrate ligands, poly(acrylic acid) and MPEGik-co-MPh copolymers. In these In Vitro assays, the tested cells are of murine origin and included bEnd.3 brain epitethlial cells, 3T3/NIH fibroblasts and RAW 264.7 macrophages. For CeO2-NPs, the inductively coupled plasma -optical emission spectrometry (ICP-OES) technique was used, whereas for 𝛾-Fe2O3-NPs we harnessed the MILC (for Mass of metal Internalized/Adsorbed by Living Cells) protocol, which is based on the digestion of cells by hydrochloric acid and colorimetric determination. [START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF]108 Fig. 8a displays the mass of cerium 𝑀 𝐶𝑒 uptaken by bEnd.3 cells expressed in picogram per cell as a function of the CeO2 dose in the cell culture medium. It is found that both coated and uncoated CeO2-NPs associate with bEnd.3 cells after a 24 h incubation. However, the amount of CeO2@(MPEG2k)5-co-MPh5 detected is significantly reduced, by about 100-fold, compared to bare CeO2. The straight line in dark grey in the figure represents the maximum amount of cerium that can be uptaken by a single cell under current exposure conditions. It is seen that the percentage decreases from 20-30% for the bare NPs to 1‰ for the coated ones. In these assays, it was shown that the few PEGylated NPs that crossed the cell membrane were found in endosomes, suggesting an entry mechanism via endocytosis. 107 Similar results were obtained by coating CeO2-NPs with MPEGik-co-MPEGjka-co-MPh terpolymers (Fig. 2d) containing an amine-terminated PEG allowing subsequent chemcial conjugation. 109 Fig. 8b and Fig. 8c display similar types of results for the mass of iron 𝑀 𝐹𝑒 uptaken by NIH/3T3 fibroblasts and RAW 264.7 macrophages, respectively. The cells were treated for 24 h with 13.2 nm 𝛾-Fe 2 O 3 NPs coated with citrate, PAA 5k and (MPEG 2k ) 3 -co-MPh 3 at concentrations between 10 -3 and 1 g L -1 . For citrate coated particles, the masses of internalized/adsorbed iron were high (about 50-70 pg/cell) and about 10-20% of the maximum value (straight dark line). For particles coated with PAA5k, the behavior is similar, however with a lower saturation plateau. Conversely, with (MPEG2k)3-co-MPh3 copolymers as a coat, the uptake levels are of the order of 0.1 pg/cell, i.e. 50 to 100 times lower those found with citrate and poly(acrylic acid). The results in Fig. 8 highlight the stealthiness of PEGylated NPs, regardless of their chemical nature or the cell line studied. To understand this phenomenon, it is important to remember uncoated NPs or NPs coated with citrate ligands aggregate in culture media (Fig. 5). NP aggregates are prone to adsorb at the cellular membrane by sedimentation, resulting in a concentration gradient above the cell layer. Sedimentation-dosimetry models 110 have showed that for micron-sized aggregates, the effective dose seen by the cells can exceed the nominal one by a factor of 10 to 1000, thereby increasing cell death and toxicity. 111 These outcomes evidence the crucial impact of the coating in the evaluation of NP-cells interaction and cytotoxicity. 

Effect of coating on In Vivo nanoparticle pharmacokinetics monitored by time-resolved MRI

In medicine, the pharmacokinetics consists in determining the fate of substances administered to a living organism intravenously, and its kinetics of accumulation and clearance in various organs, such as the liver, spleen, lungs, kidney. Studies have shown that NPs administered in the blood compartment are opsonized by plasma proteins, preventing them to interact specifically with potential targets. [START_REF] Walczyk | What the Cell "Sees" in Bionanoscience[END_REF]112 At the same time, protein adsorption activates the NP uptake by the mononuclear phagocytic system via circulating macrophages and monocytes. The two-step opsonization mechanism is responsible for the NP clearance from the bloodstream and for their accumulation in unrelated organs, typically the liver and the spleen. [START_REF] Jokerst | Nanoparticle PEGylation for Imaging and Therapy[END_REF] Following the In Vitro assays, we undertook a series of pharmacokinetics studies of coated 𝛾-Fe2O3-NPs using an MRI 7-Tesla spectrometer. 𝛾-Fe 2 O 3 @coating dispersions were injected intravenously into the tail vein of wild-type female 8 weeks BALB/c mice at a dose of 1 mg of iron per kilogram of mouse. Spatially resolved images of the liver, spleen and kidneys were acquired prior and after injection, at time points between one minute and seven days. The change in the liver MRI contrast was investigated as it provided direct insight into the NP pharmacokinetics. With this protocol, the time course of NP uptake and clearance in and out of the liver could be retrieved. Fig. 9a and 9b compares MRI scans obtained in the first three hours for the benchmark Cliavist® and for 𝛾-Fe2O3@(MPEG2k)3-co-MPh3. Commercialized by Bayer for liver imaging, Cliavist® contains partialy aggregated 4 nm magnetic core particles coated with 1.4 kDa carboxydextran polymers. [START_REF] Corot | Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging[END_REF] With this benchmark, the mouse liver section exhibited a negative contrast enhancement (darkening) already 5 minutes post i.v., showing that NPs accumulated in the liver. [START_REF] Reddy | Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications[END_REF][START_REF] Corot | Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging[END_REF] For 𝛾-Fe2O3@(MPEG2k)3-co-MPh3, on the contrary the darkening was delayed by about 3 hours. During the period, the MR images showed no contrast change of the liver and of other organs (spleen, kidneys), an indication of a prolonged circulation in the bloodstream. At 3 hours post i.v., MRI images exhibited a negative contrast enhancement, although less intense than with Cliavist®. To quantify the MRI images, the liver mapping was performed by integrating the grey intensity 𝐼 𝑀𝑅𝐼 (𝑡) on regions of interest (continuous lines in Figs. 9a and9b). Spatially average intensities were normalized with respect to the pre-injection level 𝐼 𝑀𝑅𝐼 0 and translated the quantity 1 -𝐼 𝑀𝑅𝐼 (𝑡)/𝐼 𝑀𝑅𝐼 0 . In Ex Vivo calibration assays, 1 -𝐼 𝑀𝑅𝐼 (𝑡)/𝐼 𝑀𝑅𝐼 0 was found to vary linearly with the 𝛾-Fe2O3-NPs concentratrion and we hypthesize that this behavior holds also In Vivo (although the iron concentrations for each assay are obtained in relative units). The results of this procedure averaged on 𝑛 mice are shown for cliavist® (𝑛 = 3), 𝛾-Fe2O3@PAA2k (𝑛 = 3) and 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 (𝑛 = 4) in Figs. 9c-e respectively. For Cliavist® and 𝛾-Fe2O3@PAA2k, the iron oxide concentration in the liver increased rapidly after injection and exhibits a broad maximum around 200 minutes. At longer timescale, from D1 to D7 days post i.v., the concentration fell to 0, indicating the complete iron clearance from the liver. [113][114] On the opposite, 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 exhibited prolonged circulations in the blood, the concentration increase appearing approximately 2-3 hours post i.v.. The concentration maximum was shifted to 1000 minutes, after which iron was cleared from the liver in a few days, as for the previous NPs. To retrieve the pharmacokinetics parameters, it was assumed that the NPs capture and the clearance mechanisms were occurring sequentially, and that the concentration was the addition of two stretched exponentials characterized by half-life times 𝑡 1/2 𝑢𝑝 and 𝑡 1/2 𝑐𝑙𝑒𝑎𝑟 , respectively. As a result, the uptake time was estimated at 6.0 and 4.5 min for Cliavist® and 𝛾-Fe2O3@PAA2k, whereas it was multiplied by about 50 for 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 at 𝑡 1/2 𝑢𝑝 = 250 min, confirming the strong dependence on the coating. As for the clearance time, it was found that 𝑡 1/2 𝑐𝑙𝑒𝑎𝑟 did not depend on the magnetic core sizes, nor on the coating, with half-life times between 2 to 4 days. Regarding this last mechanism, it was assumed that the clearance occurred via the particle degradation and iron incorporation into the main intracellular storage proteins, e.g. ferritin and hemosiderin. [113][114] The main outcome from the In Vivo MRI mouse assays is that coating appears as an important parameter that affects the liver uptake kinetics from the blood pool. MPEGik-co-MPh copolymers provides the most efficient contrast agent in terms of stealthiness, as they are able to prolong the blood particle lifetime for several hours. This result could be exploited for passive targeting of cancer drugs using the mechanism of enhanced permeability and retention effect (EPR).

∎ THERMOSENSITIVE IRON OXIDE NANOPARTICLES

So far, we have focused on a biomedical theme, but the above strategies can easily be combined with a material science approaches, and the development of stimuli-responsive or smart materials. Smart materials refer to compounds that respond to an external stimulus or to the environment with a dynamic and controlled change on their properties. The classical stimuli harnessed in physicochemistry are pH, ionic strength, chemical composition, temperature, light, magnetic and electric fields. [START_REF] Cohen-Stuart | Emerging Applications of Stimuli-Responsive Polymer Materials[END_REF][115][116] Herein we exploited our coating platform and apply it to 9.4 nm -Fe2O3-NPs to design novel core-shel particles that are temperature and magnetic field stimuli responsive. [117][118] For that, we used the 49.5 kDa copolymer (MPAm)424-co-MPh9 in which the PEGylated chains have been substituted by thermosensitive propylacrylamide groups (PAm) (Fig. 10a). Water soluble thermoresponsive polymers such as poly(N-isopropylacrylamide) (PNIPAm) or its isomer poly(N-n-propylacrylamide) (PNnPAm) have a low critical solution temperature (LCST). With increasing temperature above the LCST, these compounds undergo a reversible phase transition from a soluble hydrated state to an insoluble dehydrated state. 119 PNnPAm has an LCST around 23 °C, which is characterized by a steeper transition and more pronounced heating/cooling hysteresis compared to PNIPAm. [120][121] The -Fe 2 O 3 -NP coating protocol was here identical to that of the previous sections, the only difference being that mixing was carried out at 5 °C, a temperature where the (MPAm)424-co-MPh 9 chains are well solvated. When pH was brought to pH 8.0, a critical mixing ratio at 𝑋 𝐶 separating stable dispersions and precipitates in the phase behavior was disclosed. The 𝑋 𝐶 value of 0.5 leads to an average with 54 copolymers or equivalently 430 phosphonic acid moities per particle (Fig. 10b). TEM and light scattering experiments shows that following the coating process the NPs were slightly agglomerated (Fig. 10c), with hydrodynamic sizes in the order of 80 nm, as compared to 25 nm for the bare NPs. This partial aggregation has been explained by the fact that phosphonic acids from the same chain were able to graft different -Fe2O3-NPs, and bridged them together. Electrophoretic mobility measurements also provided negative zeta potential of the order of -25 ± 5 mV, which was attributed to ungrafted phosphonic acid groups at the surface (Fig. 10b).

To study the thermoresponsive behavior of -Fe2O3@(MPAm)424-co-MPh9, the dispersions were salted to screen the electrostatic interaction arising from non-adsorbed PO3 2-groups. At pH 8.0 and [NaCl] = 200 mM, the LCST was found to be shifted by 5 °C compared to single polymers, at 28 °C. 122 Fig. 10d displays a representative TEM image of the NPs above the LCST, here at 40 °C, where a noticeable aggregation can be observed. A closer look at this image allows to identify patches around the NPs corresponding to collapsed polymers. Fig. 10e shows the time dependence of the hydrodynamic diameter upon heating from 5 to 40 °C. 𝐷 𝐻 (𝑡) increases linearly and then saturates around 200 nm in the characteristic time of 40 s, confirming that -Fe2O3@(MPAm)424-co-MPh9 self-assembled well under temperature. Upon cooling down to 10 °C, the initially formed aggregates disassembled. However, the disassembly process occurs on a time scale of a few hours, the complete process taking a few days. In this regime, 𝐷 𝐻 (𝑡) follows a power law of the form 𝐷 𝐻 (𝑡) ~ 𝑡 0.06 (Fig. 10f). Hystereses in heating and cooling cycles have been reported in the literature for thermoresponsive NPs 122 and are explained in terms of differences in transition enthalpies. It was also suggested that the diffusion of water into the aggregated polymer network is slower due to the steric hindrance imparted by the entangled chains. 122 An asymetric hysteresis in heating/cooling cycles are considered as a drawback for applications. 123 Here we show that it can represent a definite advantage for the design of nanoor micro-functional objects. Fig. 10g and 10h show optical microscopy images of magnetic filaments resulting from the combined application of temperature (𝑇 > 𝐿𝐶𝑆𝑇) and magnetic field (B = 300 mT) to a -Fe2O3@(MPAm)424-co-MPh9 dispersion. When magnetic NPs are submitted to a magnetic field, strong dipole-dipole magnetic interactions induce the formation of chains. 124 The simultaneous heating promotes the phase transition of the polymer shells, leading to a collapse of the hybrid structure and the formation of magnetic filament. It is found that these filaments retain their microstructure after switching off the field or cooling down the sample to room temperature (Fig. 10h). The resulting magnetic filaments can be washed, isolated, and used for further experiments. They also exhibit a response to an applied magnetic field and can rotate, bend, or move under the application of an external magnetic field. [117][118] In conclusion, we have shown here a novel physicochemical method for the preparation of bio-inspired materials using a template-free controlled assembly. Taking advantage of the hysteresis of the cooling-heating transition of PNnPAm coating, we fabricated long-lived one-dimensional microstructures in the form of magnetic microfilaments that could find potential applications in remotely controlled devices, such as artificial cilia for microfluidic pumping. [125][126] ∎ PERSPECTIVES AND FUTURE DIRECTIONS/CONCLUSIONS

In this review, we provide a summary of our research on phosphonic acid PEG copolymers as coating material for metal oxide NPs. Surface modification is a rapidly growing field that is still being extensively studied today. The approach presented here is at the crossroads of selfassembled monolayers and the Layer-by-Layer assembly, which are considered as the most advanced techniques for non-covalent coating. [START_REF] Pujari | Covalent Surface Modification of Oxide Surfaces[END_REF] It makes use of phosphonic acid motifs, which are common functional groups in SAMs and it takes advantage of the electrostatic complexation between the opposite charges carried by NPs and copolymers. In contrast to L-b-L approach however, there is only one layer of polymers deposited and its thickness depends on the degree of polymerization of the water-soluble chains, and not on the number of deposited layers. From the recent literature on MOx-NP coating, it can be seen that with a few exceptions [START_REF] Schanze | Ten Years of Polydopamine: Current Status and Future Directions[END_REF] functional polymers engineered for surface modification are designed for a single type of substrate and for a predetermined application. Nowadays, there is a need for coatings that can be applied for a wide range of surfaces, including those of NP dipersions. Here, we highlight that the present coating platform can fill this gap and contribute to the development of versatile multi-substrate coatings.

This platform is based on a series of elementary schemes that could rationally be reproduced with polymers and NPs of different chemistries. The first scheme is the synthesis by free radical polymerization of MPEG ik -co-MPh statistical copolymers that contain multiple phosphonic acid functional groups. In addition to electrostatic complexation that drives the initial adsorption, [START_REF] Giamblanco | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces[END_REF] as shown by QCM-D (Fig. 6), the presence of three oxygen atoms on the phosphonic acid allows for mono-, bi-and tri-dentate binding coordination modes. The second basic principle is the use of the two-step coating process where NPs and polymers are synthesized separately, and later assembled following relevant protocols. In the survey, we placed some emphasis on the assembly protocols and displayed several NP@coating behaviors, such as those depicted in Figs. 3 and4.

In the course of our studies, we discovered that these protocols were versatile enough to be transposed to a wide variety of particles and polymers. As shown by light scattering (Fig. 5) and QCM-D (Fig. 6), MPEGik-co-MPh copolymers spontaneously adsorb onto the MOx surfaces investigated (CeO 2 , -Fe 2 O 3 , Fe 3 O 4 , TiO 2 and Al 2 O 3 ), leading to the formation of a nanometer thick and dense PEGylated brush. The designed platform allows moreover to evaluate the intrinsic performance of an adlayer. On the one hand, we can start from a given NP, and build around it multiple coatings to disclose which of them is the most appropriate for a given application. We did this for iron oxide contrast agents In Vivo and based on pharmacokinetic studies, it is found that PEG2k layers are the most effective in terms of prolonged circulation in the blood compartment of mice. [START_REF] Lécuyer | Persistent Luminescence Nanoparticles Functionalized by Polymers Bearing Phosphonic Acid Anchors: Synthesis, Characterization, and In Vivo Behaviour[END_REF][START_REF] Ramniceanu | Delayed Hepatic Uptake of Multi-Phosphonic Acid Poly(Ethylene Glycol) Coated Iron Oxide Measured by Real-Time Magnetic Resonance Imaging[END_REF] Interestingly, the QCM-D data further confirmed that PEG2k and PEG5k coatings were resistant to serum proteins. This approach also demonstrated that polymers with a unique phosphonic acid functional group are poor colloidal stabilizers compared to copolymers with multiple anchors. [START_REF] Baldim | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media[END_REF] We can also reason in the reverse way: starting from a given polymer, we can screen a large library of NPs to set up the fundamental rules of adsorption on nanometric surfaces. This was systematically done with CeO2, -Fe2O3, TiO2 and Al2O3 NPs where we could show that on NPs of various morphologies, the adlayer had kept the same thickness, pointing to a common deposition mechanism. [START_REF] Baldim | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media[END_REF] Pertaining to copolymers in which the PEGylated chains have been substituted by thermosensitive propylacrylamide groups, we have been able to modulate the assembly properties of iron oxide particles, and form flexible filaments. [117][118] In the perspective of applying phosphonic acid-based polymers to a wider range of surfaces, it is worth mentioning recent attempts to stabilize other core materials, such as luminescent quantum dots and gold particles. [127][128] As for protein adsorption on NPs or flat substrates, we confirmed a theroretical result demonstrated 30 years ago, namely that PEGylated brushes with density around 1 nm -2 and thickness 10 nm are anti-fouling and protein resistant. Our results also suggest that protein corona is not a ubiquitous phenomenon, as commonly believed, since all four coated metal oxide NPs studied remain stable in protein-rich media, and are devoid of proteins at their surface over long period of time (> months). We also established a parallel in the deposition of MPEGik-co-MPh copolymers between highly curved interfaces and a flat QCM-D substrate, an outcome that is interesting for assessing new functional polymers.

Regarding the development of novel polymers, the polymerization synthesis used so far should be improved, in particular by reducing the molar mass dispersity or by synthesizing diblock copolymers where one block would contain the phosphonic acids and the other the PEG chains. Another promising approach is the synthesis of terpolymers on the same basis as for MPEGik-co-MPh in which amine-terminated PEG are appended on the same methacrylic acid backbone. This amine will then be used as a reactional group for covalent binding to add molecules of interest, such as fluorescent molecules for fluorescent imaging, a Gd-DOTA complex for an MRI contrast agent or targeting peptides for delivery. This last approach has been attempted recently and has shown promising results for CeO2 particles used as antioxidant nanozymes in the treatment of stroke. 109 From the above outcomes, we conclude that this versatile and multi-substrate coating platform represents a step toward the understanding and control of nanomaterial interfacial properties. The summary of the knowledge obtained here is that biocompatible polymers can be pursued as surface modifiers of metal oxide nanoparticles and surfaces for a wide range of applications in material science and nanomedicine. 
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Figure 2 :

 2 Figure 2: Chemical structures and abbreviations of the polymers studied in this work. a) Oligo(ethylene glycol) (i < 0.6) and poly(ethylene glycol) (i > 0.6) of molecular weight i kDa 1 terminated with a single phosphonic acid. b) Statistical copolymer MPEGik-co-MPh made from MPEGik and MPh monomers. c) Statistical copolymer MPEGik-co-MA made from MPEGik and MA monomers. d) Statistical terpolymer MPEGik-co-MPEGjka-co-MPh made from MPEGik, MPEGjka and MPh monomers, where MPEGika is an amine-terminated PEGik methacrylate. e) Statistical copolymer MPAm-co-MPh made from MPAm and MPh monomers, where MPAm is a methacrylate monomer bearing a propylacrylamide group.

Figure 4 :

 4 Figure 4: a) Chemical formula of the statistical copolymer (MPEG2k)3-co-MPh3 of weight-averaged molecular weight 𝑀 𝑤 = 13.0 ± 0.5 kDa and molar mass dispersity Ɖ = 1.8 4. The comonomer proportions are 𝑥 = 𝑦 = 0.50, for a degree of polymerization of 𝑛 = 6. b) Transmission electron microscopy (TEM) of the 6.8 iron oxide nanoparticles. c) Images of vials containing 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 dispersions at pH 8.0 for different mixing ratio. d) Hydrodynamic diameter of 𝛾-Fe 2 O 3@(MPEG 2k ) 3 -co-MPh 3 dispersions as a function of the mixing ratio 𝑋 (𝑐 = 1 g L -1 , pH 8.0, T = 25 °C). The association between anionic copolymers and cationicNPs is driven by electrostatic interaction at pH 2.0. At this pH, phosphonic acids have a deprotonation rate of 17%[START_REF] Giamblanco | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces[END_REF] . Above 𝑋 𝐶 = 1.3, dispersions are turbid due to aggregation. For large aggregates, 𝐷 𝐻 is set at 1 µm. Inset: schematic representation of a coated NP. Adapted with permission from Ref.[START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF] (Copyright 2014 American Chemical Society).

Figure 5 :

 5 Figure5: a) Hydrodynamic diameter 𝐷 𝐻 versus time for 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 and 𝛾-Fe2O3@(MPEG5k)7-co-MPh7 after their injection at 𝑡 0 in Dulbecco's Modified Eagle's Medium with serum. Also included are the time behavior of uncoated 𝛾-Fe2O3 NPs and of commecial contrast agent cliavist®, Bayer (Germany). Cliavist® contains partialy aggregated 4 nm magnetic core particles coated with 1400 Da carboxydextran polymers[START_REF] Corot | Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging[END_REF] and was developed for liver imaging using MRI. b) Images of iron oxide dispersions in DMEM after one week. c) Comparison of the colloidal stability of bare and coated 13.2 nm 𝛾-Fe2O3 nanoparticles in various complex media. Green squares indicate that the particles are stable, red squares unstable. Adapted with permission from Ref.[START_REF] Torrisi | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles[END_REF] (Copyright 2014 American Chemical Society).

Figure 6 :

 6 Figure 6: a) Real-time binding curves for the areal mass density ∆𝑚(𝑡) obtained from QCM-D experiments during the adsorption of the copolymers (MPEG1k)4-co-MPh4, (MPEG2k)3-co-MPh3 and (MPEG5k)7-co-MPh7 on Fe3O4 substrates at pH 2.0. Experimental conditions were T = 25 °C and copolymer concentrations of 1 g L -1 . The crystal was excited at the resonance frequency 𝑓 0 = 4.95 MHz through a voltage applied across the gold electrodes. ∆𝑚 was derived from the third overtone of the resonance frequency ∆𝑓 3 3 ⁄ using the Sauerbrey equation. Deposition at pH 7.4 led to mitigated results and unstable polymer layers. 62 b) Schematic representation of a stretched PEGylated layer deposited on iron oxide substrates. c) Summary of phosphonic acid PEG copolymers assessed with QCM-D, including the layer thickness ℎ 2𝐷 and PEG density 𝜎 𝑃𝐸𝐺 .

Figure 8 :

 8 Figure 8: Mass of metal atom 𝑀 𝐶𝑒 and 𝑀 𝐹𝑒 per cell expressed in pg/cell as a function of the metal oxide concentration in the cell culture medium after a 24 h incubation: a) cerium oxide; b,c) iron oxide. The eukaryotic cell lines studied are from murine origin and include bEnd.3 brain epitethlial cells, 3T3/NIH fibroblasts and RAW 264.7 macrophages. The CeO2 and 𝛾-Fe2O3 NPs have diameters of 7.8 nm and 13.2 nm and are those already discussed in Section II.1. For these particles, 1 pg of metal corresponds to 2.5×10 6 and 5×10 4 NP units, respectively. As coatings, we used citrate ions, poly(acylic acid) of 𝑀 𝑤 = 5 kDa, and two phosphonic acid PEG copolymers, (MPEG2k)3-co-MPh3 of 𝑀 𝑤 = 13 kDa 75 and (MPEG2k)5-co-MPh5 of 𝑀 𝑤 = 20 kDa 109 The straight thick lines in each figure depict the maximum amount of MOx-NPs taken up by a single cell. Adapted with permission from Ref. 109 (Copyright 2021 Wiley-VCH GmbH) and Ref. 75 (Copyright 2014 American Chemical Society).

Figure 9 :

 9 Figure 9: Magnetic resonance imaging scans for wild-type female 8 weeks BALB/c mouse livers at different time points, 30 min, 1 and 3 hours after injection for (a) Cliavist® and for (b) 6.8 nm iron oxide particles coated with (MPEG2k)3-co-MPh3. The scale bar in a is 5 mm. c-e) Time dependence of the quantity 1 -𝐼 𝑀𝑅𝐼 (𝑡)/𝐼 𝑀𝑅𝐼 0 for Cliavist®, 𝛾-Fe2O3@PAA2k and 𝛾-Fe2O3@(MPEG2k)3-co-MPh3 respectively where 𝐼 𝑀𝑅𝐼 (𝑡) is the MRI contrast and 𝐼 𝑀𝑅𝐼 0 its preinjection value. From calibration experiments in solution, it was shown, that within a multiplicative factor 1 -𝐼 𝑀𝑅𝐼 (𝑡)/𝐼 𝑀𝑅𝐼 0 is proportional to the iron concentration in the liver (within a multiplicative factor). Injected dose was 1 mg of iron per kilogram of mouse.

Figure 10 :

 10 Figure 10: a) Chemical formula of the thermosensitive copolymer (MPAm) 424 -co-MPh 9 of weightaveraged molecular weight 49.5 kDa. The comonomer proportions are 𝑥 = 0.98 and 𝑦 = 0.02, for a degree of polymerization of 𝑛 = 432 . b) Schematic representation of the polymer coating layer around a 9.4 nm iron oxide nanoparticle. c) and d) Transmission electron microscopy images of -Fe2O3@(MPAm)424-co-MPh9 dispersions below and above the LCST. e) and f) Time dependence of the hydrodynamic diameter 𝐷 𝐻 (𝑡) in the temperature-driven assembly from and disassembly processes, respectively. Temperature jumps are from 5 °C to 40 °C (heating), and from 40 °C to 10 °C (cooling). g) and h) Phase-contrast optical microscopy images of magnetic filaments under the application of the magnetic field, and after the removal of the field. Adapted with permission from Ref. 118 (Copyright 2021 Springer Nature).
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  ABBREVIATIONS DMEM, Dulbecco's Modified Eagle's medium; EPR, Enhanced Permeability and Retention; ICP-OES, Inductively Coupled Plasma -Optical Emission Spectrometry; L-b-L, Layer-by-Layer; LCST, Low Critical Solution Temperature; MA, Methacrylate monomer bearing carboxylic acid functional group; MILC, Mass of metal Internalized/Adsorbed by Living Cells; MOx, Metal oxide; MPAm, Methacrylate monomer bearing a propylacrylamide group; MPAm-co-MPh, Statistical copolymer synthesized by free radical polymerization from MPAm and MPh monomers; MPEGik, PEG methacrylate macromonomer with PEG molecular weight of i kDa; MPEGika, Amineterminated PEG methacrylate macromonomer with PEG molecular weight of i kDa. MPEGik-co-MA, Statistical copolymer synthesized by free radical polymerization from MPEGik and MA monomers; MPEGik-co-MPh, Statistical copolymer synthesized by free radical polymerization from MPEGik and MPh monomers; MPEGik-co-MPEGjka-co-MPh, Statistical terpolymer synthesized by free radical polymerization from MPEGik, MPEGjka and MPh monomers; MPh, Methacrylic monomer bearing a phosphonic acid functional group; MRI, Magnetic Resonance Imaging; NP, Nanoparticle; OEG, Oligo(ethylene glycol); OEGik-Ph, Oligo(ethylene glycol) of molecular weight i kDa terminated with a single phosphonic acid; PAAik, Poly(acrylic acid) of molecular weight i kDa; PBS, Phosphate Buffered Saline; PEG, Poly(ethylene glycol); PEGik-Ph, Poly(ethylene glycol) of molecular weight terminated with a single phosphonic acid; PNIPAm, Poly(N-isopropylacrylamide); PNnPAm, Poly(N-n-propylacrylamide); QCM-D, Quartz Crystal Microbalance with Dissipation; RPMI, Roswell Park Memorial Institute medium; SAM, Self-Assembled Monolayer; TEM, Transmission Electron Microscopy∎ PHYSICAL QUANTITIES 𝑎 (nm), Length of chemical monomer of a polymer chain; 𝑏 (nm), Kuhn length of a polymer chain; 𝑐 (wt. %, g L -1 ), Solute weight concentration; 𝑐 𝑁𝑃 (wt. %, g L -1 ), Nanoparticle weight concentration; 𝑐 𝑃𝑜𝑙 (wt. %, g L -1 ), Polymer weight concentration; 𝐶, Sauerbrey constant (17.7 ng s cm -2 ); 𝐷 𝐻 (nm), Hydrodynamic diameter; 𝑓 0 (Hz) , Resonance frequency in quartz crystal microbalance with dissipation experiment; ∆𝑓 𝑛 (Hz), Resonance frequency shift observed after adsorption or desorption on QCM sensor, n being the overtone index; ℎ 2𝐷 (nm), Thickness of polymer adlayer on macroscopic flat substrate; ℎ 𝑁𝑃 (nm), Thickness of polymer shell on nanoparticle; 𝐼 𝑀𝑅𝐼 , Magnetic resonence imaging intensity; 𝐼 𝑆 (kcps), Scattering intensity from light scattering; 𝑀 𝐶𝑒 (pg cell -1 ), Mass of cerium adsorbed and internalized in cells; 𝑀 𝐹𝑒 (pg cell -1 ), Mass of iron adsorbed and internalized in cells; ∆𝑚 (ng cm -2 ), Areal mass density determined in QCM-D; 𝑁, Degree of polymerization of a polymer; 𝑛 𝑎𝑑𝑠 , Number of adsorbed chains per particle; 𝑅 𝑔 (nm), Radius of gyration; 𝜎 (nm -2 ), Density of polymers adsorbed on a surface; 𝜎 𝑃𝐸𝐺 (nm -2 ), Density of poly(ethylene glycol) adsorbed on a surface; 𝛴, Reduced tethered PEG density (𝛴 = 𝜋𝜎 𝑃𝐸𝐺 𝑅 𝑔 2 ); 𝑡 1/2 𝑐𝑙𝑒𝑎𝑟 (min), Characteristic clearence time in organ pharmacokinetic monitoring; 𝑡 1/2 𝑢𝑝 (min), Characteristic uptake time in organ pharmacokinetic monitoring; 𝑋, Mixing ratio; 𝑋 𝐶 , Critical mixing ratio.
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