Probing DNA-amyloid interaction and gel formation by active magnetic wire microrheology - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Chapitre D'ouvrage Année : 2021

Probing DNA-amyloid interaction and gel formation by active magnetic wire microrheology

Résumé

Recent studies have shown that bacterial nucleoid-associated proteins (NAPs) can bind to DNA and result in altered structural organization and bridging interactions. Under spontaneous self-assembly, NAPs may also form anisotropic amyloid fibers, whose effects are still more significant on DNA dynamics. To test this hypothesis, microrheology experiments on dispersions of DNA associated with the amyloid terminal domain (CTR) of the bacterial protein Hfq were performed using magnetic rotational spectroscopy (MRS). In this chapter, we survey this microrheology technique based on the remote actuation of magnetic wires embedded in a sample. MRS is interesting as it is easy to implement and does not require complex procedures regarding data treatment. Pertaining to the interaction between DNA and amyloid fibers, it is found that DNA and Hfq-CTR protein dispersion behave like a gel, an outcome that suggests the formation of a network of amyloid fibers cross-linked with the DNA strands. In contrast, the pristine DNA and Hfq-CTR dispersions behave as purely viscous liquids. To broaden the scope of the MRS technique, we include theoretical predictions for the rotation of magnetic wires regarding the generic behaviors of basic rheological models from continuum mechanics, and we list the complex fluids studied by this technique over the past 10 years.
Fichier principal
Vignette du fichier
Radiom et al Methods in Molecular Biology submitted to arXiv 08-Oct-21.pdf (1.08 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03453312 , version 1 (28-11-2021)

Identifiants

Citer

Milad Radiom, Evdokia K Oikonomou, Arnaud Grados, Mathieu Receveur, Jean-François Berret. Probing DNA-amyloid interaction and gel formation by active magnetic wire microrheology. Véronique Arluison; Andrés Marcoleta; Frank Wien. Bacterial Amyloids : Methods and Protocols, 2538, Springer, pp.285-303, 2021, Methods in Molecular Biology, 978-1-0716-2529-3. ⟨10.1007/978-1-0716-2529-3_19⟩. ⟨hal-03453312⟩
45 Consultations
25 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More