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In 1974, Amos and Klug analyzed diffraction patterns in
transmission electron microscope images of negatively
stained axoneme doublet microtubules (Amos & Klug,
1974) (Figure 1a). The authors suggested that tubu-
lin dimers in the complete, 13-protofilament A-subfiber
share heterotypic lateral interactions (a-8, §-a), while
those in the incomplete, 10-protofilament B-subfiber
share homotypic ones (a-a, 5-5). They thus named these
lattices after the A and B microtubules in the axoneme
doublet. An A-lattice configuration for the organization of
microtubules with 13 protofilaments and a 3-start helix
was highly attractive, as it allows them to be fully heli-
cal, thereby enabling helical growth as occurs with other
biological polymers such as actin filaments.

In 1978, Crepeau and colleagues used negative stain-
ing to analyze the organization of tubulin dimers in
zinc-induced tubulin sheets and in open sheets at the
ends of regular microtubules (Crepeau et al., 1978).
The authors were able to differentiate between the a-
and B-tubulin monomers in these two-dimensional tubu-
lin assemblies, and proposed B-lattice interactions in
microtubules assembled in vitro. In 1993, Song and
Mandelkow confirmed that microtubules assembled in
vitro are predominantly organized according to a B-
lattice (Song & Mandelkow, 1993) (Figure 1b). They used
kinesin motor-domains, which bind every tubulin dimer

At first glance, the structure of a microtubule is simple. Globular a- and g-tubulin
subunits form constitutive heterodimers that align head-to-tail in protofilaments.
In the most common configuration, 13 protofilaments associate laterally with
a slight longitudinal stagger that results in a left-handed 3-start helix featuring
lateral associations between tubulin subunits. This seemingly straightforward
description is actually based on almost half a century of research aimed at
understanding how tubulin dimers interact within the microtubule lattice. But
while we start to have a good overview of their architecture in vitro, our
knowledge of microtubule-lattice organization in vivo is nowhere near to being

and thus highlight how tubulins are organized in the
microtubule lattice. They showed that these domains fol-
low helical paths compatible only with the B-lattice, as
they involve homotypic lateral interactions. The authors
then used this method to confirm that microtubules
in both the A- and B-subfibers of the axoneme are
organized according to a B-lattice, thereby demonstrat-
ing that if microtubules are built with 13 protofilaments
and a 3-start helix, they must include at least one A-
lattice seam (Song & Mandelkow, 1995). Concomitantly,
Chrétien and Wade used the emerging method of cryo-
electron microscopy of vitreous specimens to show that
the microtubule lattice reacts to different protofilament
and/or helix start numbers via an overall skew of the con-
stituent protofilaments (Chrétien & Wade, 1991). This
prompted the authors to propose that microtubules could
be composed of mixed AB-lattices having a variable
number of seams (Wade & Chrétien, 1993).
Demonstration of a mixed-lattice organization in
microtubules assembled in vitro was first provided
by Kikkawa and colleagues in 1994 (Kikkawa et al.,
1994) using metal-shadowing of freeze-etched samples
(Figure 1c), and this was further confirmed by Sosa
and Milligan (Sosa & Milligan, 1996) on microtubules
observed by cryo-electron microscopy and recon-
structed in 3D by back-projection. Since then, several
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FIGURE 1 Evolution of microtubule lattice models over time. (a) A- and B-lattice models for the organization of the af-tubulin heterodimer in
the A- and B-subfibers of the axoneme were introduced in 1974. The A-lattice was considered to be the preferred configuration for cytoplasmic
microtubules. Reprinted from Figure 14 of ©1974 Amos and Klug. Originally published in Journal of Cell Science.
https://doi.org/10.1083/jcb.127.6.1965 1974. (b) In 1993, it was demonstrated that the B-lattice actually predominates in microtubules assembled
in vitro (left), as well as in the A-subfiber of the axoneme (right). This implied that 13-protofilament microtubules assembled according to a 3-start
helix must contain at least one A-lattice seam. Adapted from Figure 5 of ©1993 Song and Mandelkov. Originally published in Proceedings of the
National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.90.5.1671 1993. (c) In 1994, it was demonstrated
that multiple A-lattice seams occur in vitro (left), and that the B-lattice organization containing at least one seam is present in in cellulo
microtubules (right). Adapted from Figure 5 of ©1994 Kikkawa et al. Originally published in Journal of Cell Biology.
https://doi.org/10.1083/jcb.127.6.19651994. (d) In the current issue of eLife, results obtained from cryo-electron tomograms of microtubules
assembled in vitro show that the number and location of seams varies within individual microtubules, with gaps (*) occurring inside the lattice
(left). Microtubules assembled in Xenopus egg cytoplasmic extracts organize preferentially according to a B-lattice with a single seam (right);
however, the seam location does vary within individual microtubules. Adapted from Figure 4 (left) and 8 (right) of ©2022 Guyomar et al.
Originally published in eLife. https://doi.org/10.7554/eLife.83021 2022.
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examples of mixed lattices have been documented
(Debs et al., 2020; des Georges et al., 2008), including
our recent study (Guyomar et al., 2022). We reveal
another complexity in microtubule-lattice organization:
not only can microtubules contain several seams, but
their numbers and locations can vary within individual
microtubules (Figure 1d, left). We find that microtubules
assembled in vitro are composed of mixed, discontin-
uous AB-lattices with a preferred B-lattice organization.
But what is the situation inside cells? Indeed, very few
studies have addressed this question. While cellular
microtubules are predominantly constructed from 13
protofilaments, numerous exceptions have been noted
in different cell types and organisms (reviewed in Chaa-
ban & Brouhard, 2017; Chrétien & Wade, 1991). Beyond
the known diversity in protofilament numbers, our
knowledge about microtubule-lattice organization in
cells remains quite limited. The first study address-
ing this open issue was carried out by Kikkawa and
colleagues (Kikkawa et al., 1994), who found single
seams in cellular microtubules by using kinesin motor
domain decoration after lysis with detergent (Figure 1c,
right). However, they did not exclude the possibility that
the analyzed microtubules contained several seams,
as observed in in vitro-assembled microtubules. In a
second in cellulo study, Mclntosh and colleagues used
a similar decoration strategy and analyzed lysed cells
by cryo-electron tomography (Mcintosh et al., 2009),
concluding that the B-lattice organization was clearly
favored in their preparations.

In our recent study (Guyomar et al., 2022), we per-
formed an extensive analysis of microtubules assembled
in Xenopus—egg cytoplasmic extracts. We confirm that
microtubules are preferentially organized with 13 protofil-
aments, a 3-start helix, a B-lattice configuration, and
one seam. But we also find that protofilament and/or
helix start number transitions occur, as do changes in
seam location along individual microtubules (Figure 1d,
right). These observations are in line with recent stud-
ies revealing that tubulin exchange is not restricted to
microtubule ends, but also occurs within the micro-
tubule shaft (Gazzola et al., 2023, reviewed in Théry &
Blanchoin, 2021). They also suggest that the intrinsic
dynamic instability of microtubules could be intimately
tied to the structural instability of their lattice, a prop-
erty that could be exploited by proteins such as those
that interact with their growing plus-ends (see the Ideas
and speculation section in Guyomar et al., 2022). Since
only a few cell types have been investigated so far,
we expect that microtubule-lattice organization will turn
out to be even more heterogeneous, depending for
instance on the organism, cell type, or stage of the cell
cycle.

Although half a century ago cytoplasmic microtubules
were proposed to be helical polymers, we must now
view them as imperfect tubular crystals. This structural
heterogeneity, added to the many tubulin genes and

a plethora of post-translational modifications, height-
ens the mosaicity of the microtubule lattice (reviewed
in Roll-Mecak, 2019). As a result, we must reconsider
the conventional view of the microtubule structure, and
we expect further revelations about their functions in the
coming years.
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