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Abstract
The main goal of this work is to conduct a pi-
lot study on the automatic classification of the
response space of questions in English. We
aim for a relatively fine-grained understand-
ing of the learning problem of this response
space; hence, we conducted classical machine
learning studies to automatically identify dif-
ferent response classes based on carefully de-
signed features. Moreover, we compared the
results from feature-based classical machine
learning algorithms to the classification results
obtained from a large-scale pre-trained BERT
language model. Experimental results show
that the feature-based classical machine learn-
ing algorithms can achieve performance results
which are close to the results obtained by BERT
model on this novel task. The overall trend of
the classification results for each response class
are also similar in both models. Learnability
trends similar to corpus-based studies presented
in previous literatures emerge.

1 Introduction

Classifying the response space of questions plays
an important role in the design of dialogue systems,
particularly systems that can be easily adaptable
across domains (Larsson and Berman, 2016). Łup-
kowski and Ginzburg (2013, 2016) offer an em-
pirical and theoretical characterization of one sig-
nificant component of the response space of ques-
tions, which is responding to a question with a
question, which represents more than 20% of all re-
sponses to questions found in the British National
Corpus (BNC) (Burnard, 2007). Based on a de-
tailed corpus study on the British National Corpus
and three other more genre-specific corpora (BEE

(Rosé et al., 1999) and AmEx (Kowtko and Price,
1989)) and a sample from CHILDES (MacWhin-
ney, 2000)), Łupkowski and Ginzburg (2013, 2016)
provide 7 classes of question responses: CR: clarifi-
cation requests, DP: dependent questions, MOTIV:
requests for underlying motivation, FORM: ques-
tions about the form of the expected answer, NO
ANSW: questions raised with the aim of not answer-
ing the initial question, IND: questions providing
a potential answer, and IGNORE: questions raised
to ignore the initial question.

Following the aforementioned research,
Ginzburg et al. (2019, 2022) extend the classifi-
cation of response space to cover all responses
to questions. They provide a full response space
taxonomy with 9 unique response classes of
responses to questions and one OTHER class.
They conduct cross-linguistic studies comparing
English and Polish.

The main aim of the current work is to conduct a
pilot study for automatic classification of response
space of questions, based on the taxonomy pro-
posed by Ginzburg et al. (2019, 2022). Such an
approach lays a foundation for the automation of
response space classification in designing dialogue
systems.

This paper is structured as follows: In section
2, we discuss related work on classifying other
types of utterances in dialogue. Section 3 con-
tains a discussion of the taxonomy of responses to
questions used in this study. In Section 4, we in-
troduce the response space annotation process and
labeled dataset. Section 5 presents the experiments
on BERT language model and its results. We then
introduce the specifically created feature sets, and
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discuss the results and learnability of different re-
sponse classes from a classical machine learning
algorithm in Section 6. In the last section, we offer
some conclusions and discuss future work aimed
at improving this study.

2 Related Work

Fernández et al. (2007) propose a taxonomy with
15 classes for Non-Sentential Utterances (NSU)
in dialogue, based on a detailed corpus study on
BNC. In addition, they also present several results
from automatically classifying NSUs using some
well-known machine learning techniques. For the
machine learning approach, they use the major-
ity class predictor, one-rule classifier, and also the
J4.8 decision tree algorithm using the Weka Toolkit
(Witten and Frank, 2002). Classification results
from the algorithms above served as the baselines
of their study. Three other machine learning sys-
tems were also used, SLIPPER (Cohen and Singer,
1999), TiMBL (Daelemans et al., 2003), and Max-
Ent (Zhang, 2007), in order to conduct a more so-
phisticated experiment and get a reliable result. To
train the machine learning algorithms, Fernández
et al. (2007) used three types of feature sets which
capture either the properties of NSUs, of the an-
tecedent utterance, or the relations between NSUs
and the antecedents. Their results show that ma-
chine learning algorithms benefit from utilizing the
properties of the antecedent of NSUs and also the
relationships between them.

Dragone and Lison (2015) propose an active
learning approach to the classification of NSUs,
by an extension of the work of Fernández et al.
(2007). They extend the feature set from 9 features
to a total of 32 features by extracting more fea-
tures with the PCFG and Dependency Parser from
the Standford CoreNLP API (Dragone and Lison,
2015). An active learning method is used to deal
with the labelled data scarcity problem. The ex-
perimental results show a significant improvement
on the classification task when comparing it to the
baseline of Fernández et al. (2007). In this study,
we use similar methods used to classify NSUs as
discussed above.

Clarification requests (CRs) are also common
in human dialogue. According to Purver et al.
(2003a); Rodríguez and Schlangen (2004), CRs
account for 3%-6% of human-human dialogue.
CRs are also common in response space taxonomy
(4.84% as shown in Table 2). Purver (2006) studies

Clarification Requests in details and presented all
major forms of CRs and analyzed their readings.
He also offered a computational implementation of
CRs within a prototype text-based dialogue system
- CLARIE.

In addition, Cruz-Blandón et al. (2019) pro-
pose a semantic annotation scheme for questions
and answers based on the contribution of con-
tent and discourse on them. They divided the
questions into 5 types: Yes/No question, Comple-
tion suggestion, Disjunctive question, Wh-question,
and Phatic question. The authors also catego-
rized answers into 7 different types: Positive an-
swer, Negative answer, Feature answer, Phatic an-
swer, Uncertainty answers, Unrelated Topic, and
Deny the assumption. They applied this annota-
tion scheme to multiple languages (English, Span-
ish, and Dutch), and also offered an initial exper-
iment for automating the annotation of question
types in English dialogues. Cruz-Blandón et al.
(2019) used 8 different hand-designed features and
reported the classification results from both sta-
tistical machine learning algorithms (Majority
Baseline: acc.=0.47, F1=0.31; Decision
Tree: acc.=0.73, F1=0.58) and neural networks
(Bag-of-Words: acc.=0.76, F1=0.44; RNN:
acc.=0.54, F1=0.24).

3 A Taxonomy of Responses to Questions

As mentioned in the previous section, we deploy
the corpus-based taxonomy proposed by (Ginzburg
et al., 2019, 2022) in our study of automatic clas-
sification of response space of questions. They
propose that the class of responses to a question q1

can be classified into three main categories:

(1) a. Q(uestion)–specific: responses directly or
indirectly about or subquestions of q1;

b. MetaCommunicative: responses directly
about or subquestions of a question de-
fined in part from the utterance of q1;

c. Evasion: responses directly about or sub-
questions of a question that is distinct from
q1 and arises from some other component
of the context.

The first group is further classified as Direct An-
swers (DA) which constitute an answer to the ini-
tial question, and Indirect Answers (IND) through
which one can infer an answer from its content, and
also Dependent Questions (DP) where the answer
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to the initial q1 depends on the answer to this query
response. The second group is divided into Clari-
fication Responses (CR) which inquire additional
information to better understand the initial question,
or to clarify some mis-presuppositions addressed
in q1. Acknowledgment (ACK) is the second class
under the Metacommunicative group, which sig-
nals that the speaker heard and understood the q1.
The last group, Evasion responses, can be further
categorized in to four response classes:

1. Ignore (IGNORE) (the utterance does not re-
late to the question, but to the situation. e.g.,
A: So lock erm how would you spell sock? B:
<laugh> smelly er smelly (BNC));

2. Change the topic (CHT) (e.g., A: Why couldn’t
they come on Friday? B: What you got me
then? (BNC));

3. Motive (MOTIV) A: What’s the matter? B:
Why? (BNC);

4. Difficult to provide a response (DPR) (A:
When’s the first consignment of Scottish tapes?
B: Erm <pause> don’t know.).

The taxonomy is presented in Table 1.

Category TAG
1. Direct answer DA
2. Indirect answer IND
3. Dependent question DP
4. Clarification response CR
5. Acknowledgment ACK
5. The utterance does not relate to
the question, but to the situation IGNORE
6. Utterance signalizes that speaker
does not want to answer, s(he)
changes the topic, gives an evasive
answer

CHT

8. Question about the motivation for
the initial question

MOTIV

9. Difficult to provide an answer DPR
10. Utterance that does not fit in any
of the above

OTHER

Table 1: Taxonomy proposed by Ginzburg et al. (2022)
and used in this paper

In the following section, we describe our data,
annotation process, and also the inter-annotator
agreement between annotators.

4 Response Space Annotation

Following the previous studies and the response
space annotation guideline provided by Ginzburg
et al. (2019, 2022), we annotated question-response
pairs (QR-pairs) from different dialogue corpora.
We manually annotated dialogues from the British
National Corpus (BNC) (Burnard, 2007), Cornell-
Movie (Danescu-Niculescu-Mizil and Lee, 2011),
Basic Electricity and Electronic Corpus (BEE) col-
lected from dialogue-based tutoring system (Rosé
et al., 1999), and HCRC MapTask corpus (Ander-
son et al., 1991).

We manually annotated 3008 QR-pairs from
the BNC corpus, 1172 QR-pairs from the Cornell-
Movie, 293 QR-pairs from the HCRC MapTask,
and 238 QR-pairs from the BEE corpus. This re-
sulted in 4711 annotated QR-pairs in total. We have
a rough estimate that more than 90% of the ques-
tions are responded to in the immediately following
utterance. This is also in line with the statistics pre-
sented in (Purver et al., 2003b) that 94% of the
Clarification Requests were answered in the imme-
diately following utterance. Therefore, to facilitate
the annotation and data processing for machine
learning experiments, we only annotated QR-pairs
where the response is the adjacent utterance of the
corresponding question. In addition, we did not
consider tag questions, such as, It’s too compli-
cated, isn’t it? as a question. Finally, turns with
missing text (the BNC’s ‘unclear’) were eliminated
from consideration, unless the remaining parts of
the utterance provide sufficient information for un-
derstanding the meaning of the utterance.

To examine the annotation reliability, we double
annotated three files from the BNC, and calculated
the inter-annotator reliability based on the Cohen’s
 (Carletta, 1996) and Krippendorff’s ↵ (Krippen-
dorff, 2011) coefficients. The best inter-annotator
agreement scores obtained are 0.8183 and 0.8186
for Cohen’s  and Krippendorff’s ↵ respectively.
However, the lowest inter-annotator agreement
scores are 0.7118 (Cohen’s ) and 0.7128 (Krip-
pendorff’s ↵).

Table 2 shows the distribution of the response
space classes in our dataset. As can be observed
from the table, the OTHER class is less than 1%,
thus the coverage is more than 99%. What’s
more, the most frequent classes in our dataset
are Direct Answers (64.83%), Indirect Answers
(10.80%), Difficult to provide answer (5.20%),
Change the topic (4.95%), and Clarification Re-
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sponses (4.84%). The less frequent classes are DP
(0.89%), MOTIV (0.30%), and ACK (3.12%).

The dataset used in this study is highly imbal-
anced, since the response class DA (64.83%) has
significantly more samples than the others, as in-
dicated in Table 2. Therefore, it is important to
find a solution to overcome the classification diffi-
culty caused by imbalanced data. In the following
section, we introduce the baseline model obtained
by the BERT pre-trained English language model
(Devlin et al., 2018).

Category Total Frequency%
DA 3054 64.83%
IND 509 10.80%
DP 42 0.89%
CR 228 4.84%
ACK 147 3.12%
IGNORE 208 4.42%
CHT 233 4.95%
MOTIV 14 0.30%
DPR 245 5.20%
OTHER 31 0.66%
Total 4711 100%

Table 2: Overall distribution of response space classes
in the dataset

5 Response Space Classification with
BERT

To begin with, we set up an experiment with the
pre-trained BERT language model, and examined
the classification performance of such a large lan-
guage model on the novel task of response space
classification. First of all, we deleted all OTHER
cases from our annotated dataset, which resulted in
a total of 4680 annotated QR-pairs with 9 unique
response classes. The distribution of the training,
validation, and test sets are 60%, 20%, and 20%
respectively. We add 2 special tokens <q> and <r>
into BERT tokenizer’s vocabulary, and the input of
the BERT model is organized as {<q> question <r>
response}.

We conducted two separate experiments: (1).
with the full response space taxonomy of 9 unique
classes; (2). with a coarser response space taxon-
omy of only 4 main classes, namely, Direct An-
swers, Indirect Answers, Clarification Responses,
and Evasion. All classes which belong neither to
Direct Answers, Indirect Answers, nor Clarifica-
tion Responses were merged and classified as Eva-

sion. We think that this is a more practical response
space taxonomy in designing dialogue systems. In
addition, we did not use any resampling techniques
when classifying with the BERT language model,
since BERT is already trained on a large amount
of language data. Therefore, we are interested in
seeing how it performs on this response space clas-
sification task with a skewed dataset.

Table 3 presents the classification results from
the BERT language model on the full response
space taxonomy. We use the classification results
achieved by BERT model as the baseline for this
study, and conduct several experiments to study
whether we can obtain similar results as BERT by
using classical machine learning algorithms trained
with a set of carefully designed features.

As Table 3 shows, the baseline BERT model re-
sults in an average weighted f1-score of 0.70 and a
macro f1-score of 0.40 on the full taxonomy. Be-
sides, the BERT model achieved roc_auc scores of
0.87 and 0.86 respectively on the full and coarser
taxonomy. This signals the very good performance
of the BERT model on the response space classifica-
tion task because they are very close to the perfect
roc_auc score of 1.0. The best classified response
class among others is the Direct Answers (f1-score:
0.85) as expected, since this is the easiest class
to annotate for the human annotators according to
the detailed human annotation report in Ginzburg
et al. (2022). The next relatively well classified
response classes are Clarification Responses (f1-
score: 0.74), Acknowledgments (f1-score: 0.52),
and DPR (f1-score: 0.59). This is also in line with
the relatively higher inter-annotator agreement on
these subsets of the full taxonomy, as presented
in the previous response-space related literatures.
However, the BERT model did not perform well
on Indirect Answers, Dependent Questions, and
other more evasive response classes, such as IG-
NORE, CHT, and MOTIV. The f1-scores are be-
low 0.35 for these classes. Such low classifica-
tion results were anticipated for response classes
DP and MOTIV given the very low frequency of
such responses in our dataset as shown in Table
2 (they comprise only 0.89% and 0.30% of the
overall dataset). As for the response classes Indi-
rect Answers, CHT, and IGNORE, even though
their frequencies are higher than other non-major
classes (10.80%, 4.95%, and 4.42% respectively),
the classification results achieved by BERT lan-
guage model are still very low (f1-score: 0.32, 0.33,
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Classes Precision Recall F1 Support
DA 0.81 0.88 0.85 593
IND 0.33 0.31 0.32 107
DP 0.10 0.20 0.13 5
CR 0.76 0.72 0.74 47
ACK 0.53 0.52 0.52 31
IGNORE 0.14 0.11 0.12 44
CHT 0.39 0.29 0.33 56
MOTIV 0.00 0.00 0.00 3
DPR 0.82 0.46 0.59 50
accuracy 0.70 936
macro avg. 0.43 0.39 0.40 936
weighted avg. 0.68 0.70 0.68 936
roc_auc_score 0.87
DA 0.77 0.95 0.85 595
IND 0.60 0.20 0.30 126
CR 0.70 0.63 0.67 41
Evasion 0.73 0.51 0.60 171
accuracy 0.75 933
macro avg. 0.70 0.57 0.60 933
weighted avg. 0.74 0.75 0.72 933
roc_auc_score 0.86

Table 3: Classification results of BERT language model
on full and coarser response space taxonomy

and 0.12 respectively). This can be attributed to
the fact that these response classes are intrinsically
reliant on deep inference.

The bottom half of the Table 2 presents the clas-
sification results from BERT on the coarser taxon-
omy. The overall classification results improved
in terms of the weighted average f1-score (0.75 vs.
0.70) on the coarser taxonomy. This was expected,
since classifiers usually perform better on a coarser
taxonomy. However, the f1-score on the classifica-
tion results on Clarification Responses decreased
from 0.74 to 0.67, and the Indirect Answers from
0.32 to 0.30. It can be observed that Indirect An-
swer is still the most difficult response class to be
learned by the BERT language model. Finally, the
model resulted in a f1-score of 0.60 on the classifi-
cation of the Evasion response class, which is the
new broader response class after merging all other
response classes.

6 Classical Machine Learning Approach

In this section, we first introduce the set of carefully
designed features for this response space classifica-
tion task. Then, we present two groups of machine
learning experiments: one with the full response
space taxonomy, and the other with a coarser tax-
onomy.

6.1 Features
Similar to the approach used by Fernán-
dez et al. (2007), we also divided the fea-

tures into three main groups: (i) Response
features, which are related to properties of
the response space; (ii) Question features,
which are properties of the corresponding ques-
tion; (iii) Question-Response features,
which keep track of the features related to both
question and response, and also similarities be-
tween the question and its corresponding response.
All the semantic, syntactic, and lexical properties
are extracted by using the Python natural language
analysis package: Stanza Qi et al. (2020). Stanza
is built with highly accurate neural network com-
ponents that its neural network NLP pipeline can
perform various NLP tasks, including tokeniza-
tion, multi-word token expansion, lemmatization,
POS and morphological tagging, dependency pars-
ing, named entity recognition, and also the senti-
ment analysis of a natural language data. Table
4 presents the response space features and values
used in this study.
Response features There are 12 different

features related to the responses:

• res_type, res_pers, res_number,
res_tense, res_entities,
res_sentiment. The feature res_type
has two values question and proposition,
which are intended to capture the query
responses and the propositional responses
respectively. We encode the person infor-
mation of the response with the feature
res_pers. The feature res_number
encodes the inflectional features of nouns in
the response (singular, plural). res_tense
records the time line in which the action in
the response occurs (present, future, past).
The feature res_pers, res_number, and
res_tense use a value empty wherever the
relevant lexical items are absent. Existence of
name entities or proper nouns in the response
is recorded with the feature res_entities
(yes, no). The last feature res_sentiment
is responsible for encoding the polarity of
verbs, adjectives, adverbs, and nouns in the
responses, with values positive, negative, and
neutral.

• rsp_aff encodes the presence of affirma-
tive word yes and no, we assign a value empty
if there is no such word. rsp_dntknow has
a value yes if there are phrases such as "I
don’t know", "dunno", "not sure", etc., and
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Feature Description Values
res_type query or propositional response question, proposition
res_pers person point of view in the response 1st, 2nd, 3rd, empty
res_number inflectional feature of nouns Sing, Plur, empty

res_tense verb tense in the response Pres, Fut, Past,
empty

res_entities presence of name entities yes, no

res_sentiment sentiment of the response positive, negative,
neutral

rsp_aff presence of affirmative words yes, no, empty

rsp_dntknow
presence of words indicating the ab-
sence of knowledge yes, no

rsp_dprel_discourse presence of "discoure" dependency yes, no
rsp_dprel_reparandum presence of "reparandum" dependency yes, no

rsp_dprel_mwe
different multiword epresion depen-
dency

compound, fixed, flat,
empty

rsp_num_content number of content words integer
ques_type wh-question or polar question what,which...,polar
ques_pers person point of view in the question 1st, 2nd, 3rd, empty
ques_number inflectional feature of nouns Sing, Plur, empty

ques_tense verb tense in the question Pres, Fut, Past,
empty

ques_entities presence of name entities yes, no

ques_sentiment sentiment of the question positive, negative,
neutral

ques_num_content number of content words integer

which_dem
presence of demonstative pronouns in
responses utterance to which questions yes, no

who_prs
presence of personal pronouns in re-
sponses utterance to who questions yes, no

where_adp
presence of POS-tag "ADP-adposition"
in responses to where questions yes, no

wh_discorse
presence of "discourse" dependency in
short responses to wh questions yes, no

repeated_words number of repeated words integer
common_content_words number of repeated common words integer
pos_sequence lenght of common POS sequence integer

Table 4: Features of response space and values

no otherwise. rsp_deprel_discourse
checks if there is a "discourse" depen-
dency relation in the response utterance.
rsp_deprel_reparandum looks for a
"reparandum" dependency relation in the re-
sponse utterance, which indicates disfluen-
cies in the utterance. rsp_deprel_mwe
encodes different dependency relations for
multi-word expressions, and it has four val-
ues: "compound", "fixed", "flat", and "empty".
Lastly, rsp_num_content presents the

number of content words in the response ut-
terance.

Question features We also use 7 dif-
ferent features to encode the properties of the
corresponding questions, namely, ques_type,
ques_pers, ques_number, ques_tense,
ques_entities, ques_sentiment,
and ques_num_content. The feature
ques_type is used to differentiate the various
types of wh- questions and polar questions.
The other 6 features are used in a same way

64
Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue,

August, 22-24, 2022, Dublin.



as the corresponding features in Response
features described above.
Question-Response features

The last 7 features, repeated_word and
pos_sequence, are the numerical features
which encode features related to both question
and response, and the similarities between the
responses and their corresponding questions. The
feature which_dem records the presence of
demonstrative pronouns in a response utterance
to a question with which ques_type. Similarly,
the feature who_prs records the presence of
personal pronouns in a response utterance to a
question with who ques_type, and the feature
where_adp records the presence of POS-tag
"ADP-adposition" in a response utterance to a
question with where ques_type. Besides, the
feature wh_discourse indicates the presence
of "discourse" dependency relation in short
responses (less than or equal to two words)
to any wh- questions. This feature aims to
capture utterances such as "Aha", "Well", "Erm",
"Mhm", etc, and they are usually classified as
Acknowledgment to wh- questions. The feature
repeated_word represents the number of
repeated words between responses and questions;
repeated_word shows the number of common
content words in questions and responses; the
feature pos_sequence records the length of the
longest sequence of PoS tags common to responses
and questions.

6.1.1 Experiment I: Classification with
Over-sampling Method on Full
Taxonomy

Data resampling is one of the most widely used
methods for dealing with the imbalanced data prob-
lem. In this method, training instances are modified
in order to produce a more balanced class distri-
bution. One advantage of resampling techniques
over other methods is that they are independent of
the classifiers (López et al., 2013). The resampling
techniques are mainly divided into two groups:

• Undersampling methods: this method
generates a subset of the original dataset by
deleting instances from the majority class.
Random undersampling is a very simple non-
heuristic method that randomly removes sam-
ples from the majority class. However, the
drawback of random undersampling is that it
may drop some potentially useful data that

could be important for the classification.

• Oversampling methods: this method
outputs a superset of the original dataset
through replicating instances from minority
classes. The non-heuristic simple random
oversampling method balances the class dis-
tribution by randomly making exact copies of
existing instances of the minority class. There-
fore, the disadvantage of random oversam-
pling is that it may cause overfitting.

In this study, we use the SVM-SMOTE
over-sampling algorithms in the
imbalanced-learn python package (Lemaître
et al., 2017). We do not consider using the under-
sampling method because we do not have a
huge amount of annotated data at this stage.
SVM-SMOTE is a special variant of SMOTE
algorithm (Chawla et al., 2003), which use an
SVM algorithm to detect sample to use for gener-
ating new synthetic samples. This over-sampling
algorithm resampled all response classes except
from the majority class – Direct Answers.

For the classical machine learning task, we use
the Support Vector Machine (SVM) classifier from
the Scikit-learn library (Pedregosa et al., 2011;
Buitinck et al., 2013). The Support Vector Clas-
sifier (SVC) internally always uses one-vs-one
(‘ovo’) as a multi-class strategy to train models.
However, we use the One-vs-Rest (’ovr’) to re-
turn the decision function of shape (n_samples,
n_classes) as all other classifiers. The One-vs-Rest
(’ovr’) method turns a multi-class classification
into one binary classification problem per class. In
addition, the balanced class-weights are used due
to the imbalanced characteristics of our data sets.

Evaluation metrics: we report the classification
results based on the precision, recall, and f1-score
for each response class. Besides, we also show
the average classification accuracy of all classes,
macro average scores, and also the weighted av-
erage scores of precision, recall, and f1-score. Fi-
nally, we also present the average accuracy score
resulting from 5-fold cross-validation, and also the
Area Under the Receiver Operating Characteris-
tic Curve (roc_auc_score) from prediction scores.
Again, we use the One-vs-rest configuration to com-
pute the AUC of each class against the rest. This
’ovr’ method is sensitive to class imbalance, so it is
more suitable for our imbalanced dataset.

Experimental results: Table 5 presents the clas-
sification performance of the SVM classifier on

65
Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue,

August, 22-24, 2022, Dublin.



Classes Precision Recall F1 Support
DA 0.73 0.90 0.81 593
IND 0.38 0.19 0.25 107
DP 0.27 0.60 0.37 5
CR 0.67 0.77 0.71 47
ACK 0.33 0.58 0.42 31
IGNORE 0.33 0.02 0.04 44
CHT 0.38 0.09 0.14 56
MOTIV 0.00 0.00 0.00 3
DPR 0.85 0.34 0.49 50
accuracy 0.68 936
macro avg. 0.44 0.39 0.36 936
weighted avg. 0.64 0.68 0.63 936
SVM cv scores 0.85
roc_auc_score 0.79

Table 5: Classification results of SVM classifier on the
full response space taxonomy with oversampling

the full response space taxonomy using the SVM-
SMOTE oversampling method. As shown in the
table, the SVM classifier achieved similar classi-
fication results as from the Bert model, in terms
of weighted f1-score (0.63 – 0.68) and the macro
f1-score (0.36 – 0.40) on the full response space
taxonomy. The SVM classifier also performed well
on some major response classes, such as Direct An-
swers (f1-score: 0.81) and Clarification Responses
(f1-score: 0.71). However, despite the relatively
high frequency of Indirect answers, both models
did not perform well on identifying these response
classes (f1-score: BERT - 0.32, SVM - 0.25). The
overall trend of the classification results for other
response class is also similar on both methods.
Namely, the response classes such as IGNORE,
MOTIV, and CHT are always the most difficult
classes for both SVM classifier and BERT mod-
els. Moreover, both models can correctly capture
nearly half the cases from Acknowledgments and
DPR classes. Therefore, we argue that the fea-
ture sets designed to capture syntactic and lexical
characteristics of responses and the corresponding
questions are useful for recognizing some response
classes, by merely using the most classical machine
learning algorithms.

In addition, we also report the average accu-
racy from 5-fold cross validation during the train-
ing, and also the final roc_auc_score for the SVM
classifier on the full taxonomy. The average accu-
racy from the cross-validation is 0.85%, and the
roc_auc score is 0.79, which indicates a very good
performance of our classifier. Since the roc_auc
score is not affected by the imbalanced distribu-
tion of each class in the dataset, we think that
roc_auc_score metric can better describe our model

Classes Precision Recall F1 Support
DA 0.72 0.89 0.79 595
IND 0.42 0.04 0.07 126
CR 0.69 0.83 0.76 41
Evasion 0.43 0.34 0.38 171
accuracy 0.67 933
macro avg. 0.57 0.52 0.50 933
weighted avg. 0.62 0.67 0.62 933
SVM cv scores 0.82
roc_auc_score 0.79

Table 6: Classification results of SVM classifier on the
coarser response space taxonomy with oversampling

on response space classification task with a highly
skewed dataset.

6.1.2 Experiment II: Classification with
Over-sampling method on a Coarser
Taxonomy

In the previous sections, we studied the automatic
classification of 9 different response classes as de-
scribed in Table 2. In this section, we are interested
in studying the classification performance of the
SVM classifier on a coarser response space taxon-
omy with only 4 distinct response classes, namely,
Direct Answers, Indirect Answers, Clarification
Responses, and Evasion.

As shown in Table 6, when classifying with a
coarser taxonomy, the SVM classifier achieved a
better macro average f1-score than on the full tax-
onomy (0.50 vs. 0.36). However, when compared
to the results achieved by the BERT model (see
Table 3) on the coarser taxonomy, the SVM model
resulted in a lower weighted average f1-score (0.62
vs. 0.72) and macro average f1-score (0.50 vs.
0.60). The average accuracy for the 5-fold cross-
validation while training is 0.82, and the roc_auc
score is 0.79, which indicates a good performance
of the SVM model. What is more, the overall
trend of the classification results for each response
class is similar to both the SVM model and the
BERT model. Both models achieved similar high
f1-scores for the Direct Answers, 0.79 and 0.85
respectively for the SVM and the BERT model.
The second-highest performance score goes to the
Clarification Responses on both models: f1-score
is 0.76, and this is where our SVM model outper-
forms the BERT model (f1-score is 0.67 for Clarifi-
cation Responses). However, the SVM model still
failed to capture Indirect Answers and returned a
0.07 f1-score for this class. This is much worse
than the f1-score of 0.30 achieved by the BERT
model. Finally, the Evasion response class also
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caused many difficulties for both models, which re-
sulted in f1-scores of 0.38 and 0.60 from the SVM
and BERT model.

To conclude, regardless of the full or the coarser
taxonomy, the DA response class is learned more
easily by both pre-trained BERT language model
and the classical machine learning algorithms.
Whereas Indirect Answers, IGNORE, and MOTIV
cause most difficulties for both models. In addition,
the SVM model outperforms the BERT model on
identifying Clarification Responses on this coarser
taxonomy. Besides, the similar classification trend
for each response class on both models suggests
that the carefully designed feature sets are useful
to capture the main response classes.

7 Conclusions and Future Work

We present a pilot study on the novel task of re-
sponse space classification of questions in dialogue.
We considered the classification results by the large
scale pre-trained BERT language model with raw
data (questions and responses) as baselines, and
conducted experiments with more classical ma-
chine learning algorithms (the SVM classifier from
the Scikit-learn library). We utilized 26 carefully
designed syntactic and lexical features on the SVM
classifier, which aim to capture characteristics of
responses and question. Since the class distribution
in our datasets is highly imbalanced, we first de-
ployed an over-resampling methods to mitigate the
imbalanced data problem. Then, we conducted two
groups of experiments respectively on both BERT
and SVM models: (1) with a fine-grained full re-
sponse space taxonomy with 9 unique response
classes, and (2) with a coarser taxonomy with only
4 main response classes. Finally, we compared the
classification results from both models and offered
detailed discussions regarding the differences and
similarities observed from two models.

The main contributions of this study are three-
fold: (1) To our knowledge, this is the first study
on the automatic classification of response space
of questions in dialogue. Such a classification task
is of great importance in the design of dialogue
systems, particularly systems that can be easily
adaptable across domains. (2) We designed 26 dif-
ferent features which help the classical machine
learning algorithms to correctly identify different
response classes; (3) We provided detailed discus-
sion of the learnability of various response classes
by the pre-trained language model and the classical

SVM classifier, and observed that the learnability
trend is closely in line with that achieved by the
human annotators in previous work.

However, we also acknowledge the limitations
of the current study and have some initial thoughts
for future studies. Firstly, we hope to scale-up
the current feature sets used for the SVM model
by designing more useful features in terms of syn-
tactic, semantic, and lexical relationships between
questions and responses. Secondly, since dialogues
are highly context-dependent interactions, we also
want to conduct experiments by adding features
pertaining to such aspects to the feature set, e.g.,
the number of common words between previous
utterances and questions/responses, the length of
the previous utterances etc. Thirdly, a detailed anal-
ysis of which features are more informative and
which are redundant can also be very useful for the
classification task. Lastly, more carefully created
features targeting Indirect Answers are necessary
to correctly classify this highly inference-based
response class.
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