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Abstract

Learning statistical regularities from the environment is ubiquitous across

domains and species. It has been argued to support the earliest stages of

language acquisition, including identifying and learning words from fluent speech

(word-segmentation). We ask how the Statistical Learning mechanisms involved

in word-segmentation interact with the memory mechanisms needed to

remember words, if they are tuned to specific learning situations. We show that,

when completing a memory recall task after exposure to continuous, statistically

structured speech sequences, participants track the statistical structure of the

speech stream, but hardly remember any items at all and initiate their

productions with random syllables (rather than word-onsets) despite being

sensitive to probable syllable transitions. Only discrete familiarization sequences

with isolated words produce memories of actual items. Conversely, Statistical

Learning predominantly operates in continuous speech sequences like those used

in earlier experiments, but not in discrete chunk sequences likely encountered

during language acquisition. Statistical Learning might thus be specialized to

accumulate distributional information, but dissociable from the (declarative)

memory mechanisms needed to acquire words.

Keywords: Statistical Learning; Declarative Memory; Predictive

Processing; Language Acquisition
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The specificity of sequential Statistical Learning: Statistical Learning

accumulates predictive information from unstructured input but is dissociable

from (declarative) memory

1 Introduction

The ability to learn statistical regularities from the environment is

remarkably widespread across species and domains (Aslin, Saffran, & Newport,

1998; Saffran, Aslin, & Newport, 1996; Hauser, Newport, & Aslin, 2001;

Kirkham, Slemmer, & Johnson, 2002; Toro, Trobalon, & Sebastián-Gallés, 2005;

Turk-Browne & Scholl, 2009; Chen & Ten Cate, 2015), and might support a wide

range of computations, especially during language acquisition (Aslin & Newport,

2012). However, the computational function of statistical learning is unclear. In

the context of speech segmentation, Statistical Learning might help learning

words from fluent speech (e.g., Aslin et al., 1998; Saffran et al., 1996), and thus,

presumably to store word candidates in (declarative) memory (Graf-Estes,

Evans, Alibali, & Saffran, 2007; Isbilen, McCauley, Kidd, & Christiansen, 2020).

Other authors suggest that Statistical Learning is important for predicting

events (Sherman & Turk-Browne, 2020; Turk-Browne, Scholl, Johnson, & Chun,

2010). Here, we suggest that Statistical Learning is critical for predicting speech

material and operates predominantly under conditions where prediction is

possible. However, we also suggest that Statistical Learning does not lead to

(declarative) memories of words, and that separate mechanisms are required to

form (declarative) memories of the words.
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1.1 Statistical Learning vs. declarative memory of words in fluent

speech

Speech is often thought to be a continuous signal (and often perceived as

such in unknown languages, but see below), and before learners can commit any

words to memory, they need to learn where words start and where they end.

They might rely on Transitional Probabilities (TPs) among syllables, that is, the

conditional probability of a syllable σi+1 given a preceding syllable σi,

P (σiσi+1)/P (σi). Relatively predictable transitions are likely located inside

words, while unpredictable ones straddle word boundaries. Early on, Shannon

(1951) showed that human adults are sensitive to such distributional

information. Subsequent work demonstrated that infants and non-human

animals share this ability (Saffran et al., 1996; Hauser et al., 2001; Kirkham et

al., 2002; Toro, Trobalon, & Sebastián-Gallés, 2005; Turk-Browne & Scholl, 2009;

Chen & Ten Cate, 2015), and that it might reflect simple associative mechanisms

such as Hebbian learning (Endress & Johnson, 2021).

Statistical Learning therefore supports predictive processing (Sherman &

Turk-Browne, 2020; Turk-Browne et al., 2010), that is, the ability to anticipate

stimuli and events based on current and past experience. This ability is critical

for language (Levy, 2008; Trueswell, Sekerina, Hill, & Logrip, 1999) and other

cognitive processes (Clark, 2013; Friston, 2010; Keller & Mrsic-Flogel, 2018).

However, while words are clearly stored in declarative Long-Term Memory (after

all, the point of knowing words is to “declare” them), statistical knowledge does

not imply the formation of such memory representations. In fact, after exposure

to sequences where some transitions are more likely than others, observers report

greater familiarity with high-TP items than with low-TP items, even when they

have never encountered either of them and thus could not have memorized them
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(because the items are played backwards with respect to the familiarization

sequence; Endress & Wood, 2011; Turk-Browne & Scholl, 2009; Jones & Pashler,

2007). Sometimes, observers even report greater familiarity with high-TP items

they have never encountered than with low-TP items they have heard or seen

(Endress & Langus, 2017; Endress & Mehler, 2009b).

Dissociations between Statistical Learning and declarative memory have

long been documented behaviorally (Graf & Mandler, 1984), developmentally

(Finn et al., 2016), and neuropsychologically (Cohen & Squire, 1980; Knowlton,

Mangels, & Squire, 1996; Poldrack et al., 2001; Squire, 1992), to the extent that

statistical predictions can impair declarative memory encoding in healthy adults

(Sherman & Turk-Browne, 2020). If Statistical Learning operates similarly in a

word-segmentation context as in other learning situations, one would expect it to

be dissociable from declarative Long-Term Memory, a view that is reinforced by

the suggestion that the format of the representations created by Statistical

Learning differs from that used for linguistic stimuli (Endress & Langus, 2017;

Fischer-Baum, Charny, & McCloskey, 2011; Miozzo, Petrova, Fischer-Baum, &

Peressotti, 2016).

In addition to possible dissociations between Statistical Learning and

declarative memory, it is also unclear how continuous fluent speech really is. In

fact, due to its prosodic organization, speech does not come as a continuous

signal but rather as a sequence of smaller units (Cutler, Oahan, & van

Donselaar, 1997; Nespor & Vogel, 1986; Shattuck-Hufnagel & Turk, 1996). This

prosodic organization is perceived in unfamiliar languages (Brentari, González,

Seidl, & Wilbur, 2011; Endress & Hauser, 2010; Pilon, 1981) and even by

newborns (Christophe, Mehler, & Sebastian-Galles, 2001). It might affect the

usefulness of Statistical Learning, because such speech cues tend to override
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statistical cues (Johnson & Jusczyk, 2001; Johnson & Seidl, 2009), and because

Statistical Learning primarily operates within rather than across major prosodic

boundaries (Shukla, Nespor, & Mehler, 2007; Shukla, White, & Aslin, 2011). As

a result, the learner’s segmentation task is not so much to integrate

distributional information over long stretches of continuous speech, but rather to

decide whether the correct grouping in prosodic groups such as “thebaby” is

“theba + by” or “the + baby” (though prosodic groups are often longer than just

three syllables; Nespor & Vogel, 1986).

1.2 Statistical learning in continuous sequences and discrete chunks

If Statistical Learning mainly supports predictive processing, it might also

operate predominantly under conditions that are conducive for prediction, and

associations among syllables might form more easily when the syllables are part

of a continuous sequence compared to when they are packaged into discrete

items (e.g., through prosodic phrasing); after all, longer, continuous sequences

provide more information on which predictions can be based than shorter

chunks. Preferential Statistical Learning in continuous sequences would be one of

numerous examples where Statistical Learning works better over some stimulus

classes than others. The classic example is taste aversion, where rats readily

associate tastes with sickness and external stimuli with pain but cannot associate

taste with pain or external stimuli with sickness (Garcia, Hankins, & Rusiniak,

1974; L. T. Martin & Alberts, 1979; Alberts & Gubernick, 1984); other examples

include associations of objects with landmarks vs. boundaries (Doeller & Burgess,

2008), associations among social vs. non-social objects (Tompson, Kahn, Falk,

Vettel, & Bassett, 2019), and associations among consonants vs. vowels (Bonatti,
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Peña, Nespor, & Mehler, 2005; Toro, Bonatti, Nespor, & Mehler, 2008).1

The hypothesis that Statistical Learning predominantly supports predictive

processing thus raises the possibility that it might thus operate predominantly in

continuous rather than discrete sequences. Conversely, discrete chunks might be

more conducive for the formation of declarative memories, because such chunks

have clear onsets and offsets, which appears to be a key requirement of the

memory representations of linguistic stimuli (Endress & Langus, 2017;

Fischer-Baum et al., 2011; Miozzo et al., 2016). The importance of discrete

chunks for word learning is support by the finding that a word-segmentation

model relying just on information at the edges of discrete chunks (in the form of

utterance boundaries) performed better than most other word-segmentation

models (Monaghan & Christiansen, 2010), and that statistical information does

not always lead to better performance when boundary information is provided

(Sohail & Johnson, 2016).

In fact, Statistical Learning is typically explored with continuous

sequences. Participants are familiarized with speech sequences consisting of

random concatenations of non-sense “words” (or equivalent units in other

modalities). As a result, syllables within words are more predictive of one

another (and have higher TPs) than syllable combinations that straddle word

boundaries. Following such a familiarization, (adult) participants typically

complete a two-alternative forced-choice recognition task, where they have to

choose between the words from speech stream and part-words. Part-words are

tri-syllabic items that straddle a word boundary. For example, if ABC and DEF

1 This is not to say that Statistical Learning evolved for specific computations; Statistical
Learning might still be a “spandrel” (Gould, Lewontin, Maynard Smith, & Holliday, 1979) that
evolved as a side effect of local neural processing and might undergo positive, negative or no
selection in different brain pathways.
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are two consecutive words, BCD and CDE are the corresponding part-words.

Participants tend to choose words over part-words, suggesting that they are

sensitive to the greater predictiveness (and TPs) of syllables within words.

However, such results still leave open the question of whether participants can

use this sensitivity to memorize words from fluent speech, and whether this

sensitivity would be present in discrete sequences.

There is some evidence that learners might process continuous speech

sequences differently from discrete ones (e.g., Endress & Bonatti, 2016;

Marchetto & Bonatti, 2015; Peña, Bonatti, Nespor, & Mehler, 2002). For

example, Peña et al. (2002) familiarized participants with continuous speech

streams as well as with discrete, “pre-segmented” speech streams, in which each

word was followed by a brief silence. The brief silences triggered additional

processes such as rule-like generalizations that were unavailable after continuous

familiarizations. Critically, the rule-like generalizations observed after

pre-segmented familiarizations might reflect memory processes. Endress and

Mehler (2009a) suggested that the role of the silences was to act as Gestalt-like

grouping cues that provided learners with the location of the word edges (i.e.,

onsets and offsets), and thus enabled generalizations based on those word-edges

(see also Glicksohn & Cohen, 2011; Morgan, Fogel, Nair, & Patel, 2019 for other

perceptual grouping effects in Statistical Learning). Given that the grouping

cues resulted in a sequence of discrete chunks, the grouping cues might also

support declarative memory processing.

1.3 The current experiments

Here, we explore the computational function of Statistical Learning in

word-segmentation. In Experiment 1, we ask if Statistical Learning leads to
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declarative memory of words. We exposed (adult) participants to the speech

stream from Saffran et al.’s (1996) classic word-segmentation experiment. The

speech stream consists of four non-sense words randomly concatenated into a

continuous speech sequence. As a result, TPs among syllables are higher within

words than across word-boundaries. We presented the stream either as a

continuous sequence (as in Saffran et al.’s (1996) experiments), or as a

pre-segmented sequence of words, with brief silences across word boundaries. As

mentioned above, these continuous vs. pre-segmented presentation modes trigger

different sets of memory processes (Endress & Bonatti, 2016; Marchetto &

Bonatti, 2015; Peña et al., 2002), but it is unknown if either of these processes

involves declarative memory. Following this familiarization, we simply asked

participants to recall what they remembered from the speech stream. In light of

the finding that participants in Statistical Learning tasks sometimes endorse

items they have never encountered (e.g., Endress & Wood, 2011; Turk-Browne &

Scholl, 2009; Jones & Pashler, 2007) and can endorse them over items they have

encountered (Endress & Langus, 2017; Endress & Mehler, 2009b), we expected

that participants would form declarative memories only after a pre-segmented

familiarization.

In Experiment 2, we asked whether Statistical Learning operates in smaller

chunks such as those that might be encountered due to the prosodic organization

of language, or only in longer stretches of continuous speech. Participants

listened to a speech sequence of tri-syllabic non-sense words. As in Experiment

1, the words were either pre-segmented (i.e., with a silence after each word) or

continuously concatenated.

For half of the participants, both the TPs and the chunk frequency was

higher between the first two syllables of the word than between the last two



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 11

syllables (TPs of 1.0 vs. .33). A Statistical Learner should thus split triplets like

ABC into an initial AB chunk followed by a singleton C syllable (hereafter

AB+C pattern). For the remaining participants, both the TPs and the chunk

frequency favored an A+BC pattern. To make the learning task as simple as

possible, the statistical pattern of the words was thus consistent for each

participant. Following this familiarization, participants heard pairs of AB and

BC items, and had to indicate which item was more like the familiarization

items. If Statistical Learning predominantly operates in continuous rather than

pre-segmented sequences, participants should split the triplets into their

underlying chunks only after continuous but not pre-segmented familiarizations.

To preview our results, in Experiment 1, we find that participants

remember words only after listening to pre-segmented speech sequences, but not

after listening to the continuous speech sequences usually employed in Statistical

Learning tasks. Conversely, in Experiment 2, participants predominantly track

TPs in continuous speech sequences, but less so in pre-segmented sequences.

2 Experiment 1: Do learners remember items in a Statistical

Learning task?

In Experiment 1, we asked if participants would remember the items that

occurred in a speech stream. Adult participants listened to the artificial

languages from Saffran et al.’s (1996) Experiment 2 with 8-months-old infants,

except that, to increase the opportunity for learning the statistical structure of

the speech stream, we doubled the exposure to 90 repetitions of each word. The

languages comprised four tri-syllabic words, with a TP of 1.0 within words and

0.33 across word boundaries. The words were presented in a continuous stream or

as a pre-segmented word sequence. We ran a lab-based version of the experiment
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(Experiment 1a) and an online replication with a larger sample size (Experiment

1b). As the results of both experiments were similar, we present them jointly.

Following a retention interval, participants had to repeat back the words

they remembered from the speech stream. Lab-based participants responded

vocally, while online participants typed their answer into a comment field.

Finally, participants completed a recognition test during which we pitted words

against part-words. Part-words are tri-syllabic items that straddle a

word-boundary. For example, if ABC and DEF are two consecutive words, BCD

and CDE are the corresponding part-words. If participants reliably choose words

over part-words, they track TPs.

2.1 Materials and methods

2.1.1 Participants. As we had no prior expectation about the effect

size, we targeted a sample of at least 30 participants for each of the conditions

(i.e., continuous vs. pre-segmented × Language 1 vs. Language 2, see below) in

the (laboratory-based) Experiment 1a. This number was chosen because it is

realistic in the time-frame available for a third-year honors project. In the

(online) Experiment 1b, we tested 50 participants per condition. Participants

reported to be native speakers of English, but we did not further assess their

English proficiency. At least in Experiment 1a, participants were most likely

exposed to English from childhood, as the experiment took place in London, UK,

and the experimenters did not notice any clear non-native accents.

To reduce performance differences between the pre-segmented and the

continuous familiarization conditions, participants were excluded from analysis if

their accuracy in the recognition test was below 50% (N = 8 in Experiment 1a;

N = 11 in Experiment 1b). Another 11 participants were excluded from
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Experiment 1b because parsing their productions took an excessive amount of

computing time, though their productions did not seem to resemble the

familiarization items in the first place. In Experiment 1b, once the final sample

of participants in the continuous condition was established, we randomly

removed participants from the pre-segmented condition to equate the number of

participants across the conditions. (This was not necessary in the

within-participant design of Experiment 1a.) The final sample included 26

participants in the lab-based version (Experiment 1a), and 152 in the online

version (Experiment 1b). Demographic information is given in Table 1.

Table 1
Demographics of the final sample in Experiments 1 and 2. In Experiment 1a, the
(lab-based) participants completed both segmentation conditions. In Experiment
2b, we conducted two independent replications with the same American English
voice due to unexpected results with the British English voice in Experiment 2a.

Sequence Type Voice N Females Male Age (M ) Age (range)
Experiment 1a: Lab-based recall experiment

continuous us3 13 13 0 19.2 18-22
pre-segmented us3 13 13 0 19.2 18-22

Experiment 1b: Online recall experiment
continuous us3 76 26 50 30.7 18-71
pre-segmented us3 76 15 61 28.9 18-62

Experiment 2a – Lab-based segmentation experiment (British English voice)
pre-segmented en1 30 22 8 25 18-42
continuous en1 30 20 10 23.9 18-45

Experiment 2b – Lab-based segmentation experiment (American English voice)
pre-segmented us3 30 18 12 26.3 18-43
continuous us3 (1) 32 26 6 20.1 18-44
continuous us3 (2) 30 20 10 23.2 18-36

2.1.2 Materials. We re-synthesized the languages used in Saffran et

al.’s (1996) Experiment 2. The four words in each language are given in Table 2.

Each word was composed of three syllables, which were composed of two
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segments in turn. Stimuli were synthesized using the us3 (male American

English) voice2 of the mbrola synthesizer (Dutoit, Pagel, Pierret, Bataille, & van

der Vreken, 1996), at a constant F0 of 120 Hz and at a rate of 216 ms per

syllable (108 ms per phoneme).

Table 2
Languages used Experiment 1. The words are the same as in Experiment 2 in
Saffran et al. (1996).

L1 L2
pabiku bikuti
tibudo pigola
daropi tudaro
golatu budopa

During familiarization, words were presented 45 times each. We generated

random concatenations of 45 repetitions of the 4 words, with the constraint that

words could not occur in immediate repetition. For continuous streams, each

randomization was then synthesized into a continuous speech stream (with no

silences between words) using mbrola (Dutoit et al., 1996) and then converted to

mp3 using ffmpeg (https://ffmpeg.org/). For pre-segmented streams, words

were synthesized in isolation. Each randomization was then used to concatenate

the words into a pre-segmented stream, with silences of 222 ms between words,

which was then converted to mp3. Streams were faded in and out for 5 s using

sox (http://sox.sourceforge.net/). For continuous streams, this yielded a

stream duration of 1 min 57 s; for segmented streams, the duration was 2 min

37. Syllable transitions had TPs of 1.0 within words and 0.33 across word

boundaries. We created 20 versions of each stream with different random orders

2 Experiment 1 was chronologically carried out after Experiment 2, but we changed the order
for readability. We chose the us3 voice because the alternative en1 (British English) voice
introduced artifacts in Experiment 2a.

https://ffmpeg.org/
http://sox.sourceforge.net/
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of words.

As the role of the silences in the pre-segmented stream was to create

clearly identifiable chunks, the silence duration was chosen to result in clearly

perceptible syllable groups (according to the experimenters’ perception). Other

investigations with pre-segmented material used shorter silences (e.g., Peña et

al., 2002), longer ones (e.g., Sohail & Johnson, 2016; Endress & Mehler, 2009a)

or natural prosodic phrasing (Shukla et al., 2007; Seidl & Johnson, 2008).

Relatedly, other experiments mimicking the prosodic organization of speech used

natural prosodic phrasing (Shukla et al., 2007; Seidl & Johnson, 2008) or

grouped several “words” together using silences (Sohail & Johnson, 2016). In the

light of Experiment 2, where we ask if Statistical Learning can be used to break

up small prosodic groups such as “thebaby” into their underlying words (i.e.,

“the+baby”), we follow Peña et al. (2002) and present silences after each word

instead of inducing longer groupings.

For the online Experiment 1b, the speech streams were combined with a

silent video with no clear objects to increase attention to the stimuli. We used a

panning of the Carina nebula, obtained from

https://esahubble.org/videos/heic0707g/. The video was combined with

the speech stream using the muxmovie utility.

2.1.3 Apparatus. The lab-based Experiment 1a was run using

Psyscope X (http://psy.ck.sissa.it) in a quiet room. The online

Experiment 1b was run on https://testable.org.

2.1.4 Procedure.

2.1.4.1 Familiarization. Participants were informed that they would

be listening to an unknown language and that they should try to learn the words

from that language. The familiarization stream was presented twice, leading to a

https://esahubble.org/videos/heic0707g/
http://psy.ck.sissa.it
https://testable.org
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total familiarization duration of 3 min 53 for the continuous streams and 5 min

13 for the segmented streams. They could proceed to the next presentation of

the stream by pressing a button.

In the online Experiment 1b, participants watched a video with no clear

objects during the familiarization.

Following the familiarization, there was a 30 s retention interval. In both

Experiment 1a and 1b, participants were instructed to count backwards from 99

in time with a metronome beat at 3s / beat. Performance was not monitored.

2.1.4.2 Recall test. Following the retention interval, participants

completed the recall test. In Experiment 1a, participants had 45 s to repeat back

the words they remembered; their vocalizations were recorded using ffmpeg and

saved in mp3 format. In Experiment 1b, participants had 60 s to type their

answer into a comment field, during which they viewed a progress bar.

2.1.4.3 Recognition test. Following the recall test, participants

completed a recognition test during which we pitted words against part-words.

The (correct) test words for Language 1 (and part-words for Language 2) were

/pAbiku/ and /tibudO/; the (correct) test words for Language 2 (and

part-words for Language 1) were /tudArO/ and /pigOlA/. These items were

combined into 4 test pairs.

2.1.5 Analysis strategy. As we used performance in the recognition

test to filter participants who might not have paid attention to the stimuli,

performance in the recognition test in the final sample is not representative of

the whole sample, and is thus not analyzed. Therefore, we focus on the

participants’ recall responses.

In brief, the responses were transformed using a set of substitutions rules

to allow for misperceptions (e.g., confusion between /b/ and /p/) or
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orthographic variability (e.g., ea and ee both reflect the sound /i/). Finally, we

selected the best matches (according to criteria defined in the next section) to

the familiarization stimuli.

In Experiment 1a, the participants’ verbal responses were recorded and

transcribed by two independent observers. Disagreements were resolved by

discussion. Online participants typed their responses directly into a comment

box.

We use likelihood ratios to provide evidence for the various null

hypotheses. Following Glover and Dixon (2004), we fit the participant averages

to (i) a linear model comprising only an intercept and (ii) the null model fixing

the intercept to the appropriate baseline level, and evaluated the likelihood of

these models after correcting for the difference in the number of parameters

using the Bayesian Information Criterion.

2.1.5.1 Processing of responses. Each recall response was analyzed

in five steps. First, we applied pre-segmentation substitution rules to make the

transcriptions more consistent (see Table 3, “before segmentation”, for a

complete list of substitution rules). For example, ea (presumably as in tea) was

replaced with i. These substitutions were not considered when calculating the

derivation length (see below).

Second, responses were segmented into their underlying units. If the

response did not contain any commas (,) or semicolons (;), any spaces in the

response were used to delineate units. For example, if the response was “tudaro

pigola”, tudaro and pigola would be accepted as units. If a response contained a

semicolon or comma, these were used to delineate units. For each of the resulting

units, we verified if they contained additional spaces. If they did, these spaces

were removed if further segmenting the units based on the spaces resulted in one
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or more single-syllable units (operationalized as a string with a single vowel);

otherwise, the units were further sub-divided based on the spaces. The rationale

for this algorithm is that responses such as bee coo tee,two da ra,bout too pa were

likely to reflect the words bikuti, tudaro and budopa.

Third, we removed geminate consonants and applied another set of

substitution rules to take into account possible misperceptions (see Table 3). For

example, we treated the voiced and unvoiced variety of stop consonants as

interchangeable. Specifically, for each “surface” form produced by the

participants, we generated candidate “underlying” forms by recursively applying

all substitutions rules and keeping track of the number of substitution rules that

were applied to derive an underlying form from a surface form. For each unique

candidate underlying form, we kept the shortest derivation.

In some cases, these rules result in multiple possible matches. For example,

the transcription rapidala might correspond to /rOpidAlA/ or /rOpidOlA/. In

such cases, we apply the following criteria (in the following order) to decide

which match to choose.

1. Choose the option leading to more or longer chunks that are attested in

the speech stream.

2. If multiple options lead to chunks of equal length, choose the option

requiring fewer changes with respect to the original transcription.

Fourth, for each candidate underlying form, we identified the longest

matching string in the familiarization stream. The algorithm first verified if a

form was contained in a speech stream starting with an A, B or C syllable; if the

underlying form contained unattested syllables, one syllable change was allowed

with respect to the speech streams. If no match was found, two sub-strings were

created by clipping the first or the last syllable from the underlying form, and
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the search was repeated recursively for each of these sub-strings until a match

was found. We then selected the longest match for all substrings.

Fifth, for each surface form, we selected the underlying form among the

candidate underlying forms using three criteria:

1. The winning underlying form had the maximal number of attested syllables

among candidate underlying forms;

2. The winning underlying form had the maximal length among candidate

underlying forms;

3. The winning underlying form had the shortest derivation among candidate

underlying forms.

The criteria were applied in this order.

2.1.5.2 Measures of interest. We computed various properties for

each underlying form, given the “target” language the participants had been

exposed to. All measures provided in the raw data are described in Table S1.

For each underlying form, we calculated:

1. the number of syllables;

2. whether it was a word from the target language;

3. whether it was a concatenation of words from the target language;

4. whether it was a single word or a concatenation of words from the target

language (i.e., the disjunction of (2) and (3));

5. whether it was a part-words from the target language;

6. whether it was a complete concatenation of part-words from the target

language (i.e., the number of syllables of the item had to be a multiple of

three, without any unattested syllables);

7. whether it was a single part-word or a concatenation of part-words from

the target language;



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 20

8. whether it was high-TP chunk (i.e., a word with the first or the last syllable

missing, after removing any leading or trailing unattested syllables);

9. whether it was a low-TP chunk (i.e., a chunk of the form CiAj, after

removing lead or trailing unattested syllables;

10. whether it had a “correct” initial syllable;

11. whether it had a “correct” final syllable;

12. whether it was part of the speech stream (i.e., the disjunction of being an

attested syllable, being a word or a concatenation thereof, being a

part-word or a concatenation thereof, being a high-TP chunk or a low-TP

chunk);

13. the average forward TP of the transitions in the form;

14. the expected forward TP of the form if form is attested in the speech

stream (see below for the calculation);

15. the average backward TP of the transitions in the form.

2.1.5.3 Expected TPs. For items that are correctly reproduced from

the speech stream, the expected TPs depend on the starting position. For

example, the expected TPs for items of at least 2 syllables starting on an initial

syllable are (1, 1, 1/3, 1, 1, 1/3, 1, 1, 1/3, . . . ); if the item starts on a

word-medial syllable, these TPs are (1, 1/3, 1, 1, 1/3, 1, 1, 1/3, 1, . . . ).

In contrast, the expected TPs for a random concatenation of syllables are

the TPs in a random bigram. For an A or a B syllable, there is only one (out 12)

non-zero TP continuation with a TP of 1.0, and the 11 other continuations have

a TP of zero. As a result, the random TP is 1.0 × 1/12 + 0.0 × 11/12 = 1/12.

For a C syllable, there are 3 (out of 12) possible continuations with a TP of 1/3;

the other 9 continuations have a TP of zero. As a result, the random TP is

1/3 × 3/12 + 0.0 × 9/12 = 1/12. On average, the random TP is thus
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(1/12 + 1/12 + 1/12)/3 = 1/12 ≈ .083.

2.1.5.4 Exclusion of responses and participants. There was a

considerable number of recall responses containing unattested syllables. The

complete list of unattested items is in segmentation_recall_unattested.xlsx

in the supplementary data. Unattested items are items that are not words,

part-words (or concatenations thereof), high- or low-TP chunks, or a single

syllable. However, it is unclear if these unattested syllables reflect misperceptions

not caught by our substitution rules, typos, memory failures or creative

responses. This makes it difficult to analyze these responses. For example, the

TPs from and to an unattested syllable are zero. However, if the unattested

syllable reflects a misperception or a typo, the true TP would be positive, and

our estimates would underestimate the participant’s Statistical Learning ability.

Here, we decided to include items with unattested syllables to avoid

excluding an excessive number of participants. However, the results after

removing such items are essentially identical, with the exception of the TPs in

the participants’ responses. Given that TPs to and from unattested syllables are

zero by definition, TPs after removal of responses containing unattested syllables

are much higher.

We also decided to remove single syllable responses, as it is not clear if

participants volunteered such responses because they thought that individual

syllables reflected the underlying units in the speech streams or because they

misunderstood what they were ask to do.

2.2 Results

We present the results in three steps. First, we report some general

measures of the recall items to show that participants engage in the task and



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 22

track TPs in both the continuous and the pre-segmented condition. Second, we

ask whether participants are more likely produce words than part-words. Third,

we ask whether participants know where words start and where they end.

2.2.1 General measures: Do participants engage in the task?

As shown in Table 4 and Figures 1a and b, participants produced about 4 items.

Neither the number of items produced nor their lengths differed across the

segmentation conditions. Critically, and as shown in Table 4 and Figures 2a and

b, forward and backward TPs in the participants’ responses were significantly

greater than the chance level of .083 in both segmentation conditions. These

TPs likely underestimate the participants’ actual performance, as we included

responses with unattested syllables that might reflect misperceptions (and thus

lower TPs); after removing such responses, TPs in the participants’ responses

were about twice as large. Participants were thus clearly sensitive to the TPs in

the speech stream.
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Figure 1 . Number of items produced and number of syllables per item in the
recall phase of Experiments 1a (top) and 1b (bottom).
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Figure 2 . Forward and backward TPs in the participants’ productions in the
recall phase of Experiments 1a (top) and 1b (bottom). The dotted line
represents the chance level for a randomly ordered syllable sequence.
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Table 3
Substitution rules applied to the participants vocalizations before and after the
input was segmented into chunks. The patterns are given as Perl regular
expressions. Substitutions prior to segmentation were intended to make
transcriptions more consistent, and were not counted when calculating the
derivation length. Substitutions after segmentation allowed for misperceptions,
and were counted when calculating derivation length. These substitution rules
were motivated by three observations: (1) /O/ might be perceived as /A/. (2)
Voiced and unvoiced consonants can be confused; that is /g/ can be confused with
/k/, /d/ with /t/ and /b/ and /p/. (3) /b/ might be perceived as /v/.

Before segmentation After segmentation
Pattern Replacement Pattern Replacement
\.{3,} u o
- v b
2 tu p b
two tu b p
([aeou])ck \1k t d
ar([,\s+]) a\1 d t
ar$ a k g
tyu tu g k
ph f a o
th t
qu k
ea i
ou u
aw a
ai a
ie i
ee i
oo u
e i
c k
w v
y i
h



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 25

We next examined the production of two-syllable chunks. Such chunks can

be either high-TP chunks (if they are part of a word) or low-TP chunks (if they

straddle a word boundary). For example, with two consecutive words ABC and

DEF, the high-TP chunks are AB, BC, . . . , while the low-TP chunk is CD. As a

result, two-syllable items have a 66% probability of being a high-TP chunk. As

shown in Figure 3b, the proportion of high-TP among chunks high- and low-TP

chunks exceeded chance in both the pre-segmented condition and the continuous

condition n Experiment 1b (though not in the continuous condition of

Experiment 1a), with a significantly higher proportion in the pre-segmented

versions. These results thus confirm that participants are sensitive to TPs or

high frequency chunks (which are confounded in the current design).
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Figure 3 . Analyses of the participants’ productions in the recall phase of
Experiments 1a (top) and 1b (bottom). (a) Proportion of words among words
and part-words. The dotted line represents the chance level of 50% in a
two-alternative forced-choice task, while the dashed line represents the chance
level of 33% that an attested 3 syllable-chunk is a word rather than a part-word.
(b) Proportion of high-TP chunks among high- and low-TP chunks. The dashed
line represents the chance level of 66% that an attested 2 syllable-chunk is a
high-TP rather than a low-TP chunk.
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Figure 4 . Number and proportion (among vocalizations) of words and
part-words in the recall phase of Experiments 1a (top) and 1b (bottom).

2.2.2 Are participants more likely to produce words rather than

part-words? We now turn to the question of whether a sensitivity to TPs
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implies memory for words. We address this issue in two ways, by using the

traditional contrast between words and part-words and by turning to the

question at the heart of word segmentation — do participants know where words

start and where they end?

The traditional analysis of word segmentation experiments relies on the

contrast between words and part-words. As mentioned above, part-words are

tri-syllabic items that straddle a word-boundary. We thus calculated the

proportion of words among words and part-words recalled by the participants. If

participants faithfully produce trisyllabic sequences from the stream, they can

start the sequences on the first, second or third syllable of a word, but only the

first possibility yields a word rather than a part-word. As a result, if participants

initiate their productions with a random syllable, a third of their productions

should be words.

As shown in Table 4 and in Figure 3a, the proportion of words among

words and part-words was close to 100% in the pre-segmented conditions, but

did not differ from the chance level of 33% in the continuous conditions.

Likelihood ratio analysis suggests that, in the continuous condition of

Experiment 1b, participants were 3.5 times more likely to perform at the chance

level of 33% than to perform at a level different from chance; in Experiment 1a,

the likelihood ratio was 2.6. These results thus suggest that participants in the

continuous condition initiate their productions at random positions in the

stream, and that they do not remember any word forms.

However, inspection of Figure 3a shows that the distribution in the

continuous condition is bimodal, with some participants producing only words,

and others producing only part-words. Such a behavior can arise if participants

pick a syllable as their starting-point, and segment the rest of the stream
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accordingly. If they happen to pick a word-initial syllable, they will produce only

words; if they pick the second or the third syllable of a word, all subsequent

items will be part-words.

Assuming that the number of participants producing words vs. part-words

is binomially distributed, we calculated the likelihood ratio of a model where

learners identify word boundaries (and should produce words with probability 1),

and a model where they track TPs and initiate productions at random positions

(and should produce words with a probability of 1/3). As shown in SOM3, the

likelihood ratio in favor of the first model is 3NW if participants produce no

part-words (i.e., after a pre-segmented familiarization), where NW is the number

of participants producing words; otherwise, the likelihood ratio in favor of the

second model is infinity. Given that the overwhelming majority of participants

produce words only after a pre-segmented familiarizations, these results thus

suggest that, despite their ability to track TPs, participants initiate productions

at random positions in the sequence, and thus do not remember statistically

defined words.

However, as shown in Figure 4, these results might be misleading because,

in the continuous condition, many participants produce neither words nor

part-words. In fact, on average, they produce only .4 words and part-words

combined, respectively. (In the pre-segmented condition, most participants

produce at least one word, with an average of 1.26.)

We thus turn to the question of whether participants know where words

start and end, asking if participants produce correct initial and final syllables.

2.2.3 Do participants know where words start and where they

end? If participants use Statistical Learning to remember words, they should

know where words start and where they end. In contrast, if they just track TPs,
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they should initiate the responses with random syllables. As there are four words

with one correct initial and final syllable each, and 12 syllables in total,

4/12 = 1/3 of the productions should have “correct” initial syllables, and 1/3

should have correct final syllables. Given that participants tend to produce

high-TP two-syllable chunks (i.e., AB and BC rather than CD chunks), the

actual baseline level is somewhat higher.3 However, to evaluate the group

performance, we keep the baseline of 1/3.
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Figure 5 . Analyses of the participants’ productions in the recall phase of
Experiments 1a (top) and 1b (bottom). (a) Proportion of productions with
correct initial syllables and (b) with correct final syllables. The dotted line
represents the chance level of 33%.

As shown in Table 4 and Figure 5a and b, participants produced items

with correct initial or final syllables at greater than chance level only in the

pre-segmented conditions, but not in the continuous conditions. In the

continuous condition of Experiment 1b, the likelihood ratio in favor of the null

3 For example, participants in the continuous condition produce about 75% high-TP chunks; if
they initiate their productions with high-TP chunks, one would expect them to produce about
75%/2 = 3/8 rather than 1/3 items with correct initial syllables.
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hypothesis was 0.785 for initial syllables and 4.06 for final syllables; in

Experiment 1b, the likelihood ratios are 3.61 and 2.14, respectively. While it is

possible that performance in the continuous condition might exceed the

chance-level of 1/3 with more than the 78 participants currently included, the

actual chance-level is somewhat higher (about 38.4%). Critically, only 42% of

the productions have a correct initial syllable, which is unexpected if

participants knew where words start and where they end. Together with the

finding that the overwhelming majority of participants produce no word at all,

these results thus suggest that TPs do not allow learners to reliably detect onsets

and offsets of words.

Table 4
Main analyses pertaining to the productions as well as test against their chances
levels in the recall phase of Experiments 1a and 1b. The p value in the rightmost
column reflects a Wilcoxon test comparing the continuous and the pre-segmented
conditions.

Continuous Pre-segmented p(continuous vs. pre-segmented)
Number of items

lab-based (Exp. 1a) M= 4.23, SE= 0.756, p= 0.0016 M= 4.23, SE= 0.818, p= 0.00152 0.812
online (Exp. 1b) M= 4.03, SE= 0.292, p= 3.17e-14 M= 3.25, SE= 0.202, p= 2.74e-14 0.099

Number of syllables/item
lab-based (Exp. 1a) M= 3.79, SE= 0.421, p= 0.0016 M= 2.97, SE= 0.0246, p= 0.0007 0.026
online (Exp. 1b) M= 2.65, SE= 0.0869, p= 2.29e-14 M= 2.93, SE= 0.0364, p= 1.04e-15 < 0.001

Forward TPs
lab-based (Exp. 1a) M= 0.301, SE= 0.0702, p= 0.0107 M= 0.634, SE= 0.092, p= 0.00159 0.006
online (Exp. 1b) M= 0.397, SE= 0.0316, p= 6.26e-12 M= 0.583, SE= 0.04, p= 3.82e-13 0.001

Backward TPs
lab-based (Exp. 1a) M= 0.301, SE= 0.0702, p= 0.0107 M= 0.634, SE= 0.092, p= 0.00159 0.006
online (Exp. 1b) M= 0.397, SE= 0.0316, p= 6.26e-12 M= 0.583, SE= 0.04, p= 3.82e-13 0.001

Proportion of High-TP chunks among High- and Low-TP chunks
lab-based (Exp. 1a) M= 0.75, SE= 0.289, p= 0.85 (vs. 2/3) M= 1, SE= 0, p= 0.0006 (vs. 2/3) 1.000
online (Exp. 1b) M= 0.767, SE= 0.0459, p= 0.00154 (vs. 2/3) M= 0.97, SE= 0.0187, p= 6.75e-13 (vs. 2/3) < 0.001

Proportion of words among words and part-words (or concatenations thereof)
lab-based (Exp. 1a) M= 0.321, SE= 0.153, 0.798 (vs. 1/3) M= 1, SE= 0, p= 0.0006 (vs. 1/3) 0.034
online (Exp. 1b) M= 0.417, SE= 0.105, p= 0.189 (vs. 1/3) M= 1, SE= 0, p= 2.08e-13 (vs. 1/3) < 0.001

Proportion of items with correct initial syllables
lab-based (Exp. 1a) M= 0.333, SE= 0.105, p= 0.856 M= 0.809, SE= 0.0694, p= 0.00186 0.016
online (Exp. 1b) M= 0.419, SE= 0.0392, p= 0.0864 M= 0.738, SE= 0.0387, p= 1.58e-11 0.000

Proportion of items with correct final syllables
lab-based (Exp. 1a) M= 0.456, SE= 0.125, p= 0.5 M= 0.818, SE= 0.0829, p= 0.00222 0.025
online (Exp. 1b) M= 0.386, SE= 0.043, p= 0.456 M= 0.7, SE= 0.0437, p= 4.14e-10 0.000
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2.3 Discussion

Experiment 1 provided the first direct test of the contents of the

participants’ (episodic or semantic) declarative memory after exposure to a

Statistical Learning task. The results suggest that, even when participants

successfully track statistical information, they remember familiarization items

only when familiarized with a pre-segmented sequence. In contrast, when

familiarized with a continuous sequence, their productions start with random

syllables rather than actual word onsets. Given that the memory representations

of linguistic items are based on their initial and final syllables (Endress &

Langus, 2017; Fischer-Baum et al., 2011; Miozzo et al., 2016), this result thus

suggests that Statistical Learning did not lead to the creation of declarative

memory representations.

Contrary to this conclusion, some authors suggest that Statistical Learning

might lead to declarative memories for chunks (Graf-Estes et al., 2007; Hay,

Pelucchi, Graf Estes, & Saffran, 2011; Isbilen et al., 2020). Such experiments

generally proceed in two phases. During a Statistical Learning phase,

participants are exposed to some statistically structured sequence. Then, they

are exposed to items presented in isolation, and show some processing advantage

for isolated high-probability items compared to isolated low-probability items.

However, we proposed that such experiments have a two-step explanation that

does not involve declarative memory (Endress & Langus, 2017). First, during

the Statistical Learning phase, participants acquire statistical knowledge without

remembering any specific items. When experimenters subsequently provide

participants with isolated chunks, the accumulated statistical knowledge

facilitates processing of the experimenter-provided chunks (e.g., due to predictive

processing), without these chunks having been acquired before being supplied by
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the experimenter. In contrast to such indirect designs, we provide a direct

measure of declarative knowledge of sequence items, and show that participants

do not form declarative memories of sequence items unless the sequence is

pre-segmented.

3 Experiment 2: Is Statistical Learning available in both continuous

and pre-segmented speech ?

Experiment 1 suggests that participants do not form declarative memory

traces of words when the only available cues are statistical in nature. In

contrast, they readily form declarative memories when items are pre-segmented.

These results do not imply that Statistical Learning might not play a

critical role in word segmentation. As mentioned above, speech is prosodically

organized (Cutler et al., 1997; Nespor & Vogel, 1986; Shattuck-Hufnagel & Turk,

1996), and a learner’s segmentation task is not so much to integrate

distributional information over long stretches of continuous speech, but rather to

decide whether the correct grouping in prosodic groups such as “thebaby” is

“theba + by” or “the + baby”. In principle, Statistical Learning might be well

suited to this task. In line with the two-step explanation of Graf-Estes et al.’s

(2007), Hay et al.’s (2011), Isbilen et al.’s (2020) experiments above, implicit

knowledge of statistical regularities might help learners acquire words more

effectively once (prosodic) segmentation cues are given (but see e.g. Ngon et al.,

2013; Sohail & Johnson, 2016).

We test this issue in Experiment 2. Participants listened to a speech

sequence of tri-syllabic non-sense words. For half of the participants, both the

TPs and the chunk frequency were higher between the the first two syllables of

the word than between the last two syllables. We thus expected learners to split
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a triplet like ABC into an AB+C pattern. For the remaining participants, both

the TPs and the chunk frequency favored an A+BC pattern. In the

pre-segmented condition, the words were presented separated from each other

and with a silence after each word. In the continuous condition, they were

continuously concatenated. Following this familiarization, participants heard

pairs of AB and BC items and had to indicate which item was more like the

familiarization items. In Experiment 2a, stimuli were synthesized with the en1

(British English male) voice, though this voice turned out to produce artifacts in

the continuous stream. In Experiment 2b, stimuli were synthesized using the us3

(American English male) voice.

If Statistical Learning allows learners to extract “correct” syllable

groupings, they should recognize high-frequency chunks after both continuous

and pre-segmented familiarizations. In contrast, if Statistical Learning

predominantly supports predictive processing (Sherman & Turk-Browne, 2020;

Turk-Browne et al., 2010), participants should extract high frequency groupings

predominantly after continuous familiarizations in the continuous condition.

3.1 Material and Methods

We prepared two versions of Experiment 2, differing in the voice used to

synthesize the stimuli. In Experiment 2a, we used a British English male (en1)

voice. In Experiment 2b, we used an American English male (us3) voice. Both

experiments were lab-based.

3.1.1 Participants. Participants were recruited from the City,

University London participant pool and received course credit or monetary

compensation for their time. We targeted 30 participants per experiment (15 per

language). This number was chosen because it is realistic in the time-frame
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available for a third-year honors project. Participants reported to be native

speakers of English, but we did not assess their English proficiency. However,

participants were most likely exposed to English from childhood, as the

experiment took place in London, UK, and the experimenters did not notice any

clear non-native accents in most participants and excluded the few participants

with non-native accents from analysis. The final demographic information is

given in Table 1. In Experiment 2a, an additional 3 participants took part in the

experiment but were not retained for analysis because they were much older

than the rest of the sample (N = 3) or because they had a noticeable non-native

accent N = 1. In Experiment 2b, an additional six participants were excluded

from analysis because they had taken part in a prior version of this experiment

(N = 4), were much older than the rest of our sample (N = 2), or used their

phone during the experiment or were visibly inattentive (N = 2).

3.1.2 Design. Participants were familiarized with a sequence of

tri-syllabic words. In Language 1, both the TPs and the chunk frequency were

higher in the bigram formed by the first two syllables than in the bigram formed

by the last two syllables. As a result, a Statistical Learner should split a triplet

like ABC into an initial AB chunk followed by a singleton C syllable (hereafter

AB+C pattern). In Language 2, both the TPs and the chunk frequency favored

an A+BC pattern. The basic structure of the words is shown in Table 5.

As a result, in Language 1, the first bigram has a (forward and backward)

TP of 1.0, while the second bigram has a (forward and backward) TP of .33. In

contrast, in Language 2, the first bigram has a (forward and backward) TP of

.33, while the second bigram has a (forward and backward) TP of 1.0. Likewise,

the initial bigrams were three times as frequent as the final ones for Language 1,

while the opposite holds for Language 2.



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 35

We asked whether participants would extract initial bigrams or final

bigrams. The test items are given in Table 5.

3.1.3 Stimuli. Stimuli in Experiment 2a were synthesized using the

en1 (British English male) voice from mbrola (Dutoit et al., 1996). However, as

discussed below, it turned out to be of relatively low quality and introduced

artifacts in the data. Stimuli in Experiment 2b were synthesized using the us3

voice (American English male) voice from mbrola (Dutoit et al., 1996).

Segments had a constant duration of 60 ms (syllable duration 120 ms) with

a constant F0 of 120 Hz. These values were chosen to match recordings of

natural speech that were intended to be used in investigations of prosodic cues to

word segmentation.

For continuous streams, a single file with 45 repetitions of each word was

synthesized for each language (2 min 26 s duration). It was faded in and out for

5 s using sox (http://sox.sourceforge.net/) and then compressed to an mp3

file using ffmpeg (https://ffmpeg.org/). The stream was then presented 3

Table 5
Design of Experiment 2. (Left) Language structure. (Middle) Structure of test
items. Correct items for Language 1 are foils for Language 2 and vice versa.
(Right) Actual items in SAMPA format; dashes indicate syllable boundaries.

Word structure for Test item structure for Actual words for
Language 1 Language 2 Language 1 Language 2 Language 1 Language 2
ABC ABC AB BC w3:-le-gu: w3:-le-gu:
ABD FBC FG GD w3:-le-vOI faI-le-gu:
ABE HBC HJ JE w3:-le-nA: rV-le-gu:
FGC AGD faI-zO:-gu: w3:-zO:-vOI
FGD FGD faI-zO:-vOI faI-zO:-vOI
FGE HGD faI-zO:-nA: rV-zO:-vOI
HJC AJE rV-b{-gu: w3:-b{-nA:
HJD FJE rV-b{-vOI faI-b{-nA:
HJE HJE rV-b{-nA: rV-b{-nA:

http://sox.sourceforge.net/
https://ffmpeg.org/
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times to a participant (total familiarization duration: 7 min 17 s). The random

order of the words was different for every participant.

For segmented streams, words were individually synthesized using mbrola.

We then used a custom-made Perl script to randomize the words for each

participant and concatenate them into a familiarization file using sox. The order

of words was then randomized for each participant and concatenated into a

single aiff file using sox. The silence among words was 540 ms (1.5 word

durations). The total stream duration was 6 min 12s. The stream was then

presented 3 times to a participant (total familiarization: 18 min 14 s).

3.1.4 Apparatus. The experiment was run using Psyscope X

(http://psy.ck.sissa.it). Stimuli were presented over headphones in a quiet

room. Responses were collected from pre-marked keys on the keyboard.

3.1.5 Procedure. Participants were informed that they would listen to

a monologue by a talkative Martian, and instructed to try to remember the

Martian words. Following this, they listened to three repetitions of the

familiarization stream described above, for a total familiarization duration of 7

min 17 s (continuous stream) or 18 min 14 s (segmented stream).

Following this familiarization, participants were presented with pairs of

items with an inter-stimulus interval of 500 ms, and had to choose which items

was more like what they heard during familiarization. One item comprised the

first two syllables of a word, and was a correct choice for Language 1. The other

item comprised the last two syllables of a word, and was a correct choice for

Language 2. There were three items of each kind. They were combined into 9

test pairs. The test pairs were presented twice, with different item orders, for a

total of 18 test trials.

http://psy.ck.sissa.it
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3.1.6 Analysis strategy. Accuracy was averaged for each participant,

and the scores were tested against the chance level of 50% using Wilcoxon tests.

Performance differences across the languages (Language 1 vs. 2) and, when

applicable, familiarization conditions (pre-segmented vs. continuous) were

assessed using a generalized linear mixed model for the trial-by-trial data with

the fixed factors language and, where applicable, familiarization condition, as

well as random slopes for participants, correct items and foils. Following

(Baayen, Davidson, & Bates, 2008), random factors were removed from the

model when they did not contribute to the model likelihood.

We use likelihood ratios to provide evidence for the null hypothesis that

performance did not differ from the chance level of 50%. Following Glover and

Dixon (2004), we fit the participant averages to (i) a linear model comprising

only an intercept and (ii) the null model fixing the intercept to the appropriate

baseline level, and evaluated the likelihood of these models after correcting for

the difference in the number of parameters using the Bayesian Information

Criterion.

3.2 Results

3.2.1 Experiment 2a (British English voice). We first report the

results from Experiment 2a, using a British English voice. When the

familiarization stream was pre-segmented, participants failed to split smaller

utterances into their underlying components. As shown in Figure 6 (top), the

average performance did not differ significantly from the chance level of 50%

when the stream was synthesized with the en1 voice (M = 54.26, SD = 25.09),

Cohen’s d = 0.17, CI.95 = 44.89, 63.63, ns. Likelihood ratio analysis favored the

null hypothesis by a factor of 3.55 after correction with the Bayesian Information
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Criterion. Further, as shown in Table 6, performance did not depend on the

language condition.

In contrast to the common finding that humans and other animals are

sensitive to TPs, our participants failed to use TPs to split pre-segmented

utterances into their underlying units. We thus asked if, in line with previous

research, they can track TPs units are embedded into a continuous speech

stream. That is, participants in the continuous condition listened to the very

same artificial speech stream as in the pre-segmented condition, except that the

stream was continuous and had no silences between words.

Participants also failed to use TPs to segment words when the speech

stream was continuous. Specifically, and as shown in Figure 6 (top), the average

performance did not differ significantly from the chance level of 50%, (M =

48.89, SD = 19.65), t(29) = -0.31, p = 0.759, Cohen’s d = 0.057, CI.95 = 41.55,

56.23, ns, V = 166, p = 0.818. Likelihood analyses revealed that the null

hypothesis was 5.22 times more likely than the alternative hypothesis after a

correction with the Bayesian Information Criterion. However, as shown in Table

6, performance was much better for Language 1 than for Language 2,

presumably due to some click-like sounds the synthesizer produced for some

stops and fricatives (notably /f/ and /g/). These sounds likely affected grouping,

and prevented participants from using Statistical Learning. We thus decided to

replicate Experiment 2a with a different, American English voice.

3.2.2 Experiment 2b (American English voice). When the

familiarization stream was pre-segmented, participants failed to split smaller

utterances into their underlying components. As shown in Figure 6 (bottom),

the average performance did not differ significantly from the chance level of 50%

when the stream was synthesized with the us3 voice (M = 51.67, SD = 15.17),
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V = 216, p = 0.307. Likelihood ratio analysis favored the null hypothesis by a

factor of 4.57 after correction with the Bayesian Information Criterion. As shown

in Table 6, performance did not depend on the language condition. However,

Figure 6 also shows a clearly defined outlier. In Supplementary Information

SOM4, we remove participants for Experiments 2a and 2b who differ by more

than 2.5 standard deviations from the condition mean. This analysis yields

similar results to the unfiltered analyses.

The failure to use Statistical Learning to split pre-segmented units was

conceptually replicated in a pilot experiment with Spanish/Catalan speakers

using chunk frequency and backwards TPs as the primary cues (SOM5).

Table 6
Performance differences across familiarization conditions in Experiment 2. The
differences were assessed using a generalized linear model for the trial-by-trial
data, using participants, correct items and foils as random factors. Random
factors were removed from the model when they did not contribute to the model
likelihood.

Log odds Odds ratios
Term Voice Estimate SE CI Estimate SE CI t p

Pre-segmented familiarization, British English voice (Exp. 2a)
language = L2 en1 -0.097 0.441 [-0.96, 0.767] 0.908 0.400 [0.383, 2.15] -0.22 0.826

Continuous familiarization, British English voice (Exp. 2a)
language = L2 en1 -1.024 0.410 [-1.83, -0.22] 0.359 0.147 [0.161, 0.803] -2.50 0.013

Pre-segmented vs. continuous familiarization, British English voice (Exp. 2a)
language = L2 en1 -1.061 0.382 [-1.81, -0.313] 0.346 0.132 [0.164, 0.732] -2.779 0.005
stream type = segmented en1 -0.242 0.360 [-0.949, 0.464] 0.785 0.283 [0.387, 1.59] -0.673 0.501
language = L2 × stream type = segmented en1 0.967 0.508 [-0.0292, 1.96] 2.631 1.338 [0.971, 7.13] 1.903 0.057

Pre-segmented familiarization, American English voice (Exp. 2b)
language = L2 us3 0.114 0.673 [-1.2, 1.43] 1.121 0.754 [0.3, 4.19] 0.170 0.865

Continuous familiarization (1), American English voice (Exp. 2b)
language = L2 us3 -0.184 0.480 [-1.12, 0.757] 0.832 0.400 [0.325, 2.13] -0.383 0.702

Continuous familiarization (2), American English voice (Exp. 2b)
language = L2 us3 0.317 0.786 [-1.22, 1.86] 1.372 1.079 [0.294, 6.4] 0.403 0.687

Pre-segmented vs. continuous familiarization, American English voice (Exp. 2b, 1)
language = L2 us3 -0.019 0.558 [-1.11, 1.07] 0.982 0.547 [0.329, 2.93] -0.033 0.973
stream type = segmented us3 -0.328 0.188 [-0.696, 0.0391] 0.720 0.135 [0.499, 1.04] -1.752 0.080

Pre-segmented vs. continuous familiarization, American English voice (Exp. 2b, 2)
language = L2 us3 0.215 0.657 [-1.07, 1.5] 1.240 0.814 [0.342, 4.49] 0.327 0.743
stream type = segmented us3 -0.608 0.244 [-1.09, -0.13] 0.544 0.133 [0.337, 0.878] -2.493 0.013

As in Experiment 2a, and in contrast to the common finding that humans

and other animals are sensitive to TPs, our participants failed to use TPs to
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split pre-segmented utterances into their underlying units. We thus asked if they

could track TPs units that are embedded into a continuous speech stream. As in

Experiment 1a, participants in the continuous condition listened to the very

same artificial speech stream as in the pre-segmented condition, except that the

stream was continuous and had no silences between words.

As shown in Figure 6 (bottom), when the speech stream was synthesized

with the us3 voice, the average performance differed significantly from the

chance level of 50%, (M = 58.51, SD = 16.21), Cohen’s d = 0.52, CI.95 = 52.66,

64.35, V = 306.5, p = 0.02. As shown in Table 6, performance did not depend

on the language condition, and was marginally better than in the pre-segmented

condition (p = .08).

Given the likely confound introduced by the voice used in Experiment 2a,

we sought to ensure that the results of Experiment 2b would be reliable, and

replicated the successful tracking of statistical information using a new sample of

participants, still with the us3 voice. As shown in Figure 6 (bottom), the

average performance differed significantly from the chance level of 50%, (M =

62.78, SD = 21.35), Cohen’s d = 0.6, CI.95 = 54.81, 70.75, V = 320, p = 0.008.

As shown in Table 6, performance did not depend on the language condition,

and was significantly better than in the pre-segmented condition (p = .013).

Taken together, these results thus suggest that Statistical Learning

mechanisms predominantly operate in continuous sequences, but less so in

pre-segmented sequences (see also Shukla et al., 2007, 2011). Such a result is

compatible with the view that Statistical Learning is important for predictive

processing, given that continuous sequences are more conducive for prediction.

In contrast, it raises doubts as to whether participants can use Statistical

Learning mechanisms to memorize words, given that they do not seem to be able
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to do so in pre-segmented streams.
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Figure 6 . Results of Experiment 2. Each dot represents a participant. The
central red dot is the sample mean; error bars represent standard errors from the
mean. The results show the percentage of correct choices in the recognition test
after familiarization with (left) a continuous familiarization stream or (right) a
pre-segmented familiarization stream, with a British English voice (en1, top) or
an American English voice (us3, bottom). The two continuous conditions with
the American English voice are replications of one another.
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3.3 Discussion

In Experiment 2, participants tracked statistical dependencies

predominantly when they were embedded in a continuous speech stream, but not

across pre-segmented chunk sequences. This finding does not contradict the

results from the Experiment 1 above, where TPs were somewhat higher in the

pre-segmented condition; after all, if participants faithfully recall familiarization

items, the resulting TPs will be high as well.

This result is also consistent with earlier findings that Statistical Learning

predominantly occurs within major prosodic groups, and, within these groups,

predominantly at the edges of those groups (Shukla et al., 2007; Seidl &

Johnson, 2008). We show that, with shorter and better separated groups,

Statistical Learning can be abolished altogether. In line with results from

conditioning experiments (Alberts & Gubernick, 1984; Garcia et al., 1974;

Gubernick & Alberts, 1984; L. T. Martin & Alberts, 1979), Statistical Learning,

and maybe associative learning in general, can thus be enhanced or suppressed

depending on the learning situation. The enhanced Statistical Learning in

continuous sequences is consistent with the view that Statistical Learning is

important for predictive processing (Turk-Browne et al., 2010; Sherman &

Turk-Browne, 2020), given that prediction is arguably more useful in lengthy

chunks. It is also consistent with the view that Statistical Learning may be less

important for memorizing words (or at least to break up utterances so that the

underlying words can be memorized), especially given that, due to its prosodic

organization, speech tends to be pre-segmented into smaller groups (Cutler et

al., 1997; Nespor & Vogel, 1986; Shattuck-Hufnagel & Turk, 1996; Brentari et

al., 2011; Endress & Hauser, 2010; Pilon, 1981; Christophe et al., 2001).

A possible alternative interpretation is that, in the continuous streams of
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Experiment 2, repeated bisyllabic items pop out (and are thus remembered),

while, in the pre-segmented streams, chunking cues (in the form of silences)

prevent sub-chunks from popping out. However, if repeated bisyllabic items pop

out in Experiment 2’s continuous streams, repeated trisyllabic items (i.e., words)

should pop out in Experiment 1 as well, and participants should be able to recall

them as a result. As this prediction is falsified, a reasonable conclusion is that

Statistical Learning does not make repeating elements pop out. Conversely, the

availability of chunks might make Statistical Learning of within-chunk

regularities more difficult, especially if chunks are memorized as whole units.

This possibility would also confirm that Statistical Learning is separable from

the (declarative) mechanisms involved in memorizing chunks.4

Further, while our trisyllabic items are relatively short, so are utterances in

infant-directed speech. For example, infant-directed utterances have a typical

duration of about 1 s (with some cross-language variability; see e.g., Fernald et

al., 1989; Grieser & Kuhl, 1988), with a mean utterance length of about 4 (e.g.,

Snow, 1977; Smolak & Weinraub, 1983; see also A. Martin, Igarashi, Jincho, &

Mazuka, 2016). As a result, if Statistical Learning is difficult in shorter

utterances, the utility of Statistical Learning for language acquisition might be

reduced.

This is not to say that Statistical Learning can never occur in

pre-segmented units. While the available statistical information does not always

improve performance when chunking information is available (e.g., Sohail &

4 A further possible alternative interpretation of the difference between Experiments 1 and 2 is
that the bisyllabic elements in Experiment 2 occurred in different contexts of other syllables.
However, the words in Experiment 1 also occurred in different contexts, namely that of other
words. As a result, if the availability of variable contexts were sufficient for the formation of
declarative memories from continuous speech, such memories should be obtained in both
Experiments 1 and 2.
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Johnson, 2016), Shukla et al. (2007) showed that, when adults learners are

exposed to 10 syllables chunks (defined by intonational contours), they have

some sensitivity to statistical information within the chunks, though they might

also use declarative memory mechanisms to remember sub-chunks (see also

Endress & Bonatti, 2007; Endress & Mehler, 2009a for additional results

suggesting that Statistical Learning is possible within chunks). However, Shukla

et al. (2007) also found that participants predominantly retain information at

chunk edges rather than at chunk medial positions. At minimum, it is thus an

empirical question to what extent Statistical Learning is useful for word

segmentation in the short utterances infants are faced with.

4 General Discussion

Taken together, Experiments 1 and 2 suggest that Statistical Learning and

(declarative) memory might fulfill different computational functions in the

process of word-segmentation. The combined results echo dissociations between

associative learning and declarative memory (Cohen & Squire, 1980; Graf &

Mandler, 1984; Finn et al., 2016; Knowlton et al., 1996; Poldrack et al., 2001;

Squire, 1992), suggesting that the (cortical) declarative memory system might be

independent of a (neostriatal) system for associative learning (Knowlton et al.,

1996; Poldrack et al., 2001; Squire, 1992), though other authors propose that

both types of memory involve the hippocampus (Sherman & Turk-Browne, 2020;

Ellis et al., 2021). In line with earlier proposals (Turk-Browne et al., 2010;

Sherman & Turk-Browne, 2020), we thus suggest that the computational

function of associative learning might be distinct from that of (declarative)

memory encoding, and that associative learning might be more important for

predictive processing. The relative salience of these mechanisms might depend



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING 45

on how useful and adaptive they are for the learning problem at hand.

These results also have implications for the more specific problem of word

segmentation. If learners cannot use Statistical Learning to encode word

candidates in (declarative) memory, they need to use other cues. Possible cues

include using known words as delimiters for other words (Bortfeld, Morgan,

Golinkoff, & Rathbun, 2005; Brent & Siskind, 2001; Mersad & Nazzi, 2012),

attentional allocation to beginnings and ends of utterances (Monaghan &

Christiansen, 2010; Seidl & Johnson, 2008; Shukla et al., 2007), legal sound

sequences (McQueen, 1998) and universal aspects of prosody (Brentari et al.,

2011; Christophe et al., 2001; Endress & Hauser, 2010; Pilon, 1981). Such cues

might plausibly support declarative memories of words because they (but not

transition-based associative information) are consistent with how linguistic

sequences are encoded in declarative long-term memory, where linguistic

sequences are encoded with reference to their first and their last element

(Endress & Langus, 2017; Fischer-Baum et al., 2011; Miozzo et al., 2016).

This is no to say that Statistical Learning might play no implicit role in

word learning even when it is not sufficient to produce memories that can be

recalled. For example, and as mentioned above, associations among syllables

might facilitate the establishment of declarative memories once suitable (and

explicit) segmentation cues become available (Endress & Langus, 2017), and,

once words are acquired, word processing is not immune to unconscious stimuli

such as masked primes (e.g., Forster, 1998; Kouider & Dupoux, 2005). Statistical

Learning might also facilitate word learning indirectly, for example through the

acquisition of phonotactic constraint that might affect word learning in turn

(e.g., Friederici & Wessels, 1993; Mattys, Jusczyk, Luce, & Morgan, 1999;

McQueen, 1998). However, the extent to which Statistical Learning supports
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such computations remains to be established. For example, the phonotactic

regularities above can be learned by keeping track of material at utterance

boundaries (Monaghan & Christiansen, 2010), and thus just using the type of

cues we introduced in the pre-segmented conditions. As a result, we believe that

it is an important topic for further research to determine the role Statistical

Learning plays in word acquisition.

To the extent that Statistical Learning reflects implicit memory systems

(e.g., Meulemans & van der Linden, 1997; Christiansen, 2018; but see Toro,

Sinnett, & Soto-Faraco, 2005; Turk-Browne, Jungé, & Scholl, 2005), this

suggestion mirrors earlier proposals that implicit and declarative memory

systems might have different roles during language acquisition, with declarative

memory systems supporting the acquisition of words and implicit memory

system supporting the grammar-like regularities (Ullman, 2001; Pinker &

Ullman, 2002). While we are agnostic about the extent to which Statistical

Learning can support grammar acquisition, such results, together with the

current ones, suggest that Statistical Learning and declarative memory might

have separable functions, the former for predictive processing and the latter for

remembering objects and episodes.
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Table S1
Analyses performed for the vocalizations

Column name in data file Meaning
n.items Number of recalled items
n.syll Mean number of syllables of the recalled items
n.words Number of recalled words
p.words Proportion (among recalled items) of words
n.words.or.multiple Number of recalled words or concatenation of words
p.words.or.multiple Proportion (among recalled items) of words or concatenation of

words
n.part.words Number of recalled part-words
p.part.words Proportion (among recalled items) of part-words
n.part.words.or.multiple Number of recalled part-words or concatenation of part-words
p.part.words.or.multiple Proportion (among recalled items) of part-words or concatenation of

part-words
p.words.part.words Proportion of words among (recalled) words and part-words. This is

used for comparison to the recognition test.
p.words.part.words.or.multiple Proportion of words among (recalled) words and part-words or

concatenation thereof. This is used for comparison to the
recognition test.

n.high.tp.chunk Number of high TP chunks. High TP chunks are defined as
two-syllabic chunk from a word

p.high.tp.chunk Proprtion (among recalled items) of high TP chunks. High TP
chunks are defined as two-syllabic chunk from a word

n.low.tp.chunk Number of low TP chunks. Low TP chunks are defined as
two-syllabic word transitions

p.low.tp.chunk Proportion (among recalled items) of low TP chunks. Low TP
chunks are defined as two-syllabic word transitions

p.high.tp.chunk.low.tp.chunk Proportion of high-TP chunks among high and low-TP chunks.
High TP Chunks are defined as two-syllabic chunks from words; low
TP chunks are two-syllabic word transitions

average_fw_tp Average (across recalled items) of average forward TPs among
transitions in a given item.

average_fw_tp_d_actual_expected Average (across recalled items) of the difference between the average
ACTUAL forward TPs among transitions in a given item and the
EXPECTED forward TP in that item, based on the items first
element. See calculate.expected.tps.for.chunks for the calculations

average_bw_tp Average (across recalled items) of average backward TPs among
transitions in a given item.

p.correct.initial.syll Proportion (among recalled items) that have a correct initial
syllable.

p.correct.final.syll Proportion (among recalled items) that have a correct final syllable.
p.correct.initial.or.final.syll Proportion (among recalled items) that have a correct initial or final

syllable.
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SOM2 Additional results for Experiment 1

Table S2
Supplementary analyses pertaining to the productions as well as test against their
chances levels in the recall phase of Experiments 1a and 1b. The p value in the
rightmost column reflects a Wilcoxon test comparing the continuous and the
pre-segmented conditions.

Continuous Segmented p(Continuous vs. Segmented).
Number of words

lab-based (Exp. 1a) M= 0.308, SE= 0.139, p= 0.0719 M= 1.85, SE= 0.308, p= 0.00224 0.005
online (Exp. 1b) M= 0.224, SE= 0.0791, p= 0.00482 M= 1.32, SE= 0.143, p= 7.32e-11 < 0.001

Proportion of words among productions
lab-based (Exp. 1a) M= 0.308, SE= 0.139, p= 0.0719 M= 1.85, SE= 0.308, p= 0.00224 0.005
online (Exp. 1b) M= 0.224, SE= 0.0791, p= 0.00482 M= 1.32, SE= 0.143, p= 7.32e-11 < 0.001

Number of part-words
lab-based (Exp. 1a) M= 0.692, SE= 0.273, p= 0.031 M= 0, SE= 0, p= NaN 0.031
online (Exp. 1b) M= 0.25, SE= 0.0657, p= 0.000717 M= 0, SE= 0, p= NaN < 0.001

Proportion of part-words among productions
lab-based (Exp. 1a) M= 0.692, SE= 0.273, p= 0.031 M= 0, SE= 0, p= NaN 0.031
online (Exp. 1b) M= 0.25, SE= 0.0657, p= 0.000717 M= 0, SE= 0, p= NaN < 0.001

Actual vs. expected forward TPs
lab-based (Exp. 1a) M= -0.462, SE= 0.07, p= 0.000244 M= -0.315, SE= 0.0803, p= 0.00915 0.147
online (Exp. 1b) M= -0.42, SE= 0.0329, p= 1.3e-12 M= -0.352, SE= 0.0365, p= 7.56e-11 0.120

Number of High-TP chunks
lab-based (Exp. 1a) M= 0.769, SE= 0.459, p= 0.181 M= 2.31, SE= 0.361, p= 0.00224 0.022
online (Exp. 1b) M= 1.13, SE= 0.13, p= 5.35e-10 M= 1.62, SE= 0.147, p= 6.19e-12 0.014

Proportion of High-TP chunks among productions
lab-based (Exp. 1a) M= 0.104, SE= 0.0601, p= 0.181 M= 0.615, SE= 0.0999, p= 0.00241 0.003
online (Exp. 1b) M= 0.279, SE= 0.0331, p= 1.08e-09 M= 0.516, SE= 0.0435, p= 8.27e-12 < 0.001

Number of Low-TP chunks
lab-based (Exp. 1a) M= 0.0769, SE= 0.0801, p= > .999 M= 0, SE= 0, p= NaN > .999
online (Exp. 1b) M= 0.355, SE= 0.0747, p= 2.41e-05 M= 0.0395, SE= 0.0226, p= 0.149 < 0.001

Number of Low-TP chunks among productions
lab-based (Exp. 1a) M= 0.011, SE= 0.0114, p= > .999 M= 0, SE= 0, p= NaN > .999
online (Exp. 1b) M= 0.0855, SE= 0.0198, p= 6.04e-05 M= 0.00846, SE= 0.00523, p= 0.181 < 0.001

* The expected TPs for items of at least 2 syllables starting on an initial syllable are 1, 1/3, 1, 1, 1/3, 1, 1, 1/3,
. . . . The difference between the actual and the expected TP needs to be compared to zero, as the expected TP
differs across items.



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING S4

lab−
based

online

continuous segmented

−1
0
1
2
3
4
5

0
1
2
3
4
5

# 
H

ig
h 

T
P

 C
hu

nk
s

a lab−
based

online

continuous segmented

0.00
0.25
0.50
0.75
1.00

0.00

0.25

0.50

0.75

1.00

H
ig

h 
T

P
 c

hu
nk

s

P
ro

du
ct

io
ns

b

lab−
based

online

continuous segmented

−0.25
0.00
0.25
0.50
0.75
1.00

0

1

2

3

# 
Lo

w
 T

P
 C

hu
nk

s

c lab−
based

online

continuous segmented

0.00

0.05

0.10

0.15

0.00

0.25

0.50

0.75

1.00

Lo
w

 T
P

 c
hu

nk
s

P
ro

du
ct

io
ns

d

Figure S1 . Plot of High and Low TP chunks.
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SOM3 Fit of the number of participants producing words or

part-words to a binomial distribution

We fit the data to two models, one where the learner successfully detected

word-boundaries, and one where the learner successfully track TPs but initiates

productions at a random position. We then calculate the likelihood of the data

given these models.

According to the first model, the probability of producing words rather

then part-words is p1
W = 1, and the probability of using part-words is

p1
PW = 1 − p1

W = 0. According to the second model, the learner has one chance in

three to initiate a production on a word-initial syllable. As a result, the

probability of producing words is p2
W = 1

3 , and the probability of using

part-words is p2
PW = 1 − p2

W = 2
3 .

Assuming that participants produce either words or part-words, the

probability of NW producing words and NPW producing part-words is given by a

binomial distribution. We can then use Bayes’ theorem to calculate the model

likelihood P (model|data) = P (data|model)P (model)
P (data) . If both models are equally

likely a priori, the likelihood ratio of the models given the data is the likelihood

ratio of the data given the models:
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Λ1,2 = P (model1|data)
P (model2|data) = P (data|model1)

P (data|model2)

=

 NW + NPW

NW


 NW + NPW

NW


1NW0NPW

1
3

NW 2
3

NPW

=


3NPW NPW = 0

0 NPW > 0

For NPW = 0, the likelihood ratio in favor of the first model is 3NPW ;

NPW > 0 the likelihood ratio in favor of the second model is infinite.
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SOM4 Analyses of Experiment 2 after removing outliers

We repeat the analyses of Experiment 2 after removing outliers differing by

more than 2.5 standard deviations from the mean in each condition (N = 2). As

in the main analyses above, we first present the results for the British English

(en1) voice and then those for the American English (us3) voice.

SOM4.1 Experiment 2a (British English voice)

Figure S2 shows the results for the pre-segmented familiarization. The

average performance did not differ significantly from the chance level of 50%,

(M = 54.26, SD = 25.09), t(29) = 0.93, p = 0.36, Cohen’s d = 0.17, CI.95 =

44.89, 63.63, ns, V = 222, p = 0.242. Likelihood ratio analysis favored the null

hypothesis by a factor of 3.555 after correction with the Bayesian Information

Criterion. Further, as shown in Table S3, performance did not depend on the

language condition.

We next asked if, in line with previous research, they can track TPs units

that are embedded into a continuous speech stream. That is, participants

listened to the very same speech stream as in the pre-segmented condition,

except that the stream was continuous.

Figure S2 shows that the average performance did not differ significantly

from the chance level of 50%, (M = 47.13, SD = 17.42), t(28) = -0.89, p =

0.382, Cohen’s d = 0.16, CI.95 = 40.5, 53.75, ns, V = 140, p = 0.551. Likelihood

analyses revealed that the null hypothesis was 3.629 than the alternative

hypothesis after a correction with the Bayesian Information Criterion. However,

as shown in Table S3, performance was much better for Language 1 than for

Language 2, presumably due to some click-like sounds the synthesizer produced

for some stops and fricatives (notably /f/ and /g/). These sounds might have
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prevented participants from using statistical learning. We thus decided to

replicate the results with a different, American English voice.

SOM4.1.1 Experiment 2b (American English voice). Figure S2

shows the results for the pre-segmented condition with the American English

(us3) voice. The average performance did not differ significantly from the chance

level of 50%, (M = 53.26, SD = 12.64), t(28) = 1.39, p = 0.176, Cohen’s d =

0.26, CI.95 = 48.45, 58.07, ns, V = 216, p = 0.151. Likelihood ratio analysis

favored the null hypothesis by a factor of 2.058 after correction with the

Bayesian Information Criterion. As shown in Table S3, performance did not

depend on the language condition.

We next asked if, in line with previous research, they can track TPs units

are embedded into a continuous speech stream. That is, participants listened to

the very same speech stream as in the pre-segmented condition, except that the

stream was continuous.

As shown in Figure S2, when the us3 voice was used, the average

performance differed significantly from the chance level of 50%, (M = 58.51,

SD = 16.21), t(31) = 2.97, p = 0.00573, Cohen’s d = 0.52, CI.95 = 52.66, 64.35,

V = 306.5, p = 0.0185. As shown in Table S3, performance did not depend on

the language condition, and was significantly better than in the pre-segmented

condition.

Given the unexpected results with the en1 voice above, we replicated the

successful tracking of statistical information using a new sample of participants.

As shown in Figure S2, the average performance differed significantly from the

chance level of 50%, (M = 62.78, SD = 21.35), t(29) = 3.28, p = 0.00272,

Cohen’s d = 0.6, CI.95 = 54.81, 70.75, V = 320, p = 0.00778. As shown in Table

S3, performance did not depend on the language condition, and was significantly
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better than in the pre-segmented condition.

The results obtained after removing outliers are thus similar to those

reported in the main text.
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Figure S2 . Results of Experiment 1 after outliers of more than 2.5 standard
deviations from each condition mean were excluded. Each dot represents a
participants. The central red dot is the sample mean; error bars represent
standard errors from the mean. The results show the percentage of correct
choices in the recognition test after familiarization with (left) continuous
familiarization stream or (right) a pre-segmented familiarization stream,
synthesized with a British English voice (top) or an American English voice
(bottom). The two continuous conditions are replictions of one another.
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Table S3
Performance differences across familiarization conditions in Experiment 2 after
removal of outliers differing more thang 2.5 standard deviations from the mean.
The differences were assessed using a generalized linear model for the
trial-by-trial data, using participants, correct items and foils as random factors.
Random factors were removed from the model when they did not contribute to the
model likelihood.

Log-odds Odd ratios
term Voice Estimate SE CI Estimate SE CI t p
Pre-segmented familiarization, British English voice (Exp. 2a)

language = L2 en1 -0.097 0.441 [-0.96, 0.767] 0.908 0.400 [0.383, 2.15] -0.220 0.826
Continuous familiarization, British English voice (Exp. 2a)

language = L2 en1 -0.842 0.221 [-1.28, -0.409] 0.431 0.095 [0.279, 0.665] -3.807 0.000
Pre-segmented vs. continuous familiarization, British English voice (Exp. 2a)

language = L2 en1 -0.903 0.369 [-1.63, -0.179] 0.406 0.150 [0.197, 0.836] -2.446 0.014
stream type = segmented en1 -0.090 0.347 [-0.77, 0.591] 0.914 0.317 [0.463, 1.81] -0.258 0.796
language = L2 × stream type = segmented en1 0.810 0.487 [-0.144, 1.76] 2.248 1.094 [0.866, 5.84] 1.664 0.096

Pre-segmented familiarization, American English voice (Exp. 2b)
language = L2 us3 -0.048 0.654 [-1.33, 1.23] 0.953 0.624 [0.264, 3.44] -0.074 0.941

Continuous familiarization (1), American English voice (Exp. 2b)
language = L2 us3 -0.184 0.480 [-1.12, 0.757] 0.832 0.400 [0.325, 2.13] -0.383 0.702

Continuous familiarization (2), American English voice (Exp. 2b)
language = L2 us3 0.317 0.786 [-1.22, 1.86] 1.372 1.079 [0.294, 6.4] 0.403 0.687

Pre-segmented vs. continuous familiarization (1), American English voice (Exp. 2b)
language = L2 us3 -0.102 0.551 [-1.18, 0.978] 0.903 0.497 [0.307, 2.66] -0.185 0.853
stream type = segmented us3 -0.243 0.167 [-0.571, 0.0843] 0.784 0.131 [0.565, 1.09] -1.456 0.145

Pre-segmented vs. continuous familiarization (2), American English voice (Exp. 2b)
language = L2 us3 0.115 0.652 [-1.16, 1.39] 1.122 0.732 [0.313, 4.03] 0.177 0.859
stream type = segmented us3 -0.509 0.224 [-0.949, -0.0693] 0.601 0.135 [0.387, 0.933] -2.269 0.023
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SOM5 Pilot Experiment: Testing the use of chunk frequency

In a pilot experiment, we asked if participants could break up tri-syllabic

items by using the chunk frequency of sub-chunks. The artificial languages were

designed such that, in a trisyllabic item such as ABC, chunk frequency (and

backwards TPs) favor in the initial AB chunk for half of the participants, and

the final BC chunk for the other participants.

Across participants, we also varied the exposure to the languages, with 3,

15 or 30 repetitions per word, respectively.

SOM5.1 Methods

Table S4
Demographics of the final sample in the pilot experiment.

# Repetitions/word N Age (M ) Age (Range)
3 37 21.1 18-35

15 41 21.0 18-27
30 40 20.8 18-26

SOM5.1.1 Participants. Demographic information of the pilot

experiment is given in Table S4. Participants were native speakers of Spanish

and Catalan and were recruited from the Universitat Pompeu Fabra community.

SOM5.1.2 Stimuli. Stimuli transcriptions are given in Table S5. They

were synthesized using the es2 (Spanish male) voice of the mbrola (Dutoit et al.,

1996) speech synthesized, using a segment duration of 225 ms and an

fundamental frequency of 120 Hz.

SOM5.1.3 Apparatus. Participants were test individually in a quiet

room. Stimuli were presented over headphones. Responses were collected from

pre-marked keys on the keyboard. The experiment with 3 repetitions per word
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(see below) were run using PsyScope X; the other experiments were run using

Experyment (https://www.expyriment.org/).

SOM5.1.4 Familiarization. The design of the pilot experiment is

shown in Table S5. The languages comprise trisyllabic items. All forward TPs

were 0.5. However, in Language 1 the chunk composed of the first two syllables

(e.g., AB in ABC ) were twice as frequent as the chunk composed of the last two

syllables (e.g., BC in ABC ); the backward TPs were twice as high as well.

Language 2 favored the word-final chunk. Participants were informed that they

would listen to a sequence of Martian words, and then listened to a sequence of

the eight words in 5 with an ISI of 1000 ms and 3, 15 or 30 repetitions per word.

Due to programming error, the familiarization items for 15 and 30 repetitions

per word were sampled with replacement.

Table S5
Design of the pilot experiment. (Left) Language structure. (Middle) Structure of
test items. Correct items for Language 1 are foils for Language 2 and vice versa.
(Right) Actual items in SAMPA format; dashes indicate syllable boundaries

Word structure for Test item structure for Actual words for
Language 1 Language 2 Language 1 Language 2 Language 1 Language 2
ABC ABC AB BC ka-lu-mo ka-lu-mo
DEF DEF DE EF ne-fi-To ne-fi-To
ABF DBC ka-lu-To ne-lu-mo
DEC AEF ne-fi-mo ka-fi-To
AGJ JBG ka-do-ri ri-lu-do
AGK KBG ka-do-tSo tSo-lu-do
DHJ JEH ne-pu-ri ri-fi-pu
DHK KEH ne-pu-tSo tSo-fi-pu

SOM5.1.5 Test. Following this familiarization, participants were

informed that they would hear new items, and had to decide which of them was

in Martian. Following this, they heard pairs of two syllabic items with an ISI of

1000 ms. One was a word-initial chunk and one a word-final chunk.

https://www.expyriment.org/
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The test items shown in Table 5 were combined into four test pairs, which

were presented twice with different item orders. A new trial started 100 ms after

a participant response.

SOM5.2 Results
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Figure S3 . Results of the pilot experiment. Each dot represents a participants.
The central red dot is the sample mean; error bars represent standard errors
from the mean. The results show the percentage of correct choices in the
recognition test after familiarization with (left) 3, (middle) 15 or (right) 30
repetitions per word.

As shown Table S6, a generalized linear model revealed that performance

depended neither on the amount of familiarization nor on the familiarization

language. As shown in Figure S3, a Wilcoxon test did not detect any deviation

from the chance level of 50%, neither for all amounts of familiarization

combined, M= 53.5, SE= 2.71, p= 0.182, nor for the individual familiarization



SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING S14

Table S6
Performance in the pilot experiment for different amounts of exposure. The
differences were assessed using a generalized linear model for the trial-by-trial
data, using participants as a random factor.

Log-odds Odds ratios
term Estimate SE CI t p Estimate SE CI t p
language = L2 0.337 0.493 [-0.629, 1.3] 0.684 0.494 1.401 0.691 [0.533, 3.68] 0.684 0.494
number of repetitions/word 0.017 0.018 [-0.018, 0.0513] 0.942 0.346 1.017 0.018 [0.982, 1.05] 0.942 0.346
language = L2 × number of repetitions/word -0.042 0.025 [-0.0916, 0.00698] -1.682 0.093 0.959 0.024 [0.912, 1.01] -1.682 0.093

conditions (3 repetitions per word: M= 54.1, SE= 4.81, p= 0.416; 15 repetitions

per word: M= 54.6, SE= 4.52, p= 0.325; 30 repetitions per word: M= 51.9,

SE= 4.98, p= 0.63). Following Glover and Dixon (2004), the null hypothesis was

4.696 times more likely than the alternative hypothesis after corrections with the

Bayesian Information Criterion, and 1.217 more likely after correction with the

Akaike Information Criterion.


	Abstract
	The specificity of sequential Statistical Learning: Statistical Learning accumulates predictive information from unstructured input but is dissociable from (declarative) memory
	Introduction
	Statistical Learning vs. declarative memory of words in fluent speech
	Statistical learning in continuous sequences and discrete chunks
	The current experiments

	Experiment 1: Do learners remember items in a Statistical Learning task?
	Materials and methods
	Participants
	Materials
	Apparatus
	Procedure
	Analysis strategy

	Results
	General measures: Do participants engage in the task?
	Are participants more likely to produce words rather than part-words?
	Do participants know where words start and where they end?

	Discussion

	Experiment 2: Is Statistical Learning available in both continuous and pre-segmented speech ?
	Material and Methods
	Participants
	Design
	Stimuli
	Apparatus
	Procedure
	Analysis strategy

	Results
	Experiment 2a (British English voice)
	Experiment 2b (American English voice)

	Discussion


	General Discussion
	References
	Measures and column names in the supplementary data file for Experiment 1
	Additional results for Experiment 1
	Fit of the number of participants producing words or part-words to a binomial distribution
	Analyses of Experiment 2 after removing outliers
	Experiment 2a (British English voice)
	Experiment 2b (American English voice)


	Pilot Experiment: Testing the use of chunk frequency
	Methods
	Participants
	Stimuli
	Apparatus
	Familiarization
	Test

	Results








