
HAL Id: hal-03992330
https://cnrs.hal.science/hal-03992330

Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying Parsing and Tree-Structured Models for
Generating Sentence Semantic Representations

Antoine Simoulin, Benoît Crabbé

To cite this version:
Antoine Simoulin, Benoît Crabbé. Unifying Parsing and Tree-Structured Models for Generating Sen-
tence Semantic Representations. 2022 Annual Conference of the North American Chapter of the
Association for Computational Linguistics ”Human Language Technologies”, Jul 2022, Seattle, WA,
United States. pp.267-276, �10.18653/v1/2022.naacl-srw.33�. �hal-03992330�

https://cnrs.hal.science/hal-03992330
https://hal.archives-ouvertes.fr

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 267 - 276

July 10-15, 2022 ©2022 Association for Computational Linguistics

Unifying Parsing and Tree-Structured Models for Generating Sentence
Semantic Representations

Antoine Simoulin1,2 Benoît Crabbé1
1University of Paris, LLF 2Quantmetry

asimoulin@quantmetry.com
benoit.crabbe@u-paris.fr

Abstract
We introduce a novel tree-based model that
learns its composition function together with its
structure. The architecture produces sentence
embeddings by composing words according to
an induced syntactic tree. The parsing and the
composition functions are explicitly connected
and, therefore, learned jointly. As a result, the
sentence embedding is computed according to
an interpretable linguistic pattern and may be
used on any downstream task. We evaluate our
encoder on downstream tasks, and we observe
that it outperforms tree-based models relying
on external parsers. In some configurations,
it is even competitive with BERT base model.
Our model is capable of supporting multiple
parser architectures. We exploit this property to
conduct an ablation study by comparing differ-
ent parser initializations. We explore to which
extent the trees produced by our model com-
pare with linguistic structures and how this ini-
tialization impacts downstream performance.
We empirically observe that downstream su-
pervision troubles producing stable parses and
preserving linguistically relevant structures.

1 Introduction

Computing sentence semantic representations tradi-
tionally calls for a recursive compositional function
whose structure is tree-shaped. There is a strong
intuition in natural language processing that lan-
guage has a recursive structure (Chomsky, 1956;
Shen et al., 2019). Tree-based models should thus
mimic the compositional effect of language and
enable better generalization and abstraction.

Yet, tree-based models need carefully hand-
annotated data to be trained. Alternative methods
such as recurrent neural network (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) or BERT (De-
vlin et al., 2019) have gained increased popularity
as they only require raw text as input. On the other
hand, as many results suggest (Linzen et al., 2016;
Jawahar et al., 2019; Clark et al., 2019), these new
models acquire some sort of tree structure.

Another line of work, called latent tree learning,
induces trees from raw text and computes seman-
tic representations along with the inferred struc-
ture (Socher et al., 2011; Bowman et al., 2016;
Dyer et al., 2016; Maillard et al., 2019; Yogatama
et al., 2017; Kim et al., 2019). Such methods pre-
serve explicit recursive computation and produce
intelligible tree structures. Moreover, the parser
and composition function are learned jointly and
are specific to a given task or domain. Choi et al.
(2018) propose the closest approach to ours by com-
posing a tree using the Gumbel-Softmax estimator.
The method is fully differentiable, produces a dis-
crete tree, and does not require training the parser
using an auxiliary task. However, Williams et al.
(2018) show the method does not produce mean-
ingful syntactic representations and that trees are
inconsistent across initializations. Moreover, Choi
et al. (2018) produces trees by selecting and merg-
ing adjacent nodes. Therefore, it cannot directly
use architectures designed for standard parsing for-
malisms such as dependency structures.

We propose a unified architecture, which infers
an explicit tree structure and recursively trains
a sentence embedding model. Our method is
fully differentiable and relies on existing and well-
known components. We use a standard dependency
parsing structure, obtained using a graph-based
biaffine dependency parser (Dozat and Manning,
2017). However, our model is not limited to a
particular parser architecture as long as it is differ-
entiable.

We organize our paper as follows: we present
our model in section 2. In section 3, we evaluate
our model on textual entailment and semantic sim-
ilarity tasks. We then conduct an ablation study
and analyze the impact of the parser initialization.
We compare the learned structures across initializa-
tions and with interpretable annotations (4.1) and
we study how latent structures impact performance
on downstream tasks (4.2).

267

2 Model

Our model jointly performs sentence parsing and
the prediction of a sentence embedding. The sen-
tence embedding is predicted by a weighted TREE-
LSTM whose tree structure is provided by a de-
pendency parser. The TREE-LSTM recursive com-
position function crucially uses a weighted sum of
the child representations whose weights are pro-
vided by the parser edges, hence linking the parser
outputs to the TREE-LSTM recursion. Figure 1
illustrates the architecture detailed in Eq. 1 to 10.

Parsing model The parser is a standard graph
based biaffine dependency parser1 (Dozat and Man-
ning, 2017). It is formalized in two steps. First, Eq.
1 and 2 compute a weight matrix that is interpreted
as a weighted directed graph whose nodes are the
sentence tokens:

a
(dep)
k = MLP(hk), a

(head)
j = MLP(hj) (1)

s
(arc)
kj = (a

(dep)
k ⊕ 1)⊤U (b)a

(head)
j + b(b) (2)

With hk ∈ Rd the hidden state associated with
the word at index k in the input sentence and in
Eq. 2, U (b) ∈ R(d+1)×d and b(b) ∈ R. The symbol
⊕ denotes vector concatenation and MLP in Eq. 1
are single-layer perceptron networks.

The second step performs parsing by comput-
ing a maximum spanning tree from the graph. As
in Dozat and Manning (2017), we use the Max
Spanning Tree (MST) algorithm to ensure the well-
formedness of the tree (Chu, 1965; Edmonds et al.,
1967):

αkj = 1
mst(s

(arc)
kj)

s
(arc)
kj (3)

Where αkj is the probability of the edge linking
node j to node k. For a given node k, there is at
most one non-zero edge leading to its governor j.

Compositionally weighted tree LSTM Given
a predicted tree structure, we recursively encode
the sentence using a variant of the Child Sum Tree
model from Tai et al. (2015). The recursion fol-
lows the predicted structure: from the leaves to the
root. At each step j, the transition function takes
as input the word vector representation xj of the

1We give hyper-parameter details for the biaffine parser in
Appendix A.3.

Figure 1: We illustrate the architecture detailed in Eq. 1
to 10. The Biaffine parser provides the sentence struc-
ture from which the TREE-LSTM computes sentence
embeddings. The full pipeline is differentiable as the
TREE-LSTM weights are given by the parser.

head node j and the previously computed hidden
states hk from all its children.

h̃j =
∑

k∈C(j)

αkjhk, (4)

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
, (5)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
, (6)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
, (7)

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
, (8)

cj = ij ⊙ uj +
∑

k∈C(j)

fjk ⊙ ck, (9)

hj = oj ⊙ tanh(cj), (10)

Where xj and hj are respectively the word vec-
tor representation and hidden state associated with
the head node j. In Eq. 4, C(j) denotes the set of
children of node j. σ denotes the logistic sigmoid
function and ⊙ denotes elementwise multiplica-
tion. Crucially, in our case, Eq. 4 is a weighted
sum rather than a standard sum and the weights are
those αkj provided by the parser.

We use the embedding computed by the
weighted TREE-LSTM at the root of the tree as

268

the sentence embedding. The tree shape and the
edge weights are given by the best prediction of a
graph parser. The parsing model is linked to the
TREE-LSTM by the weights αkj . This architec-
ture allows us to jointly update the parser and the
TREE-LSTM weights using only the downstream
task loss. The supervision comes only from the
objective of the downstream task, and no interme-
diate structure target is required. Our model is fully
differentiable and preserves the discreteness of the
tree composition process. It relies on a dependency
parsing formalism and could accommodate any dif-
ferentiable parser.

3 Evaluation

Our architecture primarily aims to produce relevant
embeddings for downstream tasks. To this end, we
compare our setup with other models from the liter-
ature on various tasks. For this comparison, we first
pre-train the parsing submodel on human-annotated
sentences from the Penn Tree Bank (PTB) (Marcus
et al., 1993) converted to Stanford dependencies.
We then fine-tune the parser’s parameters on the
task while training the full model2.

3.1 Semantic textual similarity (STS)
We first evaluate our model on the SICK-R down-
stream task (Marelli et al., 2014), which is dedi-
cated to assessing models’ compositional proper-
ties. The dataset comprises 9,927 sentence pairs,
distributed in a 4,500/500/4,927 train/dev/test split,
annotated for semantic similarity on a 1 to 5 real
range. It includes specific examples of variations
on passive and active forms, quantifier and modifier
switches, or negations3.

We use a similar training procedure as in Tai
et al. (2015). We transform the target y from the
SICK-R task into the distribution p defined by:

pi =

y − ⌊y⌋, i = ⌊y⌋+ 1
⌊y⌋ − y + 1, i = ⌊y⌋
0 otherwise

We use a dedicated architecture to predict the
similarity distribution from a pair of sentences. The

2In this configuration, we observe pre-training the parser
may cause weights α to become too large in Eq. 3. This leads
to poor downstream performance. We correct this with a multi-
plicative parameter τ whose value is estimated during training.
It means we replace Eq. 3 with: αkj = τ · 1

mst(s
(arc)
kj

)
s
(arc)
kj

for tree weights computation.
3Appendix A.1 details the hyper-parameters and training

infrastructure.

similarity module takes as input a pair of sentence
vectors hL and hR and computes their component-
wise product hL⊙hR and their absolute difference
|hL − hR|. Given these features, we compute the
probability distribution p̂θ using a two-layer per-
ceptron network (MLP):

h× = hL ⊙ hR, h+ = |hL − hR|,
hs = σ(W (×)h× +W (+)h+ + b(h)),

p̂θ = softmax(W (p)hs + b(p)),

(11)

We use the KL-divergence between the predic-
tion p̂θ and the ground truth p as training objective:

J(θ) =
1

N

N∑

k=1

KL(p(k)||p̂(k)θ) + λ||θ||22 (12)

Finally during inference, the similarity score ŷ
is computed as ŷ = r⊤p̂θ with r⊤ = [1, . . . , 5].

Encoder r

BOW† 78.2 (1,1)

LSTM† 84.6 (0.4)

Bidirectional LSTM† 85.1 (0.4)

N-ary TREE-LSTM† (Tai et al., 2015) 85.3 (0.7)

Childsum TREE-LSTM† (Tai et al., 2015) 86.5 (0.4)
BERT-base (Devlin et al., 2019) 87.3 (0.9)

Unified TREE-LSTM† (Our model) 87.0 (0.3)

Table 1: Evaluation on the SICK-R task: we pre-train
our parsing module on the PTB and continue to update
the full model on the SICK-R task. We compare with
BERT and models relying on sequential and tree struc-
tures. We report Pearson correlation on the test set, by
convention as r × 100 (avg. and std. from 5 runs). † in-
dicates models that we trained. All models are trained
following the same procedure detailed in Appendix A.1.

Table 1 reports the results from the test set. As
expected, structured models perform better than
models using weaker underlying structures. We
also observe that our model is competitive with a
BERT-base upper-line. It is essential to note that
BERT models are heavily pre-trained on vast cor-
pora, whereas our structured models are trained
only on the SICK-R and PTB data.

3.2 Textual entailment

We also test our model on the Stanford Natural
Language Inference (SNLI) task (Bowman et al.,
2015), which includes 570k pairs of sentences with

269

the labels entailment, contradiction, and neutral,
distributed in a 550k/10k/10k train/dev/test split4.

We use a similar training procedure as in Choi
et al. (2018). A dedicated architecture is used to
predict the similarity distribution from a pair of
sentences. The similarity module takes as input a
pair of sentence vectors hL and hR and computes
their componentwise product hL ⊙ hR and their
absolute difference |hL−hR|. Given these features,
we compute the probability distribution p̂θ using a
three-layer perceptron network (MLP):

h× = hL ⊙ hR, h+ = |hL − hR|,
hs = h× ⊕ h+ ⊕ hL ⊕ hR

hs = ReLU(W (1)hs + b(1)),

hs = ReLU(W (2)hs + b(2)),

p̂θ = softmax(W (p)hs + b(p)),

(13)

We use the cross entropy loss between the predic-
tion p̂θ and the ground truth p as training objective:

J(θ) = − 1

N

N∑

k=1

p(k) log p̂
(k)
θ + λ||θ||22 (14)

Encoder Test Acc.

SPINN \w Reinforce (Yogatama et al., 2017) 80.5
CYK and TREE-LSTM (Maillard et al., 2019) 81.6

SPINN (Bowman et al., 2016) 83.2
ST-Gumbel (Choi et al., 2018) 86.0

Structured Alignment (Liu et al., 2018) 86.3
BERT-base (Zhang et al., 2020) 90.7

Unified TREE-LSTM (Our model) 85.0 (0.2)

Table 2: Evaluation on the SNLI-R task: We pre-train
our parsing module on the PTB and continue to update
the full model on the SNLI task. We compare with
BERT and latent tree learning models. We report the
accuracy on the test set (avg. and std. from 2 runs).

We report the results in Table 2. Our results
are close to Choi et al. (2018), which also com-
pute semantic representations along to discrete tree
structures but relies on a distinct syntactic formal-
ism. In models from Liu et al. (2018) and Zhang
et al. (2020) sentences are encoded with direct in-
teraction using an attention mechanism. These
architectures relying on cross sentence attention
outperform those without. We hypothesize that,

4Appendix A.2 details the hyper-parameters and training
infrastructure.

on this textual entailment task, the final prediction
cannot be directly deduced from both sentence em-
beddings. In this case, BERT and the structured
alignment model have a clear advantage since they
encode interactions between both sentences.

4 Impact of the parser initialization

Our framework primarily aims to be a structured
sentence encoder. Accordingly, we have demon-
strated in the previous section that our architec-
ture is competitive with comparable approaches
and might even be competitive with BERT-based
models. We are also interested in interpreting the
structures the model actually learns and how such
structures impact downstream performance.

In the previous section, we pre-trained the parser
on human annotated data. However, the optimal
structure might differ from the task. Moreover,
for computational reasons, it might even differ sig-
nificantly from linguistic insights. In this section
we perform an ablation study to better understand
how the initialization of the parser impacts the re-
sulting structures (4.1) and the final downstream
performance (4.2). We define two initialization
scenarios below. In both, we either continue to
update the parser when fine-tuning the model on
downstream tasks or freeze the parser and only
train the TREE-LSTM. These two configurations
are indicated with respectively ✓ and × symbols.

Linguistic annotations Tree-structured models
traditionally rely on linguistic structures obtained
by parsers (Tai et al., 2015). For languages such
as English, linguistic resources are available; it is
technically possible to pre-train the parser. How-
ever, resources such as the PTB are not available
in all languages. To better quantify the benefits of
using linguistic annotations, we propose the follow-
ing configurations, using various proportions of the
PTB to initialize the parser:

• In the PTB-All configuration, the parser is
previously pre-trained on the PTB. This con-
figuration is the same as in section 3.

• In the PTB-∅ configuration, the parser param-
eters are randomly initialized

• We also consider an initialization with only a
small proportion of the PTB and train a parser
by only using 100 randomly selected samples.
This configuration is referred as PTB-100.

270

Unsupervised structures Many lines of work
investigate if attention matrices from large pre-
trained models reflect syntactic structures (Jawahar
et al., 2019; Clark et al., 2019; Ravishankar et al.,
2021) or if tree structures can be integrated into
transformers (Wang et al., 2019; Bai et al., 2021).

Since our model is not specific to any parser
architecture. It is possible to use the internal repre-
sentations from BERT to infer sentence structure.

BERT relies upon the self-attention mechanism.
Inside each layer, tokens are computed as a
weighted combination from each other. For each
token x, a query and key vector are computed using
a linear transformation detailed in Eq 15. Given
these vector tuples, the attention weights s are com-
puted following Eq 16 in which N refers to the
dimension of the query and key vectors.

qj , kj = W (q,k)xj + b(q,k) (15)

skj = softmax

(
kk · qj√

N

)
(16)

We induce a tree structure following a procedure
close from Ravishankar et al. (2021). We inter-
pret the combination weights s as a weighted graph
whose nodes are tokens. We then apply Eq 2 to in-
duce a maximum spanning tree from the attention
matrix as detailed in section 2. We make use of the
last layer and induce a tree for each attention head
taken separately5. Given the tree structure induced
from BERT, we apply our TREE-LSTM model de-
tailed in Eq. 4 to 10. In this configuration, we only
use BERT as an unsupervised parser to infer a sen-
tence structure. The semantic composition along
with the structure to produce a sentence embedding
is solely computed by the weighted TREE-LSTM.

4.1 Impact on parses
This section analyzes to which extent the struc-
tures generated by our model are comparable with
meaningful linguistic annotations. We compare the
parses generated by two distinct models differing
by their initialization on the development set of
both tasks. Our reference is the silver parses from
the PTB-All configuration, where the parser is pre-
viously pre-trained on the full PTB and not updated
during training.

Table 3 measures the Unlabeled Attachment
Score (UAS) between the two parsers, that is, the

5We give details about the hyper-parameters in Ap-
pendix A.4.

ratio from the number of common arcs between
two parses by the total number of arcs6.

Parser 1 Parser 2 SICK-R
(dev UAS)

SNLI (dev
UAS)

Impact of parser fine-tuning

PTB-100 (✓) PTB-100 (×) 85.2 (1.5) 5.6 (1.9)
PTB-All (✓) PTB-All (×) 98.4 (0.1) 11.7 (0.9)

Impact of the PTB sample size

PTB-100 (✓) PTB-∅ (✓) 6.3 (0.0) 10.1 (10.7)
PTB-All (✓) PTB-∅ (✓) 10.1 (0.0) 15.1 (15.4)
PTB-All (✓) PTB-100 (✓) 76.9 (0.7) 0.3 (0.2)

Unsupervised parser

BERT (×) PTB-All (×) — 13.0 (4.9)
BERT (✓) PTB-All (×) — 13.7 (2.7)

Table 3: Impact of the parser initialization on parses:
we compare the parses from the SICK-R and SNLI de-
velopment sets using different parser initializations. We
obtained the PTB parses with the graph parser initialized
on a given proportion of the PTB (section 2). Regarding
BERT , we inferred the structures from the pattern learn
by the pre-trained model (section 4). We either continue
to update the parser (✓) when fine-tuning the model
on downstream tasks or freeze the parser (×) and only
train the TREE-LSTM. UAS corresponds to the mean
pairwise comparison of two configurations between two
runs (std. in parentheses).

We observed distinct behaviors given both tasks.
We believe this effect is due to the differences be-
tween training configurations. In particular, we use
the Adagrad optimizer for the SICK-R task and
Adam for the SNLI task.

For the SICK-R task, the UAS between PTB-∅
and PTB-All are very low. This reveals that the
parses obtained with only downstream task super-
vision have few in common with gold linguistic
parses. In this regard, we share the observation
from Williams et al. (2018) that latent trees ob-
tained from sole downstream supervision are not
meaningful in syntax. However, PTB-All and PTB-
100 are remarkably close; only a few PTB samples
are needed to obtain intelligible linguistic parses
with our setup. Regarding the PTB-100 configura-
tion, we note an evolution of the parses when fine-
tuning on the downstream task. We hypothesize
that the model can adapt to the dataset’s specificity.

For the SNLI task, fine-tuning the parser deeply
impacts the shape of the parses. Depending from
the initialization, parses will converge to distinct
structures. Indeed, the UAS between all configura-

6We present some parse tree examples in Appendix A.5.

271

tions is very low. Moreover, when using a random
initialization (PTB-∅), the standard deviation be-
tween UAS from various runs is very high: without
fixed initialization, parses become unstable.

For the initialization with an unsupervised struc-
ture, we only evaluate our setup on the SNLI task,
which has more training samples. We compare the
structures obtained with BERT with the silver trees
from the PTB-All-× configuration. We present
the mean UAS over the trees obtained for all at-
tention heads. The standard deviation is relatively
high, pointing underlying structures differ given
the attention head. Nonetheless, self-supervised
structures do not align well with linguistic insights.
When updating BERT together with the TREE-
LSTM, the UAS increases while the standard devi-
ation decreases. As BERT is fine-tuned, structures
tend to become more standard and present slightly
more similarities with linguistic patterns.

4.2 Impact on downstream tasks
We observed in previous section 4.1 that the initial-
ization and the training configuration of the parser
component deeply impact the resulting parses. We
now study the impact of the parser initialization on
downstream performance.

PTB
sample size

Parser
fine-tuning SICK-R (r) SNLI (Acc.)

Linguistic annotations

PTB-∅ ✓ 85.6 (85.6) 84.6 (85.5)

PTB-100 × 86.4 (86.6) 84.5 (85.5)
PTB-100 ✓ 86.5 (86.9) 84.9 (85.8)

PTB-All × 86.8 (87.2) 85.0 (85.8)
PTB-All ✓ 87.0 (87.5) 85.0 (85.5)

Unsupervised parser

BERT × — 84.4 (85.3)
BERT ✓ — 84.6 (85.1)

Table 4: Impact of the parser initialization on down-
stream task performance: We pre-train the parser mod-
ule with a given sample size from the PTB. We either
freeze (×) or update (✓) the parser during the fine-
tuning. We report the average test score set from 5 runs
for SICK-R and 2 runs for SNLI (the score from the
development set are in parentheses). We report Pearson
correlation by convention as r × 100.

Table 4 compares the impact of the different
initializations for both tasks. We report the Pearson
correlation on the test set of the SICK-R task and
the accuracy on the test set from the SNLI task.

We either freeze the parser component or con-

tinue to update it, given the downstream loss for
each initialization. Fine-tuning the parser on the
task generally leads to an improvement of the down-
stream results. In that regard, we share the observa-
tion from other latent tree learning methods (Mail-
lard et al., 2019; Choi et al., 2018); models jointly
learning the parsing and composition function out-
perform those with a fixed structure.

Models using the full or partial annotated data
outperform models relying on the sole downstream
supervision (PTB-∅), in particular on the SICK-R
task. We previously observed that fine-tuning the
parser can lead to tree structure diverging from lin-
guistic patterns. Nonetheless, regarding the down-
stream performance, human annotation appears as
a good initialization for our model.

Models relying on linguistic-driven structures
seem to achieve better performance. Nonetheless,
the difference is thin, and we present here an av-
erage score across trees obtained from all atten-
tion heads. Therefore some attention heads might
present structures as efficient as linguistic patterns.

5 Conclusion and future work

We investigate the relevance of incorporating tree-
like structural bias in the context of sentence se-
mantic inference. To this end, we formulate an
original model for learning tree structure with dis-
tant downstream supervision. Our model is based
on well-known components and could therefore ac-
commodate a variety of parsing architectures such
as graph parsers or attention matrices from BERT.

We evaluate our model on textual entailment and
semantic similarity tasks and outperform sequen-
tial models and tree-structured models relying on
external parsers. Moreover, when initialized on
human-annotated structures, our model improves
inference close to BERT base performance on the
semantic similarity task.

We then conduct an ablation study to quantify
the impact of the parser initialization on the result-
ing structures and downstream performance. We
corroborate that the sole use of downstream super-
vision is insufficient to produce parses that are easy
to interpret. To encourage convergence towards
readable linguistic structures, we examine a num-
ber of initialization setups. Our structures often
converge toward trivial branching patterns, which
have few in common with gold linguistic parses.
Yet, regarding downstream performance, linguistic
insights appear as a relevant initialization.

272

References
Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,

Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
bert: Improving pre-trained transformers with syntax
trees. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 3011–3020. Association
for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 632–642. The Association for Computa-
tional Linguistics.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D. Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing
and sentence understanding. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1724–1734.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
5094–5101. AAAI Press.

Noam Chomsky. 1956. Three models for the description
of language. IRE Trans. Inf. Theory, 2(3):113–124.

Yoeng-Jin Chu. 1965. On the shortest arborescence of a
directed graph. Scientia Sinica, 14:1396–1400.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. In Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
BlackboxNLP@ACL 2019, Florence, Italy, August 1,
2019, pages 276–286. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 199–209. The Association
for Computational Linguistics.

Jack Edmonds et al. 1967. Optimum branchings. Jour-
nal of Research of the national Bureau of Standards
B, 71(4):233–240.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657. Association
for Computational Linguistics.

Yoon Kim, Alexander M. Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019. Unsuper-
vised recurrent neural network grammars. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 1105–1117.
Association for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Trans. Assoc. Comput. Lin-
guistics, 4:521–535.

Yang Liu, Matt Gardner, and Mirella Lapata. 2018.
Structured alignment networks for matching sen-
tences. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 1554–1564. Association for Computational
Linguistics.

273

https://www.aclweb.org/anthology/2021.eacl-main.262/
https://www.aclweb.org/anthology/2021.eacl-main.262/
https://www.aclweb.org/anthology/2021.eacl-main.262/
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/p16-1139
https://doi.org/10.18653/v1/p16-1139
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/n16-1024
https://doi.org/10.18653/v1/n16-1024
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/p19-1356
https://doi.org/10.18653/v1/p19-1356
https://doi.org/10.18653/v1/n19-1114
https://doi.org/10.18653/v1/n19-1114
https://transacl.org/ojs/index.php/tacl/article/view/972
https://transacl.org/ojs/index.php/tacl/article/view/972
https://doi.org/10.18653/v1/d18-1184
https://doi.org/10.18653/v1/d18-1184

Jean Maillard, Stephen Clark, and Dani Yogatama.
2019. Jointly learning sentence embeddings and syn-
tax with unsupervised tree-lstms. Nat. Lang. Eng.,
25(4):433–449.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC 2014,
Reykjavik, Iceland, May 26-31, 2014, pages 216–223.
European Language Resources Association (ELRA).

Vinit Ravishankar, Artur Kulmizev, Mostafa Abdou,
Anders Søgaard, and Joakim Nivre. 2021. Atten-
tion can reflect syntactic structure (if you let it). In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, EACL 2021, Online, April 19
- 23, 2021, pages 3031–3045. Association for Com-
putational Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron C. Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018.
On tree-based neural sentence modeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 4631–4641.
Association for Computational Linguistics.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2011, 27-31 July
2011, John McIntyre Conference Centre, Edinburgh,
UK, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 151–161. ACL.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1556–
1566. The Association for Computer Linguistics.

Yau-Shian Wang, Hung-yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures

into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019, pages 1061–1070. Association for Computa-
tional Linguistics.

Adina Williams, Andrew Drozdov, and Samuel R. Bow-
man. 2018. Do latent tree learning models identify
meaningful structure in sentences? Trans. Assoc.
Comput. Linguistics, 6:253–267.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to com-
pose words into sentences with reinforcement learn-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020.
Semantics-aware BERT for language understanding.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
9628–9635. AAAI Press.

274

https://doi.org/10.1017/S1351324919000184
https://doi.org/10.1017/S1351324919000184
https://www.aclweb.org/anthology/J93-2004.pdf
https://www.aclweb.org/anthology/J93-2004.pdf
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
https://www.aclweb.org/anthology/2021.eacl-main.264/
https://www.aclweb.org/anthology/2021.eacl-main.264/
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://doi.org/10.18653/v1/d18-1492
https://www.aclweb.org/anthology/D11-1014/
https://www.aclweb.org/anthology/D11-1014/
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://transacl.org/ojs/index.php/tacl/article/view/1281
https://transacl.org/ojs/index.php/tacl/article/view/1281
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://ojs.aaai.org/index.php/AAAI/article/view/6510

A Appendices

A.1 SICK-R training configuration
Hyper-parameters We set the hyperparameters
given literature on the domain, in particular regard-
ing choices made in Tai et al. (2015). For all ex-
periments detailed in the current section, the batch
size is fixed to 25, weight decay to 1e−4 and gra-
dient clipping set to 5.0. The learning rate is set
to 0.025 for the TREE-LSTM parameters. When
using a pre-training procedure for the parser, we
set the learning rate to 5e−3 and use the following
warm-up: for the first epoch, the parser is frozen.
For the following epochs, all parameters are trained.
At each epoch, the parser learning rate is divided
by a factor of two. Without pre-training, the learn-
ing rate is set to 5e−4 for the parser. All model
weights are initialized with a Xavier distribution.
The hidden size of the similarity architecture is set
to 50. The TREE-LSTM hidden size is set to 150.
We use the Adagrad optimizer. We do not apply
any dropout. We perform training for a maximum
of 20 epochs and stop when no improvement was
observed on the development set for 3 consecutive
epochs. Regarding the vocabulary, we limit the
size to 20,000 words and initialize the embeddings
layer with 300-dimensional GloVe embeddings7.
The embeddings are not updated during training.

Training infrastructure We trained all models
on a single 1080 Ti Nvidia GPU. Training time for
each epoch is approximately 1 minute. The model
counts 13.7M parameters. Data can be downloaded
using the SentEval package8.

A.2 SNLI training configuration
Hyper-parameters We set the hyper-parameters
given literature on the domain, in particular regard-
ing choices made in Choi et al. (2018). For all
experiments detailed in section 3.2, the batch size
is fixed to 128, weight decay to 0, and gradient clip-
ping set to 5.0. The learning rate is set to 1e−3 for
the TREE-LSTM and the parser. The hidden size
of the similarity architecture is set to 1,024. The
TREE-LSTM hidden size is set to 600. We use the
Adam optimizer. We apply a 0.2 dropout within the
similarity architecture. We perform training for a
maximum of 20 epochs and stop when no improve-
ment was observed on the development set for 3

7https://nlp.stanford.edu/projects/
glove/

8https://github.com/facebookresearch/
SentEval

consecutive epochs. Regarding the vocabulary, we
limit the size to 100,000 words and initialize the
embeddings layer with 300-dimensional GloVe em-
beddings. The embeddings are not updated during
training.

Training infrastructure We trained all models
on a single 1080 Ti Nvidia GPU. Training time
for each epoch is approximately 2h30 hours. The
model counts 13.7M parameters. Data can be
downloaded using the SentEval package9.

A.3 Model Architecture

Regarding the biaffine parser, all parameters are
chosen given Dozat and Manning (2017) recom-
mendations. We use a hidden size of 150 for the
MLPs layers and 100 for the biaffine layer. The
dropout rate is fixed to 0.33. We use an open-
source implementation of the parser and replace
the pos-tags features with character level features.
Therefore we don’t need pos-tags annotations to
parse our corpus10. We encode words using 100-
dimensional GloVe embedding and a character em-
bedding size of 50. Word vectors are then fed to a
bidirectional LSTM with 3 layers of size 400.

A.4 BERT unsupervised parsing

When using BERT to perform unsupervised parsing,
we use the implementation of BERT-base model
from the Transformers library11. When fine-tuning
the parser component, we set the learning rate to
2e−5 When fine-tuning BERT parser, each epoch
takes around 5 hours on the SNLI. Without fine-
tuning, this time is reduced to 90 minutes.

A.5 Visualization of the parses

We illustrate the effect summarize on Table 3 on
some random examples. Figures from the first col-
umn (2a, 2c and 2e) show the parses obtained with-
out updating the parser component on the down-
stream task. Figures from the second column(2b,
2d and 2f) show the evolution of the parses for the
same initialization but after fine-tuning the parser
on the SNLI task. Figures from the first row (2a
and 2b) are initialized using the full PTB, the sec-
ond row (2c and 2d) is initialized using 100 PTB

9https://github.com/facebookresearch/
SentEval

10https://github.com/yzhangcs/
biaffine-parser

11https://huggingface.co/transformers/
model_doc/bert.html

275

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://github.com/yzhangcs/biaffine-parser
https://github.com/yzhangcs/biaffine-parser
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html

(a) Parse obtained using the the PTB-All (×) configuration. (b) Parse obtained using the the PTB-All (✓) configuration.

(c) Parse obtained using the the PTB-100 (×) configuration. (d) Parse obtained using the the PTB-100 (✓) configuration.

(e) Parse obtained using the attention head #1 and without
updating BERT.

(f) Parse obtained using the attention head #1 and updating
BERT.

Figure 2: Example of parse obtained using various configurations from our model. The parser component is
initialized on PTB-All (2a, 2b), PTB-100 (2c, 2d) or BERT (2e, 2f). We either freeze (×) or update (✓) the parser
during the fine tuning on the SNLI. We include the weights α produced from the parser. We report the accuracy
from a single run on the test set.

samples while the one from the last row (2e and 2f)
are initialized using unsupervised patterns.

For the initialization with the PTB, we observe
the fine-tuning makes the tree evolve to trivial struc-
tures and tend to connect every node to an arbi-
trary root. We hypothesize, such trivial structures
present advantages from a computational point of
view. As observed in Shi et al. (2018), trivial trees
without syntax properties might lead to surpris-
ingly good results. Shi et al. (2018) hypothesize
that trivial trees gain might benefit from shallow
and balanced properties.

For BERT parser initialization, we observe the
fine-tuning produces rather sequential patterns,
with words connected to direct neighbors. Some
isolated groups of words also present inner connec-
tions.

276

