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The oscillating onset of the Rayleigh-Bénard convection (RBC) with viscoelastic fluids in a slightly tilted 2-dimension

(2D) rectangular cavity with aspect ratio Γ = 2 was investigated for the first time via direct numerical simulation. A

series of simulations were conducted in the plane of the Rayleigh number (Ra) and the tilt angle (α ∈ [0◦,5◦]) with

three Weissenberg numbers (Wi = (0.1,0.15,0.2)) at a fixed Prandtl number Pr = 7.0. The evolutionary path of the

oscillating convection onset in the (Wi,α)-plane was determined and corresponding complex flow structures were

observed. The inclination of the box delays the onset of the oscillations and the corresponding Rayleigh number Rac

as compared to the horizontal configuration. Oscillating flow structures acquire the attributes of a traveling wave. A

specific feature of the oscillating convection in the case of the horizontal cavity, the periodicity in space and time exists

in the inclined box case as well. But, the evolution of the oscillatory flow structure is very different from the horizontal

case in that the counter-clockwise cell assimilates the clockwise cell [Physical Review Fluids 7, 023301 (2022)].

I. INTRODUCTION

Rayleigh-Bénard convection (RBC) is a simplified non-

linear dynamic model of a slew of physical processes in-

cluding thermal storage and management of electrical equip-

ment, atmospheric physics, chemical processes and mantle

flow among many others. An exhaustive review of the re-

ported research in the literature can be found in references1,2.

Most studies about RBC were carried out with Newtonian

fluids, and comparatively limited work was done with non-

Newtonian fluids. However, this situation has been changed

in recent decades.

The first study on the Rayleigh-Bénard convection with vis-

coelastic fluids (VRBC) can be traced back to Green III 3 , who

experimentally investigated heat transfer characteristics in

VRBC and found the convective oscillating phenomena. His

pioneering work was followed by a series of studies to gain

a deeper understanding of several aspects of the VRBC4–7

together with investigations on the flow reversal in turbu-

lent flow8, overstability9–11, chaos10, properties of the RBC

through linear and nonlinear stability analyses12,13, the ef-

fect of surfactants on the RBC14, experimental findings on

the turbulent15 and yield stress fluids VRBC16,17 and on heat

transfer properties in turbulent VRBC18. Direct numerical

simulation (DNS) added much later to the tool kit for the

study of both laminar and turbulent VRBC made possible re-

markable contributions towards a thorough mapping of this

flow19–21.

It should be noted that all the progress made in the complete

mapping out of the VRBC is related to the horizontal flow

systems. However, horizontally placed flow systems represent

ideal situations and seldom occur in nature and industry. They

are difficult to realize even in laboratory settings. The avail-

able literature on the RBC in tilted flow systems with Newto-

nian fluids shows that any angle of inclination will bring large

departures from all aspects of the RBC determined for the hor-

izontally positioned systems including pattern selection, heat

transfer enhancement and turbulent flow reversal22–25. Torres

et al. 25 determine the evolution of the flow pattern with in-

creasing angle of inclination from horizontal to vertical in a

3-dimension (3D) cube heated and cooled from the side walls

with Pr = 0.71. In their study, the region of flow bifurca-

tion under changing inclination is near the convection onset.

Wang et al. 26 studied the coexistence of the flow states in 2-

dimension (2D) RBC in tilted boxes with Newtonian fluids

(NRBC) and Pr = 0.71 at large aspect ratios and angles of

inclination α ∈ [0,π]. Shishkina and Horn 23 , Zwirner and

Shishkina 24 , Wei and Xia 27 , Vasil’ev et al. 28 reported on the

heat transfer characteristics in tilted NRBC with rich parame-

ters variations for Ra, Pr, Γ and α . Wang et al. 29 investigated

using DNS the effect of α on flow reversal in turbulent RBC

in 2D cavity with two aspect ratios Γ = (1, 2), and mapped

out the flow states in α −Pr space for Ra = 107 and α −Ra

space for Pr = 0.3. They pointed out that the inclination has

the opposite effects on triggering flow reversal for the cases

with Γ = 1,2. It promotes and suppresses it for Γ = 1 and for

Γ = 2, respectively.

Compared to the Newtonian counterpart, the reports about

the tilted Rayleigh-Bénard convection with non-Newtonian

fluids are very few. To our knowledge the only available stud-

ies are by Vinogradov, Khezzar, and Siginer 30 and Khezzar,

Siginer, and Vinogradov 31 . They numerically simulated 2D
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tilted RBC with power-law fluids, and systematically exam-

ined the influences of α , Ra, Pr, and Γ on the heat transfer

capacity of RBC. Beyond that, there is no literature on the

tilted viscoelastic RBC (TVRBC) with viscoelastic fluids with

a nonlinear constitution. It should also be pointed out that

from a strictly mathematical point of view the existence and

uniqueness of the tilted flow configuration is an open question

which has not been explored in depth except for the recent

publications of Neustupa and Siginer32,33.

There is clearly a distinction between weakly elastic VRBC

which shows similarities to the NRBC and strongly elastic

VRBC with much more interesting behavior, regular flow re-

versal for instance. The distinction extends to the convec-

tion onset and the corresponding pattern selection which de-

pends on the rheological parameters Wi and β 34,35. Similar

dependency is also found by Park and Ryu 36 , Park, Shin, and

Sohn 37 also arrived at similar findings through linear and non-

linear stability analysis. We investigate in this paper the effect

of the inclination angle on the VRBC with an emphasis on the

strongly elastic fluids. The influence of the parameters (α , Wi)

on TVRBC in the vicinity of the convection onset is explored

in detail. We work with an aspect ratio of Γ = 2 because flow

patterns in a 2 : 1 cavity with strongly elastic fluids show a

rich variety compared with aspect ratios Γ = 1 and Γ > 335,36

about the critical Rayleigh number (Rac).

The rest of the paper is organized as follows. In Section II,

we briefly introduce the governing equations and numerical

schemes used in the present work. In Section III, the nu-

merical results are presented. Section III D studies the flow

pattern selection in the plane of (α , Wi); Section III B details

two types of spatio-temporal periodic oscillating convection

in TVRBC; Section III C analyses the budget of viscoelastic

kinetic energy for the two types of oscillating flows observed

in TVRBC in order to understand the corresponding physical

mechanisms. Finally, a short summary and future directions

are presented in Section IV.

II. MATHEMATICAL FORMULATION

The computational domain inclined by an angle α over the

horizontal is shown in Fig. 1. The width and height of the

cavity are respectively L and H, and the aspect ratio of the

domain, Γ = L/H, is fixed to 2. A temperature difference

∆T = (T2−T1) is imposed between the bottom and top bound-

aries with T2 > T1. No heat flux or the adiabatic condition is

applied to the vertical cavity walls (∂T/∂x = 0 at x = 0 and

x= L). No-slip boundary condition is imposed for the velocity

on all the boundaries.

A. Governing equations

The gravitational acceleration can be decomposed into two

parts, one component parallel to the bottom heated boundary

and the other perpendicular to the bottom,

gẽg = g(sin(α), cos(α))eg (1)

α

T2

T1

x

y

Horizontal

∂T

∂x
= 0

∂T

∂x
= 0

L

H

g

α

g

FIG. 1: Schematic diagram of the Rayleigh-Bénard

convection with the viscoelastic fluids in an inclined cavity.

where eg is the unit vector in the gravitational direction and

ẽg = (sin(α),cos(α))eg consists of two components of eg in

the parallel and perpendicular directions to the y axis. Using

Eq. (1) in the momentum balance equation, the field equations

with the Oberbeck-Boussinesq approximation read as,

∇ ·u= 0 (2)

ρ0(
∂u

∂ t
+(u ·∇)u) =−∇p̃+∇ ·σ+ρ0α̃(T −T0)gẽg (3)

∂T

∂ t
+(u ·∇)T =

k

ρ0Cp

△T +2µsD : ∇u+τp : ∇u (4)

where u = (u1,u2) stands for the velocity vector with u1 and

u2 representing the velocity components in the x and y direc-

tions, respectively. p̃ = p − ρ0gẽg, T , k, Cp and ρ0 stand

for the pressure, the temperature, the thermal conductivity,

the specific heat and the liquid density at the temperature

T0 = (T2 +T1)/2, respectively. The last two terms in Eq. (4)

represent viscous dissipation and elastic dissipation, further

discussed in detail in Section II D. Total stress σ in the mo-

mentum balance Eq. 8 is decomposed into its components

σ = τs+τp the Newtonian solvent contribution τs = 2µsD and

the viscoelastic polymer contribution τp with µs the solvent

viscosity. D= 1
2
(∇u+∇uT ) is the deformation rate tensor and

τp is the extra-stress tensor. In present work, the Phan-Thien-

Tanner constitutive model (PTT)38,39 is chosen to describe τp:

∇

τp =− 1

λ
τp+2

µp

λ
D− ε

µp

tr(τp)τp−ξ (Dτp+τpD) (5)

where λ is the relaxation time, µp is the polymer viscosity at

zero shear rate, rheological parameters ε and ξ represent the

elongational and slippage behaviors of the macromolecules.
∇

τp indicates the contravariant convected time derivative of the

elastic stress,

∇

τp =
∂τp
∂ t

+(u ·∇)τp−∇u
T ·τp−τp ·∇u (6)
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The following scale factors are used to non-dimensionalize

the governing equations:

x∗ =
x

H
, t∗ =

Uc

H
t, u∗ =

u

Uc

, T ∗ =
T −T0

T2 −T1
,

p∗ =
p

ρ0U2
c

and τ
∗

p
=

τp

ρ0U2
c

where the characteristic velocity is defined as Uc =
κ
H

√
Ra. In

order to simplify the notation, we drop hereafter (∗) from all

the dimensionless variables. Hence, the dimensionless equa-

tions governing 2D tilted Rayleigh-Bénard convection with

viscoelastic fluids and Oberbeck-Boussinesq approximation

are rewritten as:

∇ ·u= 0 (7)

∂u

∂ t
+(u ·∇)u=−∇p+β

Pr√
Ra

∆u+∇ ·τp

+(sin(α),cos(α))PrTeg

(8)

∇

τp+
τp

Wi
√

Ra
−2

1−β

Ma2
D =−ε

√
Ra

(1−β )Pr
tr(τp)τp

−ξ (Dτp+τpD)

(9)

∂T

∂ t
+(u ·∇)T =

1√
Ra

△T +2β
EcPr√

Ra
D:∇u+Ecτp :∇u

(10)

where β = µs/µ0 is the ratio of the solvent viscosity to the

total viscosity µ0 = µs + µp. The boundary conditions read

as,

• At the top boundary y = 1: u1 = u2 = 0; T = 0

• At the bottom boundary y = 0: u1 = u2 = 0; T = 1

• At the side boundaries x = 0,2: u1 = u2 = 0; ∂T
∂x

= 0

The dimensionless parameters include: the Rayleigh num-

ber Ra = α̃g∆T H3/νκ , the Prandtl number Pr = µ0Cp/k,

the Weissenberg number Wi = λκ/H2 and the Mach num-

ber Ma =
√

RaWi/Pr describes the ratio of the inertia force

and the elastic force. The intensity of the elasticity is de-

scribed by the elasticity number E = Re/Wi =
√

Ra/PrWi. In

Eq. (10), the dimensionless Eckert number Ec = U2
c

Cp∆T
quan-

tifies the relationship between the kinetic energy and the en-

thalpy, and is used to characterize the extent of the influence

of the heat dissipation. For thermal convection, the Nusselt

number is used to show the intensity of convective heat trans-

fer, Nu = − ∂T
∂y

∣∣∣
y=0

. The corresponding spatially averaged

Nusselt number Nus is defined as:

Nus =−1

L

L∫

0

∂T

∂y

∣∣∣∣
y=0

dx

Tab. I summarises the dimensionless parameters character-

izing the TVRBC.

TABLE I: Summary of numbers charactering the TVRBC

Ra = α̃g∆T H3/νκ Pr = µ0Cp/k Re =
√

Ra/Pr

β = µs/µ0 Wi = λκ/H2 E =
√

Ra/PrWi

Nu = −∂T/∂y|y=0 Ec = U2
c /Cp∆T

B. Working fluids

The Phan-Thien and Tanner (PTT) model is widely used to

describe the response of viscoelastic fluids under stress. There

are two special constitutive parameters in the PTT model, ε
that governs the elongational response of the fluid and ξ that

controls the non-affine movement of the molecular long chain

lattice relative to the flow of the solvent and quantifies the

shear thinning capability of the fluid in the absence of the for-

mer parameter ε . If both parameters are present in the con-

stitutive structure as is the case of the PTT fluid shear thin-

ning is controlled by both proportionally to the magnitude of

the parameters. The numerical values of the constitutive pa-

rameters ξ and ε in the PTT model obtained by experimen-

tal measurements are usually in the range of ε ∈ [0,0.5] and

ξ ∈ [0,0.7] for different concentrated industrial materials such

as polyethylene (LDPE), molten polyethylene (HDPE) and

polyisobutylene (PIB)40–44. Moderate values of the parame-

ters are adopted in the present work ε = 0.1 and ξ = 0.05,

which is close to the solutions of 2.5% polyisobutylene40.

Other dimensionless parameters are set at: Pr = 7.0, β = 0.2,

Wi = (0.1,0.15,0.2) and α ∈ [0◦,5◦].
The definition of the Weissenberg number Wi used in this

paper is different than the definition used by other researchers

such as Cheng et al. 20 because the reference velocity Uc =
κ
H

√
Ra adopted in this paper depends on Ra. This defi-

nition implies that any change in Ra leads to a change of

Wi. The conventional definition of Wi is independent of Ra,

Wi= κλ/H2. For example, for Ra= 1600 and Wi= 0.1 in the

present work, the equivalent Wi in the work by Cheng et al. 20

(in their work Uc =
√

αgH∆T ) is Wi = 10.58.

C. Numerical procedures

A recently developed in-house solver was adopted to solve

the governing equations. The capability of this solver to sim-

ulate VRBC has been shown in our previous work21,34,35,45.

Various validation tests have been done. The highlight of this

solver is the quasi-linear treatment of the hyperbolic terms

in the momentum equation and the viscoelastic constitutive

equation. As we know, extreme numerical instability can be

brought by the hyperbolicity of the governing equation of the

viscoelastic constitutive equation, which easily leads to nu-

merical divergence. The quasi-linear treatment is used to re-

organize the hyperbolic terms in the momentum equation and

the viscoelastic constitutive equation, which makes them can

be discretized by the HOUC to concentrate numerical dissipa-

tion toward high wavenumbers. A second-order semi-implicit

time scheme is used. The implicit terms are mass conserva-

tion, pressure gradient, molecular diffusion, relaxation term,
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4

and thermal diffusion; other terms including the quasi-linear

forms are explicit. The time integration was carried out us-

ing a second-order backward differential formula (BDF2). In

space, second-order central differencing is applied to most of

the terms except for the quasi-linear parts which are treated

in the eigenspace of Ai by a third-order High-Order Upstream

Central scheme (HOUC3)46,47 according to the sign of each

eigenvalue. Finally, the velocity-pressure coupling is treated

by the projection method.

D. Viscous and elastic dissipation

The magnitudes of the viscous and elastic dissipations in

the VRBC are evaluated through the last two terms on the

RHS of Eq. (10). Fig. 2 shows the spatially-averaged di-

mensionless viscous and elastic dissipation for the case with

α = 0◦, Pr = 7.0, Ra = 1600, β = 0.2 and Wi = 0.1. Vis-

cous dissipation remains always positive and is thus a positive

source term for the temperature field whereas elastic dissipa-

tion is positive for most of the time and negative for a short

time during one period. Therefore elastic dissipation could

lead to decreasing temperatures. Ec can be expressed as

Ec =
U2

c

Cp∆T
=

( α̃
H

√
Ra)2

Cp∆T
=

α̃2Ra

H2Cp∆T
(11)

Substituting the numerical values of the parameters for the

working fluid into Eq. (11) the magnitudes of Ec and 2β EcPr√
Ra

in Eq. (10) determined to be very small O(10−10) and

O(10−11), respectively. 2β EcPr√
Ra

D :∇u and Ec τp : ∇u are

also very small. All that means that the effects of the viscous

and elastic dissipations can be neglected.

III. RESULTS AND DISCUSSION

A. Pattern selection and bifurcation diagrams

In Newtonian RBC it is well known that any inclination

of the cavity cancels the pure conduction regime and results

in a weak 1-cell convective flow for small inclination angles.

With increasing Rayleigh number, the 1-cell convective pat-

tern is transformed continuously into 2-cell convective pattern

through an imperfect pitchfork bifurcation. The same situ-

ation is observed in TVRBC for big β 48 because polymeric

contribution to the viscosity is small and Newtonian solvent

plays an overwhelmingly important role leading to behavior

similar to those of the Newtonian and weakly viscoelastic flu-

ids25.

In the present work we are interested in the cases with small

β . Steady-state convection with a single cell (T 1S) rotating in

the inclination direction always exists when Ra is above zero

for small values of β = 0.2 and α = 2◦ and the remaining

parameters set at Pr = 7.0, Wi = 0.2, ε = 0.1 and ξ = 0.05.

Fig. 3 displays streamlines of the 1-cell convection obtained

for Ra = 800, 960 and 1120: the weak 1-cell convection flows

in the counter-clockwise direction and the temperature field

(a) Time evolution of D:∇u integrated in space

(b) Time evolution of τp :∇u integrated in space

FIG. 2: (a) Viscous dissipation without the coefficient

(2β EcPr√
Ra

) and (b) elastic dissipation without the coefficient

(Ec) when α = 0◦, Pr = 7.0, Ra = 1600, β = 0.1, Wi = 0.1.

is mainly conductive. With further increase of the Rayleigh

number, oscillating convective flows are observed as will be

detailed below.

To clearly understand the flow pattern transition in TVRBC,

we plotted the bifurcation diagram along Ra at fixed α = 2◦

in detail. In the tested cases, rheological parameters are Pr =
7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05. Fig. 4 shows

the bifurcation diagrams in the range of (600 < Ra < 1800)

for TVRBC (α = 2◦) and HVRBC (α = 0◦). The bifurca-

tion diagram in HVRBC follows grey lines for easy compari-

son. The curves with other colors represent different flow pat-

terns in tilted cases, (—) corresponds to stable convection with

counterclockwise single-cell (T 1S), (—) corresponds to time-

dependent oscillating convection with three cells (T 3R), and

(—) to time-dependent oscillating convection with two cells

with horizontal movement (T 2R). The flow pattern branches

and bifurcations are also annotated in the figure in the corre-

sponding colors.

There are two solution branches (positive and negative) for

each pattern of H2R and H3R. Taking H2R as an exam-

ple, the positive and negative values of the branches are the

maximum positive and negative velocities respectively in one

oscillation period. The time-dependent H2R and H3R have

both branches starting from the pure conduction state distin-

guished by the Hopf bifurcations P1 and P2. The colored
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(a) Ra = 800
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0.8
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(b) Ra = 960

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.000.0

0.2

0.4

0.6

0.8

1.0

(c) Ra = 1120

FIG. 3: Streamlines for steady-state convection with 1 cell with α = 2◦, Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05.

600 800 1000 1200 1400 1600 1800
Ra

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

u 2

H1 H2

P1 P2

T1S
T2R
T3R

FIG. 4: The bifurcation diagrams in HVRBC (grey) and TVRBC (colors, α = 2◦), where the y-axis represents u2 at the

monitoring point (x,y) = (7/8,1/2). The simulated cases correspond to Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05.

curves (TVRBC) in Fig. 4, demonstrate that a slight inclina-

tion breaks the pure conduction state found in HVRBC before

P1 and P2, and forms T 1S, which rotates in the same direction

as the inclination. After that, the branches of T 3R grow from

the bifurcation H1. Considering the oscillating flow configu-

ration in HVRBC35, we guess that there may be a certain Ra

range where H2R and H3R may coexist. To obtain another

pattern, we take the stable solution H2R of HVRBC as the

initial value and raise the inclination to α = 2◦. The branches

of T 2R were found, growing from the bifurcation H2. Due

to Fx the component of the buoyancy force parallel to the bot-

tom of the enclosure, the cells in T 2R have the characteristic

of left-right movement (detailed flow structure is in Fig. 5)

compared to H2R. Compared to the bifurcation points P1 and

P2 in HVRBC, H1 and H2 are slightly delayed. It should be

noted that, due to the inclination, the branches of T 2R and
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(a) t1 = 0 (b) t2 = 1
8 λ (c) t3 = 1

4 λ

(d) t4 = 3
8 λ (e) t5 = 1

2 λ (f) t6 = 5
8 λ

(g) t7 = 3
4 λ (h) t8 = 7

8 λ (i) t9 = λ

FIG. 5: Evolution of the periodic flow at α = 2◦, Ra = 1120, when Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05. The

time period λ is equal to 13.76. The green arrows show the growth direction of the main counterclockwise cell.

T 3R are not absolutely symmetric about the x axis, and the

maximum value of the downward velocity is slightly larger

than that of the upward velocity.

B. Oscillating convection structures

In the work of Zheng et al. 35 , Park and Ryu 36 , Park and

Lee 49 on HVRBC, an oscillating convection, which exhibits

strong spatio-temporal periodicity, takes place with Γ = 2 and

a certain range of β and Wi. The time-dependent convective

cells show standing wave characteristics in space in the pattern

of H2R (two cells) meaning that there is no mass exchange be-

tween cells. However, the standing wave characteristics van-

ish in the pattern of H3R. The main reason for the periodic os-

cillating process is the alternating growth (phase difference in

time and space) of the velocity field and the elastic stress field.

The generation and growth of the new vortex is driven by the

elastic stress and buoyancy flux34. The cells in the oscillating

convection are rotating in the clockwise and counterclockwise

directions, and each circulation is of equal importance during

the whole process in HVRBC.

Interestingly, the introduction of an inclination breaks the

symmetry between the cells and a new 2-cell periodic oscil-

lating convection (T 2R) is formed. Take the case with α = 2◦,

Wi = 0.1 and Ra = 1120 as an example, The evolution of the

velocity vector of T 2R in one period in TVRBC is described in

Fig. 5. The time stages (t1− t5) and (t5− t9) present respec-

tively the two half-periods, in which the velocity field is com-

pletely reversed twice. From Fig. 5a to Fig. 5c: the counter-

clockwise and clockwise cells are of about the same size at

the initial time t1, after that the counter-clockwise cell (the

left cell) grows and moves to the right, and almost occupies

the whole cavity at t3. From Fig. 5c to Fig. 5d: the cell keeps

moving to the right and frees the left part for another sec-

ondary cell which is completely developed in Fig. 5e. Then

the left cell is weakened again (Fig. 5f) and the main cell (the

right cell) grows and moves from the right (Fig. 5g) to the left

(Fig. 5h). Finally, the right part of the cavity is freed and an-

other cell is formed again in Figs. 5h and 5i. The repeated

occurrence of the above process forms the time-dependent

oscillating convection in the tilted cavity (T 2R). The main

counter-clockwise cell is always stronger in terms of kinetic

energy than the clockwise one. In the reverse process, it be-

comes bigger and oscillates alternatively from the left to the

right side and from the right to the left side. We call the cell in

counter-clockwise rotation the main cell and the one in clock-

wise rotation the secondary cell.

The evolution of the tilted oscillating convection T3R is

shown in Fig. 6. The main cells (the two counter-clockwise
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(a) t1 = 0 (b) t2 = 1
8 λ (c) t3 = 1

4 λ

(d) t4 = 3
8 λ (e) t5 = 1

2 λ (f) t6 = 5
8 λ

(g) t7 = 3
4 λ (h) t8 = 7

8 λ (i) t9 = λ

FIG. 6: Periodic evolution of the periodic flow at α = 2◦, and Ra = 2080, when Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and

ξ = 0.05. The time period λ is equal to 12.01. The green arrows show the growth direction of the main counterclockwise cells.

cells) near the cavity ends grow and merge to form one large

main cell approximately centered on the cavity, which then

is broken down to form two main cells and initiate a rever-

sal. In Fig. 6a, the main cells are located near the left and

the right ends of the cavity. The secondary cell in the central

part is gradually weakened and absorbed into the main cells

followed by the cell on the right overtaking and merging with

the main cell on the left (Figs. 6b, 6c, 6d). The main cell oc-

cupies the full cavity at t4 (Fig. 6d). The secondary cells form

near the right and left ends of the enclosure at t5 or at half pe-

riod (Fig. 6e) They start growing weaker ceding space to the

growing central main cell at t6 (Fig. 6f). The main cell con-

tinues to grow and occupies the full cavity at t7 (Fig. 6g) . It is

broken into two cells near the left and right ends at t8 (Fig. 6h)

with the secondary cell forming again in the central part of the

cavity. The flow configuration returns to its original setting at

t9 and the oscillation cycle continues.

In the reversal process of T 3R, the two main cells located

near the cavity ends grow and approach each other and merge

in the central part of the cavity and two secondary cells are

formed near the cavity ends on the one hand and on the other

hand the large main cell grows to fill the space close to the

cavity and is broken into two cells filling the cavity ends and

a secondary cell is formed in the central part of the cavity.

Thus, viscoelasticity drives the left-right movement of the

oscillating convection and the periodic assimilation of the sec-

ondary cell by the primary cell.

C. Kinetic energy transfer

The flow pattern and structure of the tilted oscillating con-

vection have been discussed in the previous section. The

viscoelastic kinetic energy budget (VKE)20,50, similar to the

well-known turbulent kinetic energy budget (TKE), is a pow-

erful tool at our disposal to gain a deeper understanding of the

oscillating convection. The actions of different forms of vis-

coelastic kinetic energy in the system can be clearly observed

through VKE, to gain a deeper understanding of the oscilla-

tions in TVRBC. The equation for the instantaneous VKE is

derived from the momentum balance Eq. (8) by integrating the
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components over the computational domain ω .

∮
ω(

∂e
∂ t
)dω =

∮

ω
(−∂ (pu j)

∂x j

+β
Pr√
Ra

∂ 2ei j

∂x2
j

)dω

︸ ︷︷ ︸
ΦD

+
∮

ω
(−β

Pr√
Ra

∂ui

∂x j

∂ui

∂x j

)dω

︸ ︷︷ ︸
ΦV

+
∮

ω
(τi j

∂ui

∂x j

− ∂ (uiτi j)

∂x j

)dω

︸ ︷︷ ︸
ΦG

+
∮

ω
((sin(α),cos(α))PrTegui)dω

︸ ︷︷ ︸
ΦF

(12)

where, e = 1
2
uiui denotes the kinetic energy. In the RHS of

Eq. (12), the first term (ΦD) represents the pressure diffusion

and molecular viscous transport; the second term (ΦV ) rep-

resents the viscous dissipation, the work done by the New-

tonian solvent fluid due to the action of shear forces and

transformed into heat; the third term (ΦG) denotes the en-

ergy transfer between the flow and the macromolecules due to

the stretching and relaxation of the polymeric chains.
∂ (uiτi j)

∂x j

and τi j
∂ui

∂x j
denote the elastic dissipation and the interaction

between the flow and polymeric chains, respectively. The last

term (ΦF ) is the input from the work done by the buoyancy

using the Boussinesq approximation. The kinetic energy map

of a TVRBC system is shown in Fig. 7. The kinetic energy

reservoir EK exchanges with the elastic energy reservoir EE

through the term ΦG and with the buoyancy potential energy

reservoir EF through the term ΦF . ΦD and ΦV exchange di-

rectly with EK . According to the sign of each term, the ki-

netic energy reservoir EK can be enhanced or weakened and

the elastic energy reservoir EE and the buoyancy potential en-

ergy reservoir EF can act as source terms or dissipation terms.

The evolution of the energy transfers can explain very well the

physics of the oscillating convection, a simplified way based

on the temporal and spatial phase differences/delays among

different energy forms, especially, ΦF , ΦG, and E. More de-

tails can be found in the work of Zheng et al. 34,35 .

Fig. 8 plots the energy transfer process in the oscillat-

ing convection at fixed values of the parameters β = 0.2,

Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05. Figs. 8a and 8c

concern the tilted cases (α = 2◦), Figs. 8b and 8d concern the

horizontal cases (α = 0◦). The horizontal cases are plotted

for comparison and to put an emphasis on the effects of the

inclination on energy transfers.

Compared with the horizontal cases, the amplitude of all

energy forms decreases, but the frequency increases, espe-

cially in the 2-cell cases. Also the magnitude of energies in

each half-period in every convection pattern is different. Each

half period in an oscillation period is characterized by momen-

tum energy flowing from one maximum to another maximum.

The energy flow/transfer in each half-period is almost of the

same magnitude, for horizontal cases. The reason is that H2R

or H3R always show spatial symmetry or temporal symmetry.

Specifically, H2R is symmetric about the central x axis at all

times and H3R is axisymmetric about the center point of the

domain at all times. These symmetrical flow structure charac-

EFEK

EE

ΦF

ΦG

ΦV

ΦD

ω

FIG. 7: Energy conversion framework for TVRBC. Three

energy reservoirs exist in the convection system: the kinetic

energy reservoir (EK), the elastic energy reservoir (EE ) and

the buoyancy potential energy reservoir (EF ). Kinetic energy

transport and dissipation within the flow and the

macromolecules are resulted from the interaction between

buoyancy flux input (ΦF ), kinetic diffusion (ΦD), viscous

dissipation of kinetic energy (ΦV ) and energy exchange (ΦG).

teristics lead to the symmetry of the energy transport and the

time period in two half-periods.

As aforementioned in Sec. III B, there are main and sec-

ondary circulations in the domain, the main circulation is al-

ways stronger than the secondary one. The oscillating process

shown in Fig. 6 clearly describes the two half-period processes

including merging of the two main cells (side cells) with the

secondary cell (middle cell) (Fig. 6a to 6e) and one main cell

(middle cell) with two secondary cells (side cells) (Fig. 6e to

6h). In the tilted configuration, there are strong half-periods

(which contain two main circulations) and weak half-periods

(which contain a single secondary cell) in one period. Each

energy type formed in the strong half-period is always greater

than that in the weak half-period. The thermal buoyancy is the

only energy input for the global convection system, Fig. 8c has

two different magnitudes of ΦF in two half-periods.

The repeated energy transfers in two half-periods also oc-

curs in T 2R mode (Fig. 8a), but the physics is not the same

as that in horizontal cases. There is only one main cell and

one secondary cell during the entire oscillation period. The

evolutionary process takes place only between these two cells

(Fig. 5). From the perspective of energy transport, the energy

evolution in these two half periods is unchanged.

Details of the oscillation, u2 at the monitoring point (x,y) =
(7/8,1/2) and the variation of Nus versus dimensionless

time for TVRBC and HVRBC (for comparison) are plotted

in Fig. 9 at the fixed values of the parameters Ra = 1760,

β = 0.2, Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05. The hor-

izontal cases were discussed in detail in the authors’ previous

works35. It is observed that the time period for the velocity

is twice that for Nus. The time evolution of Nus also shows a

strong-weak period in T 3R. Globally, the inclinations tremen-

dously weaken the heat transfer capacity in viscoelastic oscil-

lating convection, especially in 2-cell cases. The peak of Nus

in T 2R and H2R is basically the same as the second peak of

Nus in T 2R and H2R, respectively.
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60 80 100 120 140 160 180 200
t

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

EK ΦD ΦF ΦV ΦG

(a) T 2R, Ra = 1760

60 80 100 120 140 160 180 200
t

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

EK ΦD ΦF ΦV ΦG

(b) H2R, Ra = 1760

150 160 170 180 190 200
t

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

EK ΦD ΦF ΦV ΦG

(c) T 3R, Ra = 1760

150 160 170 180 190 200
t

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

EK ΦD ΦF ΦV ΦG

(d) H3R, Ra = 1760

FIG. 8: Comparison of the time evolution of the integrated quantities in tilted (left) and horizontal (right) VRBC. The

parameters studied are Ra = 1760, β = 0.2, Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05.

−0.2

−0.1

0.0

0.1

0.2

0.3

u 2

T2R T3R

60 80 100 120 140 160 180 200
Nondimensional time (t)

1.0

1.1

1.2

1.3

1.4

N
u s

(a) (u2,Nu) vs. t in TVRBC with Ra = 1760.

−0.2

−0.1

0.0

0.1

0.2

0.3

u 2

60 80 100 120 140 160 180 200
Nondimensional time (t)

1.0

1.1

1.2

1.3

1.4

N
u s

H2R H3R

(b) (u2,Nu) vs. t in HVRBC with Ra = 1760.

FIG. 9: (a) and (b) show the variation of u2 at the monitoring point (x,y) = (7/8,1/2) and the variation of Nus versus

dimensionless time in TVRBC and HVRBC, respectively. The periodic averaged values of Nus are 1.05(T 2R), 1.07(T 3R),

1.13(H2R) and 1.10(H3R), respectively. In the figure, (—) and (—) relate to 2R and 3R, respectively. Ra = 1760, β = 0.2,

Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05.

D. Weissenberg number and inclination dependence

The influence of Wi and α on the flow pattern selection

in TVRBC with Ra is presented in the vicinity of the imper-

fect bifurcation, depicting the first transition from the steady

convection to the oscillating convection in the tilted config-

uration. The relevant parameters Wi = (0.1,0.15,0.2) and

α ∈ [0◦,5◦] and the corresponding flow states are summarised

in Fig. 10. It should be noted that large enough α and Wi will

increase the local intensity of the elasticity (Ma) and thus may

force the violation of the criterion for the convergence of this

solver, namely τii ≥ 1−β
Ma2 depending on the local Re and Wi.
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(a) Wi = 0.1 (b) Wi = 0.15

(c) Wi = 0.2

.

FIG. 10: Phase diagrams in the Ra−α plane for Wi = (0.1,0.15,0.2). Green triangles denote pure conduction, blue circles

correspond to time-dependent reversal convection with 2 cells, red crosses represent time-dependent reversal convection with 3

cells, pink crosses indicate steady convection with 2 cells and brown squares represent steady convection with a single cell.

The details are available in our previous work21,35. Therefore,

Fig. 10 does not show the cases with big α and Wi, but, that

does not affect the analysis of this paper. As a reminder, we

again point out here that the values of the Weissenberg num-

ber Wi as defined in this paper are equivalent to much higher

values of the Wi defined in the traditional way. For instance,

as we already pointed out in Sec. II B the value of Wi = 0.1
in this paper corresponds to Wi = 10.58 in the work of Cheng

et al. 20 . Fig. 10 clarifies that there is no pure conduction state

in the tilted cases. The original pure conduction state in hor-

izontal cases breaks down immediately and convection starts

as soon as a small inclination is introduced. As an example

see the flow configuration changing from (α = 0◦, Wi = 0.1,

Ra = 800) to (α = 1◦, Wi = 0.1, Ra = 800).

As Ra further increases, take the case with Wi = 0.1 and

α = 1◦ as an example, the flow state quickly crosses the re-

gion of T 1S, and changes to the time-dependent reversal con-

vection with two or three rolls (T 2R or T 3R). In fact, the time-

dependent oscillating convection in TVRBC presents different

features compared with that in HVRBC. The cells in TVRBC

are characterized by left-right movement under the effect of

gravity described in detail in Sec. III B. In horizontal cases,

the flow structure of the time-dependent oscillating convec-

tion with multi-cells shows similarities to the standing wave

meaning no mass transfer takes place between cells and cells

oscillate within their own space. Details are available in35.

The bifurcation causing the transition of T 1S to T 2R/T 3R is

what’s called an imperfect bifurcation. Which one of T 2R or

T 3R takes place first depends on the elasticity of the working

fluids. For instance, T 2R takes place earlier when Wi is larger,

as shown in cases with Wi = (1.25,0.2), Figs. 10a and 10b.

With further increase of the angle of inclination, the un-

stable oscillating convection disappears, and only the flow

pattern T 1S is observed, as is the case with α = 3◦ when

Wi = 0.2. The critical tilt angle for turbulent Newtonian

Rayleigh-Bénard convection with Ra = 4 × 107, Pr = 2 is

about 7◦29. That means the horizontal component Fx of the

buoyancy force plays a greater role in initiating the oscillat-

ing mode with an increasing inclination angle. We observe

that in Fig. 10 the flow transition from stable convection T 1S

to time-dependent oscillating convection T 2R will occur first

as Wi increases. In addition, T 3R is delayed as Wi increases.
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In general, the increase in inclination makes the convection

system more stable, but elasticity works against this effect.

IV. CONCLUDING REMARKS

Effects of the inclination of the flow configuration on the

Rayleigh-Bénard convection with strongly elastic viscoelas-

tic fluids, highly relevant to the real-life situations are investi-

gated numerically for the first time through an in-house solver.

The computational domain is a 2D rectangular cavity with an

aspect ratio of 2. The magnitude of the tilted angle is limited

to a small range to observe the related complex flow bifurca-

tions when Ra is in the vicinity of Rac. Large inclinations

beget steady convection especially for large aspect ratios with

Newtonian fluids as well29. The major findings for the tilted

Rayleigh-Bénard convection with viscoelastic fluids center on

the delayed imperfect bifurcation and the oscillating convec-

tion acquiring the feature of a left-right movement.

The combined impact of (α , Wi) on the flow pattern selec-

tion in the tilted Rayleigh-Bénard convection with viscoelas-

tic fluids is investigated in detail. In the vicinity of Rac for

the convection onset, three types of flow patterns, one steady

mode and two unstable modes with different properties, are

found for the Rayleigh-Bénard convection with strongly elas-

tic viscoelastic fluids. The flow structures of different modes

are depicted and explained in Sec. III B. The influence of the

inclination on the convection structure stability is studied. The

viscoelastic kinetic energy budget is very helpful in under-

standing the energy transfer process in the Rayleigh-Bénard

convection in the tilted configuration with viscoelastic fluids.

The results are important to help us understand the onset and

the evolution of the oscillatory flow in the Rayleigh-Bénard

convection with viscoelastic fluids in a tilted 2D box.
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