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I. INTRODUCTION

Rayleigh-Bénard convection (RBC) is a simplified nonlinear dynamic model of a slew of physical processes including thermal storage and management of electrical equipment, atmospheric physics, chemical processes and mantle flow among many others. An exhaustive review of the reported research in the literature can be found in references [START_REF] Bodenschatz | Recent developments in Rayleigh-Bénard convection[END_REF][START_REF] Manneville | Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work[END_REF] . Most studies about RBC were carried out with Newtonian fluids, and comparatively limited work was done with non-Newtonian fluids. However, this situation has been changed in recent decades.

The first study on the Rayleigh-Bénard convection with viscoelastic fluids (VRBC) can be traced back to Green III [START_REF] Green | Oscillating convection in an elasticoviscous liquid[END_REF] , who experimentally investigated heat transfer characteristics in VRBC and found the convective oscillating phenomena. His pioneering work was followed by a series of studies to gain a deeper understanding of several aspects of the VRBC [START_REF] Hiromitsu | Overstability of a viscoelastic liquid layer with internal heat generation[END_REF][START_REF] Kolkka | On the convected linear stability of a viscoelastic Oldroyd-B fluid heated from below[END_REF][START_REF] Park | Hopf bifurcations of viscoelastic fluids heated from below[END_REF][START_REF] Siddheshwar | Effect of time-periodic vertical oscillations of the Rayleigh-Bénard system on nonlinear convection in viscoelastic liquids[END_REF] together with investigations on the flow reversal in turbulent flow [START_REF] Castillo-Castellanos | Reversal cycle in square Rayleigh-Bénard cells in turbulent regime[END_REF] , overstability [START_REF] Vest | Overstability of a viscoelastic fluid layer heated from below[END_REF][START_REF] Khayat | Chaos and overstability in the thermal convection of viscoelastic fluids[END_REF][START_REF] Khayat | Non-linear overstability in the thermal convection of viscoelastic fluids[END_REF] , chaos [START_REF] Khayat | Chaos and overstability in the thermal convection of viscoelastic fluids[END_REF] , properties of the RBC through linear and nonlinear stability analyses [START_REF] Eltayeb | Nonlinear thermal convection in an elasticoviscous layer heated from below[END_REF][START_REF] Park | Nonlinear convective stability problems of viscoelastic fluids in finite domains[END_REF] , the effect of surfactants on the RBC [START_REF] Wei | The effect of surfactant solutions on flow structures in turbulent Rayleigh-Bénard convection[END_REF] , experimental findings on the turbulent [START_REF] Cai | The polymer effect on turbulent Rayleigh-Bénard convection based on piv experiments[END_REF] and yield stress fluids VRBC [START_REF] Metivier | Oscillatory Rayleigh-Bénard convection in elasto-viscoplastic gels[END_REF][START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] and on heat transfer properties in turbulent VRBC [START_REF] Wei | Enhanced and reduced heat transport in turbulent thermal convection with polymer additives[END_REF] . Direct numerical simulation (DNS) added much later to the tool kit for the study of both laminar and turbulent VRBC made possible remarkable contributions towards a thorough mapping of this flow [START_REF] Cai | Study on the characteristics of Rayleigh-Bénard convection with viscoelastic fluids[END_REF][START_REF] Cheng | Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection[END_REF][START_REF] Zheng | A new approach to the numerical modeling of the viscoelastic Rayleigh-Bénard convection[END_REF] .

It should be noted that all the progress made in the complete mapping out of the VRBC is related to the horizontal flow systems. However, horizontally placed flow systems represent ideal situations and seldom occur in nature and industry. They are difficult to realize even in laboratory settings. The available literature on the RBC in tilted flow systems with Newtonian fluids shows that any angle of inclination will bring large departures from all aspects of the RBC determined for the horizontally positioned systems including pattern selection, heat transfer enhancement and turbulent flow reversal [START_REF] Guo | The effect of cell tilting on turbulent thermal convection in a rectangular cell[END_REF][START_REF] Shishkina | Thermal convection in inclined cylindrical containers[END_REF][START_REF] Zwirner | Confined inclined thermal convection in low-Prandtl-number fluids[END_REF][START_REF] Torres | Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure[END_REF] . Torres et al. [START_REF] Torres | Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure[END_REF] determine the evolution of the flow pattern with increasing angle of inclination from horizontal to vertical in a 3-dimension (3D) cube heated and cooled from the side walls with Pr = 0.71. In their study, the region of flow bifurcation under changing inclination is near the convection onset. Wang et al. [START_REF] Wang | Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios[END_REF] studied the coexistence of the flow states in 2dimension (2D) RBC in tilted boxes with Newtonian fluids (NRBC) and Pr = 0.71 at large aspect ratios and angles of inclination α ∈ [0, π]. Shishkina and Horn [START_REF] Shishkina | Thermal convection in inclined cylindrical containers[END_REF] , Zwirner and Shishkina [START_REF] Zwirner | Confined inclined thermal convection in low-Prandtl-number fluids[END_REF] , Wei and Xia [START_REF] Wei | Viscous boundary layer properties in turbulent thermal convection in a cylindrical cell: the effect of cell tilting[END_REF] , Vasil'ev et al. [START_REF] Vasil'ev | Turbulent convective heat transfer in an inclined tube filled with sodium[END_REF] reported on the heat transfer characteristics in tilted NRBC with rich parameters variations for Ra, Pr, Γ and α. Wang et al. [START_REF] Wang | Flow reversals in two-dimensional thermal convection in tilted cells[END_REF] investigated using DNS the effect of α on flow reversal in turbulent RBC in 2D cavity with two aspect ratios Γ = (1, 2), and mapped out the flow states in α -Pr space for Ra = 10 7 and α -Ra space for Pr = 0.3. They pointed out that the inclination has the opposite effects on triggering flow reversal for the cases with Γ = 1, 2. It promotes and suppresses it for Γ = 1 and for Γ = 2, respectively.

Compared to the Newtonian counterpart, the reports about the tilted Rayleigh-Bénard convection with non-Newtonian fluids are very few. To our knowledge the only available studies are by Vinogradov, Khezzar, and Siginer [START_REF] Vinogradov | Heat transfer of nonnewtonian dilatant power law fluids in square and rectangular cavities[END_REF] and Khezzar, Siginer, and Vinogradov [START_REF] Khezzar | Natural convection of power law fluids in inclined cavities[END_REF] . They numerically simulated 2D This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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tilted RBC with power-law fluids, and systematically examined the influences of α, Ra, Pr, and Γ on the heat transfer capacity of RBC. Beyond that, there is no literature on the tilted viscoelastic RBC (TVRBC) with viscoelastic fluids with a nonlinear constitution. It should also be pointed out that from a strictly mathematical point of view the existence and uniqueness of the tilted flow configuration is an open question which has not been explored in depth except for the recent publications of Neustupa and Siginer [START_REF] Neustupa | Existence and structure of steady solutions of the bénard problem in a two dimensional quadrangular cavity[END_REF][START_REF] Neustupa | Structure of the set of stationary solutions to the equations of motion of a class of generalized newtonian fluids[END_REF] .

There is clearly a distinction between weakly elastic VRBC which shows similarities to the NRBC and strongly elastic VRBC with much more interesting behavior, regular flow reversal for instance. The distinction extends to the convection onset and the corresponding pattern selection which depends on the rheological parameters Wi and β [START_REF] Zheng | Timedependent oscillating viscoelastic Rayleigh-Bénard convection: viscoelastic kinetic energy budget analysis[END_REF][START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] . Similar dependency is also found by Park and Ryu 36 , Park, Shin, and Sohn 37 also arrived at similar findings through linear and nonlinear stability analysis. We investigate in this paper the effect of the inclination angle on the VRBC with an emphasis on the strongly elastic fluids. The influence of the parameters (α, Wi) on TVRBC in the vicinity of the convection onset is explored in detail. We work with an aspect ratio of Γ = 2 because flow patterns in a 2 : 1 cavity with strongly elastic fluids show a rich variety compared with aspect ratios Γ = 1 and Γ > 3 [START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF][START_REF] Park | Rayleigh-Bénard convection of viscoelastic fluids in finite domains[END_REF] about the critical Rayleigh number (Rac).

The rest of the paper is organized as follows. In Section II, we briefly introduce the governing equations and numerical schemes used in the present work. In Section III, the numerical results are presented. Section III D studies the flow pattern selection in the plane of (α, Wi); Section III B details two types of spatio-temporal periodic oscillating convection in TVRBC; Section III C analyses the budget of viscoelastic kinetic energy for the two types of oscillating flows observed in TVRBC in order to understand the corresponding physical mechanisms. Finally, a short summary and future directions are presented in Section IV.

II. MATHEMATICAL FORMULATION

The computational domain inclined by an angle α over the horizontal is shown in Fig. 1. The width and height of the cavity are respectively L and H, and the aspect ratio of the domain, Γ = L/H, is fixed to 2. A temperature difference ∆T = (T 2 -T 1 ) is imposed between the bottom and top boundaries with T 2 > T 1 . No heat flux or the adiabatic condition is applied to the vertical cavity walls (∂ T /∂ x = 0 at x = 0 and x = L). No-slip boundary condition is imposed for the velocity on all the boundaries.

A. Governing equations

The gravitational acceleration can be decomposed into two parts, one component parallel to the bottom heated boundary and the other perpendicular to the bottom, g e g = g(sin(α), cos(α))e g where e g is the unit vector in the gravitational direction and e g = (sin(α), cos(α))e g consists of two components of e g in the parallel and perpendicular directions to the y axis. Using Eq. ( 1) in the momentum balance equation, the field equations with the Oberbeck-Boussinesq approximation read as,

∇ • u = 0 (2) ρ 0 ( ∂ u ∂t + (u • ∇)u) = -∇ p + ∇ • σ + ρ 0 α(T -T 0 )g e g (3) 
∂ T ∂t + (u • ∇)T = k ρ 0 C p △T + 2µ s D : ∇u + τ p : ∇u (4)
where u = (u 1 , u 2 ) stands for the velocity vector with u 1 and u 2 representing the velocity components in the x and y directions, respectively. p = p -ρ 0 g e g , T , k, C p and ρ 0 stand for the pressure, the temperature, the thermal conductivity, the specific heat and the liquid density at the temperature T 0 = (T 2 + T 1 )/2, respectively. The last two terms in Eq. ( 4) represent viscous dissipation and elastic dissipation, further discussed in detail in Section II D. Total stress σ in the momentum balance Eq. 8 is decomposed into its components σ = τ s +τ p the Newtonian solvent contribution τ s = 2µ s D and the viscoelastic polymer contribution τ p with µ s the solvent viscosity. D = 1 2 (∇u+∇u T ) is the deformation rate tensor and τ p is the extra-stress tensor. In present work, the Phan-Thien-Tanner constitutive model (PTT) [START_REF] Thien | A new constitutive equation derived from network theory[END_REF][START_REF] Siginer | Developments in the Flow of Complex Fluids in Tubes[END_REF] is chosen to describe τ p :

∇ τ p = - 1 λ τ p + 2 µ p λ D - ε µ p tr(τ p )τ p -ξ (Dτ p + τ p D) ( 5 
)
where λ is the relaxation time, µ p is the polymer viscosity at zero shear rate, rheological parameters ε and ξ represent the elongational and slippage behaviors of the macromolecules.

∇ τ p indicates the contravariant convected time derivative of the elastic stress,

∇ τ p = ∂ τ p ∂t + (u • ∇)τ p -∇u T • τ p -τ p • ∇u (6) 
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The following scale factors are used to non-dimensionalize the governing equations:

x * = x H , t * = U c H t, u * = u U c , T * = T -T 0 T 2 -T 1 , p * = p ρ 0 U 2 c and τ * p = τ p ρ 0 U 2 c
where the characteristic velocity is defined as

U c = κ H √
Ra. In order to simplify the notation, we drop hereafter ( * ) from all the dimensionless variables. Hence, the dimensionless equations governing 2D tilted Rayleigh-Bénard convection with viscoelastic fluids and Oberbeck-Boussinesq approximation are rewritten as:

∇ • u = 0 (7) ∂ u ∂t + (u • ∇)u = -∇p + β Pr √ Ra ∆u + ∇ • τ p +(sin(α), cos(α))PrTe g (8) 
∇ Cp∆T quantifies the relationship between the kinetic energy and the enthalpy, and is used to characterize the extent of the influence of the heat dissipation. For thermal convection, the Nusselt number is used to show the intensity of convective heat transfer, Nu = -∂ T ∂ y y=0

τ p + τ p Wi √ Ra -2 1 -β Ma 2 D = -ε √ Ra (1 -β )Pr tr(τ p )τ p -ξ (Dτ p + τ p D) (9) 
∂ T ∂t + (u • ∇)T = 1 √ Ra △T + 2β EcPr √ Ra D:∇u + Ecτ p : ∇u (10) 
. The corresponding spatially averaged Nusselt number Nu s is defined as:

Nu s = - 1 L L 0 ∂ T ∂ y y=0 dx
Tab. I summarises the dimensionless parameters characterizing the TVRBC.

TABLE I: Summary of numbers charactering the TVRBC

Ra = αg∆T H 3 /νκ Pr = µ 0 C p /k Re = √ Ra/Pr β = µ s /µ 0 Wi = λ κ/H 2 E = √ Ra/PrWi Nu = -∂ T /∂ y| y=0 Ec = U 2 c /C p ∆T

B. Working fluids

The Phan-Thien and Tanner (PTT) model is widely used to describe the response of viscoelastic fluids under stress. There are two special constitutive parameters in the PTT model, ε that governs the elongational response of the fluid and ξ that controls the non-affine movement of the molecular long chain lattice relative to the flow of the solvent and quantifies the shear thinning capability of the fluid in the absence of the former parameter ε. If both parameters are present in the constitutive structure as is the case of the PTT fluid shear thinning is controlled by both proportionally to the magnitude of the parameters. The numerical values of the constitutive parameters ξ and ε in the PTT model obtained by experimental measurements are usually in the range of ε ∈ [0, 0.5] and ξ ∈ [0, 0.7] for different concentrated industrial materials such as polyethylene (LDPE), molten polyethylene (HDPE) and polyisobutylene (PIB) [START_REF] Schoonen | A 3d numerical/experimental study on a stagnation flow of a polyisobutylene solution[END_REF][START_REF] Quinzani | Birefringence and laser-doppler velocimetry (ldv) studies of viscoelastic flow through a planar contraction[END_REF][START_REF] Azaiez | Entry flow calculations using multi-mode models[END_REF][START_REF] Carrot | Experimental validation of non linear network models[END_REF][START_REF] Larson | Constitutive equations for polymer melts and solutions: Butterworths series in chemical engineering[END_REF] . Moderate values of the parameters are adopted in the present work ε = 0.1 and ξ = 0.05, which is close to the solutions of 2.5% polyisobutylene [START_REF] Schoonen | A 3d numerical/experimental study on a stagnation flow of a polyisobutylene solution[END_REF] . Other dimensionless parameters are set at:

Pr = 7.0, β = 0.2, Wi = (0.1, 0.15, 0.2) and α ∈ [0 • , 5 • ].
The definition of the Weissenberg number Wi used in this paper is different than the definition used by other researchers such as Cheng et al. [START_REF] Cheng | Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection[END_REF] because the reference velocity U c = κ H √ Ra adopted in this paper depends on Ra. This definition implies that any change in Ra leads to a change of Wi. The conventional definition of Wi is independent of Ra, Wi = κλ /H 2 . For example, for Ra = 1600 and Wi = 0.1 in the present work, the equivalent Wi in the work by Cheng et al. [START_REF] Cheng | Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection[END_REF] (in their work U c = √ αgH∆T ) is Wi = 10.58.

C. Numerical procedures

A recently developed in-house solver was adopted to solve the governing equations. The capability of this solver to simulate VRBC has been shown in our previous work [START_REF] Zheng | A new approach to the numerical modeling of the viscoelastic Rayleigh-Bénard convection[END_REF][START_REF] Zheng | Timedependent oscillating viscoelastic Rayleigh-Bénard convection: viscoelastic kinetic energy budget analysis[END_REF][START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF][START_REF] Hagani | Numerical modeling of non-affine viscoelastic fluid flow including viscous dissipation through a square cross-section duct: Heat transfer enhancement due to the inertia and the elastic effects[END_REF] . Various validation tests have been done. The highlight of this solver is the quasi-linear treatment of the hyperbolic terms in the momentum equation and the viscoelastic constitutive equation. As we know, extreme numerical instability can be brought by the hyperbolicity of the governing equation of the viscoelastic constitutive equation, which easily leads to numerical divergence. The quasi-linear treatment is used to reorganize the hyperbolic terms in the momentum equation and the viscoelastic constitutive equation, which makes them can be discretized by the HOUC to concentrate numerical dissipation toward high wavenumbers. A second-order semi-implicit time scheme is used. The implicit terms are mass conservation, pressure gradient, molecular diffusion, relaxation term, This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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D. Viscous and elastic dissipation

The magnitudes of the viscous and elastic dissipations in the VRBC are evaluated through the last two terms on the RHS of Eq. ( 10). Fig. 2 shows the spatially-averaged dimensionless viscous and elastic dissipation for the case with α = 0 • , Pr = 7.0, Ra = 1600, β = 0.2 and Wi = 0.1. Viscous dissipation remains always positive and is thus a positive source term for the temperature field whereas elastic dissipation is positive for most of the time and negative for a short time during one period. Therefore elastic dissipation could lead to decreasing temperatures. Ec can be expressed as

Ec = U 2 c C p ∆T = ( α H √ Ra) 2 C p ∆T = α2 Ra H 2 C p ∆T (11) 
Substituting the numerical values of the parameters for the working fluid into Eq. ( 11) the magnitudes of Ec and 2β EcPr √ Ra in Eq. ( 10) determined to be very small O(10 -10 ) and O(10 -11 ), respectively. 2β EcPr √ Ra D :∇u and Ec τ p : ∇u are also very small. All that means that the effects of the viscous and elastic dissipations can be neglected.

III. RESULTS AND DISCUSSION

A. Pattern selection and bifurcation diagrams

In Newtonian RBC it is well known that any inclination of the cavity cancels the pure conduction regime and results in a weak 1-cell convective flow for small inclination angles. With increasing Rayleigh number, the 1-cell convective pattern is transformed continuously into 2-cell convective pattern through an imperfect pitchfork bifurcation. The same situation is observed in TVRBC for big β 48 because polymeric contribution to the viscosity is small and Newtonian solvent plays an overwhelmingly important role leading to behavior similar to those of the Newtonian and weakly viscoelastic fluids [START_REF] Torres | Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure[END_REF] .

In the present work we are interested in the cases with small β . Steady-state convection with a single cell (T 1S) rotating in the inclination direction always exists when Ra is above zero for small values of β = 0.2 and α = 2 • and the remaining parameters set at Pr = 7.0, Wi = 0.2, ε = 0.1 and ξ = 0.05. Fig. 3 displays streamlines of the 1-cell convection obtained for Ra = 800, 960 and 1120: the weak 1-cell convection flows in the counter-clockwise direction and the temperature field curves (TVRBC) in Fig. 4, demonstrate that a slight inclination breaks the pure conduction state found in HVRBC before P1 and P2, and forms T 1S, which rotates in the same direction as the inclination. After that, the branches of T 3R grow from the bifurcation H1. Considering the oscillating flow configuration in HVRBC [START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] , we guess that there may be a certain Ra range where H2R and H3R may coexist. To obtain another pattern, we take the stable solution H2R of HVRBC as the initial value and raise the inclination to α = 2 • . The branches of T 2R were found, growing from the bifurcation H2. Due to F x the component of the buoyancy force parallel to the bottom of the enclosure, the cells in T 2R have the characteristic of left-right movement (detailed flow structure is in Fig. 5) compared to H2R. Compared to the bifurcation points P1 and P2 in HVRBC, H1 and H2 are slightly delayed. It should be noted that, due to the inclination, the branches of T 2R and This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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B. Oscillating convection structures

In the work of Zheng et al. [START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] , Park and Ryu 36 , Park and Lee [START_REF] Park | Nonlinear hydrodynamic stability of viscoelastic fluids heated from below[END_REF] on HVRBC, an oscillating convection, which exhibits strong spatio-temporal periodicity, takes place with Γ = 2 and a certain range of β and Wi. The time-dependent convective cells show standing wave characteristics in space in the pattern of H2R (two cells) meaning that there is no mass exchange between cells. However, the standing wave characteristics vanish in the pattern of H3R. The main reason for the periodic oscillating process is the alternating growth (phase difference in time and space) of the velocity field and the elastic stress field. The generation and growth of the new vortex is driven by the elastic stress and buoyancy flux [START_REF] Zheng | Timedependent oscillating viscoelastic Rayleigh-Bénard convection: viscoelastic kinetic energy budget analysis[END_REF] . The cells in the oscillating convection are rotating in the clockwise and counterclockwise directions, and each circulation is of equal importance during the whole process in HVRBC.

Interestingly, the introduction of an inclination breaks the symmetry between the cells and a new 2-cell periodic oscillating convection (T 2R) is formed. Take the case with α = 2 • , Wi = 0.1 and Ra = 1120 as an example, The evolution of the velocity vector of T 2R in one period in TVRBC is described in Fig. 5. The time stages (t1 -t5) and (t5 -t9) present respectively the two half-periods, in which the velocity field is completely reversed twice. From Fig. 5a to Fig. 5c: the counterclockwise and clockwise cells are of about the same size at the initial time t1, after that the counter-clockwise cell (the left cell) grows and moves to the right, and almost occupies the whole cavity at t3. From Fig. 5c to Fig. 5d: the cell keeps moving to the right and frees the left part for another secondary cell which is completely developed in Fig. 5e. Then the left cell is weakened again (Fig. 5f) and the main cell (the right cell) grows and moves from the right (Fig. 5g) to the left (Fig. 5h). Finally, the right part of the cavity is freed and another cell is formed again in Figs. 5h and5i. The repeated occurrence of the above process forms the time-dependent oscillating convection in the tilted cavity (T 2R). The main counter-clockwise cell is always stronger in terms of kinetic energy than the clockwise one. In the reverse process, it becomes bigger and oscillates alternatively from the left to the right side and from the right to the left side. We call the cell in counter-clockwise rotation the main cell and the one in clockwise rotation the secondary cell.

The evolution of the tilted oscillating convection T3R is shown in Fig. 6. The main cells (the two counter-clockwise This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0137501 cells) near the cavity ends grow and merge to form one large main cell approximately centered on the cavity, which then is broken down to form two main cells and initiate a reversal. In Fig. 6a, the main cells are located near the left and the right ends of the cavity. The secondary cell in the central part is gradually weakened and absorbed into the main cells followed by the cell on the right overtaking and merging with the main cell on the left (Figs. 6b,6c,6d). The main cell occupies the full cavity at t4 (Fig. 6d). The secondary cells form near the right and left ends of the enclosure at t5 or at half period (Fig. 6e) They start growing weaker ceding space to the growing central main cell at t6 (Fig. 6f). The main cell continues to grow and occupies the full cavity at t7 (Fig. 6g) . It is broken into two cells near the left and right ends at t8 (Fig. 6h) with the secondary cell forming again in the central part of the cavity. The flow configuration returns to its original setting at t9 and the oscillation cycle continues.

(a) t1 = 0 (b) t2 = 1 8 λ (c) t3 = 1 4 λ (d) t4 = 3 8 λ (e) t5 = 1 2 λ (f) t6 = 5 8 λ (g) t7 = 3 4 λ (h) t8 = 7 8 λ (i) t9 = λ
In the reversal process of T 3R, the two main cells located near the cavity ends grow and approach each other and merge in the central part of the cavity and two secondary cells are formed near the cavity ends on the one hand and on the other hand the large main cell grows to fill the space close to the cavity and is broken into two cells filling the cavity ends and a secondary cell is formed in the central part of the cavity.

Thus, viscoelasticity drives the left-right movement of the oscillating convection and the periodic assimilation of the secondary cell by the primary cell.

C. Kinetic energy transfer

The flow pattern and structure of the tilted oscillating convection have been discussed in the previous section. The viscoelastic kinetic energy budget (VKE) [START_REF] Cheng | Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection[END_REF][START_REF] Li | Numerical study on secondary flows of viscoelastic fluids in straight ducts: Origin analysis and parametric effects[END_REF] , similar to the well-known turbulent kinetic energy budget (TKE), is a powerful tool at our disposal to gain a deeper understanding of the oscillating convection. The actions of different forms of viscoelastic kinetic energy in the system can be clearly observed through VKE, to gain a deeper understanding of the oscillations in TVRBC. The equation for the instantaneous VKE is derived from the momentum balance Eq. ( 8) by integrating the This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0137501 components over the computational domain ω.

ω ( ∂ e ∂t )dω = ω (- ∂ (pu j ) ∂ x j + β Pr √ Ra ∂ 2 e i j ∂ x 2 j )dω ΦD + ω (-β Pr √ Ra ∂ u i ∂ x j ∂ u i ∂ x j )dω ΦV + ω (τ i j ∂ u i ∂ x j - ∂ (u i τ i j ) ∂ x j )dω ΦG + ω ((sin(α), cos(α))PrT e g u i )dω ΦF (12) 
where, e = 1 2 u i u i denotes the kinetic energy. In the RHS of Eq. ( 12), the first term (Φ D ) represents the pressure diffusion and molecular viscous transport; the second term (Φ V ) represents the viscous dissipation, the work done by the Newtonian solvent fluid due to the action of shear forces and transformed into heat; the third term (Φ G ) denotes the energy transfer between the flow and the macromolecules due to the stretching and relaxation of the polymeric chains.

∂ (u i τ i j ) ∂ x j
and τ i j

∂ u i
∂ x j denote the elastic dissipation and the interaction between the flow and polymeric chains, respectively. The last term (Φ F ) is the input from the work done by the buoyancy using the Boussinesq approximation. The kinetic energy map of a TVRBC system is shown in Fig. 7. The kinetic energy reservoir E K exchanges with the elastic energy reservoir E E through the term Φ G and with the buoyancy potential energy reservoir E F through the term Φ F . Φ D and Φ V exchange directly with E K . According to the sign of each term, the kinetic energy reservoir E K can be enhanced or weakened and the elastic energy reservoir E E and the buoyancy potential energy reservoir E F can act as source terms or dissipation terms. The evolution of the energy transfers can explain very well the physics of the oscillating convection, a simplified way based on the temporal and spatial phase differences/delays among different energy forms, especially, Φ F , Φ G , and E. More details can be found in the work of Zheng et al. [START_REF] Zheng | Timedependent oscillating viscoelastic Rayleigh-Bénard convection: viscoelastic kinetic energy budget analysis[END_REF][START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] .

Fig. 8 plots the energy transfer process in the oscillating convection at fixed values of the parameters β = 0.2, Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05. Figs. 8a and8c concern the tilted cases (α = 2 • ), Figs. 8b and 8d concern the horizontal cases (α = 0 • ). The horizontal cases are plotted for comparison and to put an emphasis on the effects of the inclination on energy transfers.

Compared with the horizontal cases, the amplitude of all energy forms decreases, but the frequency increases, especially in the 2-cell cases. Also the magnitude of energies in each half-period in every convection pattern is different. Each half period in an oscillation period is characterized by momentum energy flowing from one maximum to another maximum. The energy flow/transfer in each half-period is almost of the same magnitude, for horizontal cases. The reason is that H2R or H3R always show spatial symmetry or temporal symmetry. Specifically, H2R is symmetric about the central x axis at all times and H3R is axisymmetric about the center point of the domain at all times. These symmetrical flow structure charac- 7: Energy conversion framework for TVRBC. Three energy reservoirs exist in the convection system: the kinetic energy reservoir (E K ), the elastic energy reservoir (E E ) and the buoyancy potential energy reservoir (E F ). Kinetic energy transport and dissipation within the flow and the macromolecules are resulted from the interaction between buoyancy flux input (Φ F ), kinetic diffusion (Φ D ), viscous dissipation of kinetic energy (Φ V ) and energy exchange (Φ G ). teristics lead to the symmetry of the energy transport and the time period in two half-periods.

E F E K E E Φ F Φ G Φ V Φ D ω FIG.
As aforementioned in Sec. III B, there are main and secondary circulations in the domain, the main circulation is always stronger than the secondary one. The oscillating process shown in Fig. 6 clearly describes the two half-period processes including merging of the two main cells (side cells) with the secondary cell (middle cell) (Fig. 6a to 6e) and one main cell (middle cell) with two secondary cells (side cells) (Fig. 6e to 6h). In the tilted configuration, there are strong half-periods (which contain two main circulations) and weak half-periods (which contain a single secondary cell) in one period. Each energy type formed in the strong half-period is always greater than that in the weak half-period. The thermal buoyancy is the only energy input for the global convection system, Fig. 8c has two different magnitudes of Φ F in two half-periods.

The repeated energy transfers in two half-periods also occurs in T 2R mode (Fig. 8a), but the physics is not the same as that in horizontal cases. There is only one main cell and one secondary cell during the entire oscillation period. The evolutionary process takes place only between these two cells (Fig. 5). From the perspective of energy transport, the energy evolution in these two half periods is unchanged. Details of the oscillation, u 2 at the monitoring point (x, y) = (7/8, 1/2) and the variation of Nu s versus dimensionless time for TVRBC and HVRBC (for comparison) are plotted in Fig. 9 at the fixed values of the parameters Ra = 1760, β = 0.2, Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05. The horizontal cases were discussed in detail in the authors' previous works [START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] . It is observed that the time period for the velocity is twice that for Nu s . The time evolution of Nu s also shows a strong-weak period in T 3R. Globally, the inclinations tremendously weaken the heat transfer capacity in viscoelastic oscillating convection, especially in 2-cell cases. The peak of Nu s in T 2R and H2R is basically the same as the second peak of Nu s in T 2R and H2R, respectively. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. The details are available in our previous work [START_REF] Zheng | A new approach to the numerical modeling of the viscoelastic Rayleigh-Bénard convection[END_REF][START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] . Therefore, Fig. 10 does not show the cases with big α and Wi, but, that does not affect the analysis of this paper. As a reminder, we again point out here that the values of the Weissenberg number Wi as defined in this paper are equivalent to much higher values of the Wi defined in the traditional way. For instance, as we already pointed out in Sec. II B the value of Wi = 0.1 in this paper corresponds to Wi = 10.58 in the work of Cheng et al. [START_REF] Cheng | Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection[END_REF] . Fig. 10 clarifies that there is no pure conduction state in the tilted cases. The original pure conduction state in horizontal cases breaks down immediately and convection starts as soon as a small inclination is introduced. As an example see the flow configuration changing from (α = 0
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• , Wi = 0.1, Ra = 800) to (α = 1 • , Wi = 0.1, Ra = 800).
As Ra further increases, take the case with Wi = 0.1 and α = 1 • as an example, the flow state quickly crosses the region of T 1S, and changes to the time-dependent reversal convection with two or three rolls (T 2R or T 3R). In fact, the timedependent oscillating convection in TVRBC presents different features compared with that in HVRBC. The cells in TVRBC are characterized by left-right movement under the effect of gravity described in detail in Sec. III B. In horizontal cases, the flow structure of the time-dependent oscillating convection with multi-cells shows similarities to the standing wave meaning no mass transfer takes place between cells and cells oscillate within their own space. Details are available in [START_REF] Zheng | Pattern selection in Rayleigh-Bénard convection with nonlinear viscoelastic fluids[END_REF] . The bifurcation causing the transition of T 1S to T 2R/T 3R is what's called an imperfect bifurcation. Which one of T 2R or T 3R takes place first depends on the elasticity of the working fluids. For instance, T 2R takes place earlier when Wi is larger, as shown in cases with Wi = (1.25, 0.2), Figs. 10a and10b.

With further increase of the angle of inclination, the unstable oscillating convection disappears, and only the flow pattern T 1S is observed, as is the case with α = 3 • when Wi = 0.2. The critical tilt angle for turbulent Newtonian Rayleigh-Bénard convection with Ra = 4 × 10 7 , Pr = 2 is about 7 •29 . That means the horizontal component F x of the buoyancy force plays a greater role in initiating the oscillating mode with an increasing inclination angle. We observe that in Fig. 10 the flow transition from stable convection T 1S to time-dependent oscillating convection T 2R will occur first as Wi increases. In addition, T 3R is delayed as Wi increases. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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In general, the increase in inclination makes the convection system more stable, but elasticity works against this effect.

IV. CONCLUDING REMARKS

Effects of the inclination of the flow configuration on the Rayleigh-Bénard convection with strongly elastic viscoelastic fluids, highly relevant to the real-life situations are investigated numerically for the first time through an in-house solver. The computational domain is a 2D rectangular cavity with an aspect ratio of 2. The magnitude of the tilted angle is limited to a small range to observe the related complex flow bifurcations when Ra is in the vicinity of Rac. Large inclinations beget steady convection especially for large aspect ratios with Newtonian fluids as well [START_REF] Wang | Flow reversals in two-dimensional thermal convection in tilted cells[END_REF] . The major findings for the tilted Rayleigh-Bénard convection with viscoelastic fluids center on the delayed imperfect bifurcation and the oscillating convection acquiring the feature of a left-right movement.

The combined impact of (α, Wi) on the flow pattern selection in the tilted Rayleigh-Bénard convection with viscoelastic fluids is investigated in detail. In the vicinity of Rac for the convection onset, three types of flow patterns, one steady mode and two unstable modes with different properties, are found for the Rayleigh-Bénard convection with strongly elastic viscoelastic fluids. The flow structures of different modes are depicted and explained in Sec. III B. The influence of the inclination on the convection structure stability is studied. The viscoelastic kinetic energy budget is very helpful in understanding the energy transfer process in the Rayleigh-Bénard convection in the tilted configuration with viscoelastic fluids. The results are important to help us understand the onset and the evolution of the oscillatory flow in the Rayleigh-Bénard convection with viscoelastic fluids in a tilted 2D box.

FIG. 1 :

 1 FIG. 1: Schematic diagram of the Rayleigh-Bénard convection with the viscoelastic fluids in an inclined cavity.

1 •

 1 where β = µ s /µ 0 is the ratio of the solvent viscosity to the total viscosity µ 0 = µ s + µ p . The boundary conditions read as, • At the top boundary y = 1: u 1 = u 2 = 0; T = 0 • At the bottom boundary y = 0: u 1 = u 2 = 0; T = At the side boundaries x = 0, 2: u 1 = u 2 = 0; ∂ T ∂ x = 0 The dimensionless parameters include: the Rayleigh number Ra = αg∆T H 3 /νκ, the Prandtl number Pr = µ 0 C p /k, the Weissenberg number Wi = λ κ/H 2 and the Mach number Ma = RaWi/Pr describes the ratio of the inertia force and the elastic force. The intensity of the elasticity is described by the elasticity number E = Re/Wi = √ Ra/PrWi. In Eq. (10), the dimensionless Eckert number Ec = U 2 c

FIG. 3 :FIG. 4 :

 34 FIG. 2: (a) Viscous dissipation without the coefficient (2β EcPr √ Ra ) and (b) elastic dissipation without the coefficient (Ec) when α = 0 • , Pr = 7.0, Ra = 1600, β = 0.1, Wi = 0.1.

FIG. 5 :

 5 FIG. 5: Evolution of the periodic flow at α = 2 • , Ra = 1120, when Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05. The time period λ is equal to 13.76. The green arrows show the growth direction of the main counterclockwise cell.

FIG. 6 :

 6 FIG. 6: Periodic evolution of the periodic flow at α = 2 • , and Ra = 2080, when Pr = 7.0, β = 0.2, Wi = 0.1, ε = 0.1 and ξ = 0.05. The time period λ is equal to 12.01. The green arrows show the growth direction of the main counterclockwise cells.

(d) H3R, Ra = 1760 FIG. 8 : 2 , 2 , 2 .FIG. 10 :

 1760822210 FIG. 8: Comparison of the time evolution of the integrated quantities in tilted (left) and horizontal (right) VRBC. The parameters studied are Ra = 1760, β = 0.2, Wi = 0.1, Pr = 7.0, ε = 0.1 and ξ = 0.05.
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