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U-STATISTICS OF LOCAL SAMPLE MOMENTS UNDER WEAK

DEPENDENCE

HEROLD DEHLING, DAVIDE GIRAUDO, AND SARA K. SCHMIDT

Abstract. In this paper, we study the asymptotic distribution of some U-statistics whose

entries are functions of empirical moments computed from non-overlapping consecutive

blocks of an underlying weakly dependent process. The length of these blocks converges

to infinity, and thus we consider U-statistics of triangular arrays. We establish asymptotic

normality of such U-statistics. The results can be used to construct tests for changes of

higher order moments.

1. Introduction

Given some real-valued data Y1, . . . , Yn and a symmetric measurable function h : Rm → R,
we define the U -statistic with kernel h as

Un := Un(h) =
1(
n
m

)
∑

1≤i1<i2<...<im≤n

h(Yi1, . . . , Yim).

U-statistics play an important role in nonparametric statistics, as many sample statistics can
be expressed in this way, at least asymptotically. Well-known examples include the sample
variance, Gini’s mean difference, the Cramér-von Mises test statistic and the χ2-test statistic
for goodness of fit. For details and further examples see e.g. Serfling [1980] and Dehling
[2006]. U-statistics have been introduced independently by Halmos [1946] and Hoeffding
[1948]. Halmos [1946] showed that for i.i.d. data, Un(h) is an unbiased estimator of the
parameter θ = E [h (Y1, . . . , Ym)], and that it is minimum variance unbiased in nonparametric
models. Hoeffding [1948] proved that, again for i.i.d. data and for square integrable kernels,
the U-statistic is asymptotically normal. More precisely,

√
n (Un(h)− E [h (Y1, . . . , Ym)]) −→ N(0, 4 γ2

h)

in distribution, where γ2
h := Var (E [h(Y1, . . . , Ym)|Y2, . . . , Ym]). In the so-called degenerate

case γ2
h = 0, a different normalization is required to get a non-trivial limit, which will be a

non-normal distribution; see Serfling [1980] for further details. Most of the results for i.i.d.
data can be extended to weakly dependent stationary processes (Yi)i≥1; see e.g. Dehling
[2006] for a survey.

In this paper, we study the asymptotic distribution of certain U-statistics whose entries are
local summary statistics of an underlying weakly dependent process (Xt)t∈Z. More precisely,

we consider local statistics g
(

1
ℓn

∑
t∈Bn,j

Xt,
1
ℓn

∑
t∈Bn,j

X2
t , . . . ,

1
ℓn

∑
t∈Bn,j

Xm
t

)
, 1 ≤ j ≤ bn,

which can be expressed as a function of the first m empirical moments of the consecutive
non-overlapping blocks

(1.1) Bn,j := {(j − 1)ℓn + 1, . . . , jℓn}
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for 1 ≤ j ≤ bn. We assume the block length ℓn to converge to infinity. Given an appropriate
scaling factor

√
ℓn and certain regularity assumptions on g : Rm → R, we will show that the

statistics

(1.2) Wn,j :=
√

ℓng
( 1

ℓn

∑

t∈Bn,j

Xt,
1

ℓn

∑

t∈Bn,j

X2
t , . . . ,

1

ℓn

∑

t∈Bn,j

Xm
t

)

are each asymptotically normal. We are then interested in U-statistics of the type

(1.3) Un :=
1

bn (bn − 1)

∑

1≤j 6=k≤bn

h (Wn,j,Wn,k) .

Such U-statistics arise naturally in nonparametric tests for the constancy of parameters
of the underlying process (Xt)t∈Z. Schmidt, Wornowizki, Fried, and Dehling [2021] test for
the constancy of the variance by analysing Gini’s mean difference of the logarithmic local
sample variances, i.e. they choose h(x, y) = |x− y| and Wn,j =

√
ℓn log(

1
ℓn

∑jℓn
t=(j−1)ℓn+1(Xt−

1
ℓn

∑jlℓn
r=(j−1)ℓn+1Xr)

2). Schmidt [2021] tests for changes in the mean by considering Gini’s

mean difference of the local sample means Wn,j = 1√
ℓn

∑
t∈Bn,j

Xt. In both works, the

behaviour of the test statistic under the hypothesis is determined by deriving a central limit
theorem for Un. The setup considered in the present paper allows for testing for constancy
of higher order characteristics of the distribution of Xt, such as the skewness or kurtosis; see
Example 2.1 below.

Note that the entries of Un from (1.3) stem from a triangular array (Wn,j)1≤j≤bn,n≥1 and
that under certain regularity assumptions made in this paper, they each converge to a normal
law as ℓn → ∞. Moreover, assuming the number bn of blocks to converge to infinity as well,
there additionally holds (under appropriate assumptions) a central limit theorem for the U-
statistic itself. The limit distribution of Un is hence determined by the double asymptotics of
the U-statistic and its entries. It is the goal of this paper to investigate more systematically
such structures and to find minimal conditions that guarantee asymptotic normality of the
resulting U-statistics of type (1.3).

2. Main results

We are interested in U-statistics of triangular arrays of the form (1.3), where h : R2 → R

denotes a symmetric kernel function. We will henceforth always assume that the kernel fulfils

(2.1) |h (x, y)| ≤ C (1 + |x|+ |y|)
for all x, y ∈ R and some constant C. For the results under dependence later on, we will
require the stronger assumption of Lipschitz-continuity.

Our first result is a central limit theorem for Un, given the triangular array (Wn,j)1≤j≤bn,n≥1

is row-wise i.i.d. with a very mild assumption on the distribution of the random variables
Wn,j.

Theorem 1. Let (Wn,j)1≤j≤bn,n≥1 be a row-wise i.i.d. triangular array such that bn → ∞ as

n → ∞. Assume that (2.1) holds, that γ2
n := Cov (h (Wn,1,Wn,2) , h (Wn,2,Wn,3)) > 0, and

that the sequence
(
W 2

n,1/γ
2
n

)
n≥1

is uniformly integrable. Then the following convergence in

distribution holds

(2.2)

√
bn
γn

(
1

bn (bn − 1)

∑

1≤j 6=k≤bn

h (Wn,j,Wn,k)− E [h (Wn,1,Wn,2)]

)
→ N (0, 4) .
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A related result was obtained in Löwe and Terveer [2021] for incomplete U-statistics of
independent data.

The above theorem lays the groundwork for the more specific problems we investigate in
this paper. As opposed to Theorem 1, the triangular array (Wn,j)1≤j≤bn,n≥1 we consider from
now on is in general not row-wise independent as the underlying process (Xt)t∈Z is weakly
dependent. More specifically, we assume the stationary sequence (Xt)t∈Z to be expressible as
a functional of an i.i.d. process. Thus, we can write Xt := f

(
(εt−u)u∈Z

)
, where f : RZ → R

is measurable and (εu)u∈Z is i.i.d. In order to quantify the dependence, let (ε′u)u∈Z be an
independent copy of (εu)u∈Z and define

(2.3) δi
(
(Xt)t∈Z

)
:=
∥∥X0 −X∗,i

0

∥∥
2
,

where X∗,i
0 = f

((
ε∗,i−u

)
u∈Z

)
and ε∗,iv = ε′i if v = i and ε∗,iv = εv otherwise. We thus measure

the contribution of εi to X0 by looking at the difference between X0 and a coupled version
X∗,i

0 for which εi is replaced by an independent copy. This weak dependence concept was
introduced by Wu [2005] under the term physical dependence measure and is now frequently
used in statistical applications (see, e.g., El Machkouri [2014], Liu, Xiao, and Wu [2013], Wu
[2008] and Wu [2011]).

In the following, the triangular array (Wn,j)1≤j≤bn,n≥1 is assumed to be of the form (1.2).
Example 2.1 presents some problems that are covered by this structure.

Example 2.1. (1) Schmidt et al. [2021] propose a test for constancy of the variance
based on the test statistic

Un =
1

bn(bn − 1)

∑

1≤j,k≤bn

√
ℓn
∣∣ log s2n,j − log s2n,k

∣∣,

where s2n,j :=
∑

t∈Bn,j
(Xt− 1

ℓn

∑
r∈Bn,j

Xr)
2. In our setting, this corresponds to m = 2,

g(x1, x2) = log(x2 − x2
1) and h (x, y) = |x− y|.

(2) Considering higher moments, one can construct a test for the constancy of the skew-
ness or the kurtosis in a similar fashion to (1) by considering Gini’s mean difference
(that is, h (x, y) = |x− y|) of the blockwise estimates γ̂n,j, j = 1, . . . , bn, or κ̂n,j,
j = 1, . . . , bn, respectively. Note that an empirical version of the skewness is given by

γ̂n,j =

1
ℓn

∑
t∈Bn,j

(
Xt − 1

ℓn

∑
r∈Bn,j

Xr

)3
(

1
ℓn

∑
t∈Bn,j

(
Xt − 1

ℓn

∑
r∈Bn,j

Xr

)2)3/2

=

1
ℓn

∑
t∈Bn,j

X3
t − 3

(
1
ℓn

∑
t∈Bn,j

X2
t

)(
1
ℓn

∑
t∈Bn,j

Xt

)
+ 2
(

1
ℓn

∑
t∈Bn,j

Xt

)3

(
1
ℓn

∑
t∈Bn,j

X2
t −

(
1
ℓn

∑
t∈Bn,j

Xt

)2)3/2 ,

which is covered in our setting via the function

g(x1, x2, x3) =
x3 − 3x1x2 + 2x3

1(
x2 − x2

1

)3/2 .

An empirical version of the kurtosis is given by

κ̂n,j =

1
ℓn

∑
t∈Bn,j

(
Xt − 1

ℓn

∑
r∈Bn,j

Xr

)4
(

1
ℓn

∑
t∈Bn,j

(
Xt − 1

ℓn

∑
r∈Bn,j

Xr

)2)2
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=

(
1

ℓn

∑

t∈Bn,j

X2
t −

( 1

ℓn

∑

t∈Bn,j

Xt

)2)−2

·
(

1

ℓn

∑

t∈Bn,j

X4
t − 4

( 1

ℓn

∑

t∈Bn,j

Xt

)( 1

ℓn

∑

t∈Bn,j

X3
t

)

+ 6
( 1

ℓn

∑

t∈Bn,j

Xt

)2( 1

ℓn

∑

t∈Bn,j

X2
t

)
− 3
( 1

ℓn

∑

t∈Bn,j

Xt

)4)
,

which corresponds to the function

g(x1, x2, x3, x4) =
x4 − 4x1x3 + 6x2

1x2 − 3x4
1

(x2 − x2
1)

2
.

We now state a central limit theorem for U-statistics of this more concrete type of trian-
gular array (1.2). The question of the central limit theorem for U-statistics whose entries are
Bernoulli shifts has been addressed in Hsing and Wu [2004] and Giraudo [2021], but these
results do not treat the case of arrays.

Theorem 2. Assume that the following conditions are satisfied.

(1) The function h is Lipschitz-continuous.
(2) E [X2m

1 ] < ∞ and

(2.4)
∑

i∈Z

m∑

k=1

i2δi

((
Xk

t

)
t∈Z

)
< ∞.

(3) The function g satisfies g (v0) = 0, where v0 =
(
E
[
Xk

1

])m
k=1

∈ R
m. There exists an

a > 0 such that g is differentiable at each point of
∏m

k=1

(
E
[
Xk

1

]
− 2a,E

[
Xk

1

]
+ 2a

)

and the gradient of g is bounded on
∏m

k=1

(
E
[
Xk

1

]
− 2a,E

[
Xk

1

]
+ 2a

)
.

(4) The sequences (bn)n≥1 and (ℓn)n≥1 go to infinity as n goes to infinity. Moreover,
limn→+∞ bn/ℓn = 0.

Let η : Rm → [0, 1] be a smooth function with η (x) = 1 if ‖x− v0‖2 ≤ a and η (x) = 0 if
‖x− v0‖2 > 2a, and define

W
(η)
n,j :=

√
ℓn (g · η)




 1

ℓn

∑

t∈Bn,j

Xk
t




m

k=1


 .

If

(2.5) σ2 :=
∑

t∈Z
Cov

(
m∑

k=1

∂g

∂xk
(v0)X

k
0 ,

m∑

k=1

∂g

∂xk
(v0)X

k
t

)
> 0,

the following convergence in distribution holds

(2.6)
√

bn

(
Un −

1

bn (bn − 1)

∑

1≤j 6=k≤bn

E

[
h
(
W

(η)
n,j ,W

(η)
n,k

)])
→ N

(
0, 4γ2

)
,

where
γ2 := Cov (h (σN, σN ′) , h (σN ′, σN ′′))

for independent standard normally distributed random variables N , N ′ and N ′′.

Remark 2.2. Note that the partial derivatives in (2.5) arise as a consequence of the delta
method.

In the examples below, we provide some classes of processes (Xt)t∈Z that fulfil the above
condition (2.4). For more details, we refer to Section 3.4.



U-STATISTICS OF LOCAL SAMPLE MOMENTS UNDER WEAK DEPENDENCE 5

Example 2.3. Let Xt be a Hölder continuous function of a linear process as considered, for
instance, in Ho and Hsing [1997] and Wu [2006]. More precisely, define Xt as

Xt := ϕ

(
∑

j∈Z
ajεt−j

)
,

where ϕ : R → R is γ-Hölder continuous for some γ ∈ (0, 1], (aj)j∈Z is a sequence of real

numbers such that
∑

j∈Z j
2 |aj|γ < ∞ and (εu)u∈Z is an i.i.d. sequence such that E

[
|ε0|2mγ] <

∞. Then (Xt)t∈Z satisfies condition (2.4).

Example 2.4. Assume Xt can be written as a function of a Gaussian linear process: Let
Xt = ϕ(Yt) with

Yt :=
∑

j∈Z
ajεt−j,

where ϕ : R → R, (εu)u∈Z is an i.i.d. sequence, ε0 has a standard normal distribution and
aj ∈ R for all j ∈ Z with

∑
j∈Z |aj | < ∞ as well as

∑
j∈Z a

2
j = 1. Such processes were

considered, e.g., in Nualart [2009]. Given that ϕ (Y0) ∈ L
2 and E [ϕ (Y0)] = 0, the following

expansion holds:

ϕ (Yt) =

∞∑

q=1

cq (ϕ)Hq (Yt) ,

where the q-th Hermite polynomial is defined by

Hq (x) := (−1)q exp

(
x2

2

)
dq

dxq
exp

(
−x2

2

)

and

cq (ϕ) :=
1

q!
E [ϕ (Y0)Hq (Y0)] ,

provided that
∑∞

q=1 q!cq (ϕ)
2 converges. Then condition (2.4) is met if

∑
j∈Z j

2 |aj| < ∞ and

m∑

k=1

∞∑

q=1

√
q · q!

∣∣cq
(
ϕk − E

[
ϕk (Y0)

])∣∣ < ∞.

Example 2.5. Let (Xt)t∈Z be a Volterra process, i.e. let

Xt :=
∑

j,j′∈Z,j 6=j′

aj,j′εt−jεt−j′,

where (εu)u∈Z is i.i.d. centred, E [ε20] < ∞ and
∑

j,j′∈Z,j 6=j′ a
2
j,j′ < ∞. Such processes and

extensions to Volterra series are considered in Rugh [1981] and Priestley [1988]. If E [ε2m0 ] <
∞ as well as

∑

j∈Z
j2
√ ∑

j′∈Z,j′ 6=j

(
a2j,j′ + a2j′,j

)
< ∞,

then (Xt)t∈Z satisfies condition (2.4).

It would be more natural to centre Un in (2.6) by
∑

1≤j 6=k≤bn
E [h (Wn,j,Wn,k)] rather

than by the truncated version
∑

1≤j 6=k≤bn
E

[
h
(
W

(η)
n,j ,W

(η)
n,k

)]
. However, the conditions of

Theorem 2 do not guarantee that E [|h (Wn,j,Wn,k)|] exists, as the following example shows.
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Example 2.6. Consider the case m = 2, g (x1, x2) = log x21x2>0 and h (x, y) = |x− y|
with i.i.d. observations (Xt)t∈Z. Since Wn,1 and Wn,2 are consequently likewise independent
and identically distributed, finiteness of E [|Wn,1 −Wn,2|] is equivalent to the finiteness of
E [|Wn,1|]. Now, it suffices to find an i.i.d. sequence (Xt)t∈Z such that E [X4

1 ] < ∞ and

E

[∣∣∣∣∣log
(

1

ℓn

ℓn∑

t=1

X2
t

)∣∣∣∣∣

]
= ∞.

By choosing the distribution of X1 as

P
(
X2

1 = exp (− exp (exp (k)))
)
= 2−k

for k ≥ 1, it follows
∣∣∣∣∣log

(
1

ℓn

ℓn∑

t=1

X2
t

)∣∣∣∣∣ ≥
∑

k≥1

∣∣∣∣∣log
(

1

ℓn

ℓn∑

t=1

exp (− exp (exp (k)))

)∣∣∣∣∣ 1
⋂ℓn

t=1{X2

t =exp(− exp(exp(k)))}

=
∑

k≥1

exp (exp k) 1⋂ℓn
t=1{X2

t =exp(− exp(exp(k)))}.

Taking expectations and using independence leads to

E

[∣∣∣∣∣log
(

1

ℓn

ℓn∑

t=1

X2
t

)∣∣∣∣∣

]
≥
∑

k≥1

exp (exp(k)) 2−kℓn = ∞.

By imposing additional assumptions on the function g, the dependence coefficients as
well as the sequences (bn)n≥1 and (ℓn)n≥1, we are able to replace the centring term in (2.6)

computed from the W
(η)
n,j ’s by an expression that does not require truncation.

Proposition 2.7. Assume that the assumptions of Theorem 2 hold. If additionally all the
second order partial derivatives of g at v0 exist and if there exists a κ ∈ (0, 1) such that∑

i∈Z
∑m

k=1 |i|
1

2
+ 1

2κ δi

((
Xk

t

)
t∈Z

)
< ∞ and bn/ℓ

1−κ
n → 0, then the following convergence in

distribution holds √
bn (Un − E [h (Zn, Z

′
n)]) → N

(
0, 4γ2

)
,

where

Zn :=
1√
ℓn

m∑

k=1

∂g

∂xk
(v0)

ℓn∑

t=1

(
Xk

t − E
[
Xk

1

])

and Z ′
n is an independent copy of Zn.

Remark 2.8. The above proposition introduces a centring term which is easier to handle
than the original one in Theorem 2. However, if we want to use Un as a test statistic for
testing for a constant value of the parameter g (E [Xt] ,E [X2

t ] , . . . ,E [Xm
t ]), we need to be

able to explicitly calculate the centring term. This is achieved by the following corollary,
where we show that, for the important example when h(x, y) = |x− y|, we can replace
E [|Zn − Z ′

n|] by σ E [|N −N ′|] = 2 σ/
√
π. The remaining parameter σ can be estimated by

standard procedures for estimating long-run variances.

Corollary 2.9. Suppose that the time series (Xt)t∈Z can be written as a one-sided Bernoulli

shift, that is, Xt = f
(
(εt−u)u≥0

)
. We assume moreover that there exists a 2 < p ≤ 3 such

that
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(1) E [|Xt|p·m] < ∞ and

(2.7)
∑

i≥0

m∑

k=1

(
i2δi,p

(
(Xk

t )t∈Z
)
+ i5/2δi,2

(
(Xk

t )t∈Z
))

< ∞,

where δi,p((Xt)t∈Z) :=
∥∥X0 −X∗,i

0

∥∥
p
, and

(2)
√
bnℓ

1−p/2
n (log ℓn)

p/2 +
√
bn/ℓn → 0.

Denote

Un :=
1

bn(bn − 1)

∑

1≤j 6=k≤bn

|Wn,j −Wn,k| ,

where Wn,j is defined as in (1.2). Then the following convergence in distribution holds
√
bn
(
Un −

2σ√
π

)
−→ N(0, 4γ2),

where σ and γ2 are defined as in Theorem 2.

3. Proofs

3.1. Proof of Theorem 1. We use the Hoeffding decomposition of the kernel function h
and define

θn := E [h (Wn,1,Wn,2)] ,

h1,n(x) := E [h(x,Wn,2)]− θn,

h2,n (x, y) := h (x, y)− h1,n (x)− h1,n (y)− θn.

At the level of the U-statistic, we then obtain

U(n)− E [U(n)] =
1

bn (bn − 1)

∑

1≤j 6=k≤bn

h (Wn,j,Wn,k)− θn

=
2

bn

bn∑

j=1

h1,n (Wn,j) +
1

bn (bn − 1)

∑

1≤j 6=k≤bn

h2,n (Wn,j,Wn,k) .

In the following, we will prove the convergence in distribution

(3.1)
2√
bnγn

bn∑

j=1

h1,n (Wn,j) → N (0, 4) ,

and the convergence in probability

(3.2)
1

b
3/2
n γn

∑

1≤j 6=k≤bn

h2,n (Wn,j,Wn,k) → 0,

where γ2
n = Cov (h (Wn,1,Wn,2) , h (Wn,2,Wn,3)). The assertion then follows by an application

of Slutzky’s Lemma.
Starting with (3.1), we will apply Lindeberg’s central limit theorem to the triangular array

Yn,j := h1,n (Wn,j) /
(
γn
√
bn
)
. Note that by construction, the Yn,j’s are identically distributed

with E [Yn,1] = 0. Moreover, it holds Var (Yn,1) = 1/bn since by independence

Var (h1,n (Wn,1)) = Var (E [h (Wn,1,Wn,2) | Wn,1])

= E
[
E [h (Wn,1,Wn,2) | Wn,1]

2]− (E [E [h (Wn,1,Wn,2) | Wn,1]])
2

=

∫

R

E [h (x,Wn,2)h (x,Wn,3)] dPWn,1
(x)− (E [h (Wn,1,Wn,2)])

2
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= E [h (Wn,1,Wn,2) · h (Wn,1,Wn,3)]− (E [h (Wn,1,Wn,2)])
2

= Cov (h (Wn,1,Wn,2) , h (Wn,2,Wn,3)) = γ2
n.

It thus remains to verify the Lindeberg condition, that is, to show that for all ε > 0,

bn∑

j=1

E
[
Y 2
n,j1{|Yn,j |>ε}

]
→ 0.

Since the random variables Yn,j, 1 ≤ j ≤ bn, are identically distributed, Lindeberg’s condition
reduces to

bn∑

j=1

E
[
Y 2
n,j1{|Yn,j |>ε}

]
= bnE

[
Y 2
n,11{|Yn,1|>ε}

]
= E


h

2
1,n (Wn,1)

γ2
n

1{ |h1,n(Wn,1)|
γn

>ε
√
bn

}


→ 0.

Observe that by property (2.1) of the kernel function h, we have |h1,n (x)| ≤ 3CE [|Wn,1|] +
C |x| and hence h2

1,n (x) ≤ 18C2
E
[
W 2

n,1

]
+ 2C2x2, from which it follows that

h2
1,n (Wn,1)

γ2
n

≤ 18C2 + 2C2
W 2

n,1

γ2
n

.

Consequently, the uniform integrability of the sequence
(
h2
1,n (Wn,1) /γ

2
n

)
n≥1

follows from

that of the sequence
(
W 2

n,1/γ
2
n

)
n≥1

, and thus Lindeberg’s condition is met.

It remains to verify (3.2). Since E [h2,n (Wn,j ,Wn,k) h2,n (Wn,j′,Wn,k′)] = 0 if {j, k} 6=
{j′, k′}, we obtain

(3.3) E



(

1

b
3/2
n γn

∑

1≤j 6=k≤bn

h2,n (Wn,j,Wn,k)

)2

 =

2 (bn − 1)

γ2
nb

2
n

E
[
h2
2,n (Wn,1,Wn,2)

]
.

By the properties of the kernel function h and the definition of h2,n, there exists a constant
C independent of n, x and y such that |h2,n (x, y)| ≤ C (1 + |x|+ |y|+ E [|Wn,1|]) and hence
E
[
h2
2,n (Wn,1,Wn,2)

]
≤ C ′

E
[
W 2

n,1

]
for a constant C ′ independent of n. Combining this with

(3.3), we get that

E



(

1

b
3/2
n γn

∑

1≤j 6=k≤bn

h2,n (Wn,j,Wn,k)

)2

 ≤ 2C

bn
sup
n≥1

E

[
W 2

n,1

γ2
n

]

and the uniform integrability of
(
W 2

n,1/γ
2
n

)
n≥1

guarantees the finiteness of the above supre-

mum. This concludes the proof of (3.2) and that of Theorem 1.

3.2. Sketch of proof for Theorem 2. This section outlines the proof ideas for Theorem 2,
while all details can be found in the next section. First, we reduce the problem to the case

where in Un, the term Wn,j is replaced by W
(η)
n,j =

√
ℓn (g · η)

((
1
ℓn

∑
t∈Bn,j

Xk
t

)m
k=1

)
. We thus

define

U (η)
n :=

1

bn (bn − 1)

∑

1≤j 6=k≤bn

h
(
W

(η)
n,j ,W

(η)
n,k

)
.

The next lemma shows that we can replace Un in the central limit theorem by U
(η)
n .

Lemma 3.1. Let the assumptions of Theorem 2 hold. Then P

(
Un 6= U

(η)
n

)
→ 0. In partic-

ular,
(√

bn

(
Un − U

(η)
n

))
n≥1

converges in probability to zero.
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It thus suffices to prove the convergence in distribution

(3.4)
√

bn

(
U (η)
n − 1

bn (bn − 1)

∑

1≤j 6=k≤bn

E

[
h
(
W

(η)
n,j ,W

(η)
n,k

)])
→ N

(
0, 4γ2

)
.

To do so, we use a second approximation step and replace the W
(η)
n,j ’s by

W
(M)
n,j :=

√
ℓn (g · η)




 1

ℓn

∑

t∈Bn,j

E
[
Xk

t | F t+M
t−M

]



m

k=1


 ,

where FN
M := σ (εu,M ≤ u ≤ N) for M,N ∈ Z with M ≤ N . The random variables Xt are

thus replaced by random variables depending only on those εt−u with |t− u| ≤ M . Note
that this way, the entries of the U-statistic become almost independent (up to some small
overlap in consecutive blocks). We define

U (M)
n :=

1

bn (bn − 1)

∑

1≤j 6=k≤bn

h
(
W

(M)
n,j ,W

(M)
n,k

)
.

We can now decompose the expression on the left hand side of (3.4) for each fixed M ≥ 1
via

(3.5)
√

bn(U
(M)
n − E

[
U (M)
n

]
) +Rn,M ,

where the remainder term is given by the telescoping sum

Rn,M :=
1√

bn (bn − 1)

∑

N≥M

∑

1≤j 6=k≤bn

(
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)
− E

[
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)]

−
(
h
(
W

(N)
n,j ,W

(N)
n,k

)
− E

[
h
(
W

(N)
n,j ,W

(N)
n,k

)]))
.

The following three lemmas show that the first term in (3.5) converges to the desired normal
distribution, while the continuity of g·η will guarantee that the remainder term Rn,M becomes
asymptotically negligible.

Lemma 3.2. Let the assumptions of Theorem 2 hold. Then, there exists an M0 ∈ N such

that for all fixed M ≥ M0, the sequence
(√

bn(U
(M)
n − E[U

(M)
n ])

)
n≥1

converges in distribution

to a centred normally distributed random variable with variance

4γ2
M := 4Cov (h (σMN, σMN ′) , h (σMN, σMN ′′)) ,

where N , N ′ and N ′′ are three independent standard normal random variables and

σ2
M :=

M+1∑

t=−M−1

Cov

(
E

[
m∑

k=1

∂g

∂xk
(v0)X

k
0

∣∣∣FM
−M

]
,E

[
m∑

k=1

∂g

∂xk
(v0)X

k
t

∣∣∣F t+M
t−M

])
.

The central ingredient in the proof of Lemma 3.2 is Theorem 1. To meet its conditions,

we approximate U
(M)
n by yet another U-statistic, which has independent entries (details are

given in the next section).

Lemma 3.3. Let the assumptions of Theorem 2 hold. Then the sequence (4γ2
M)M≥1 converges

to 4γ2 = 4Cov (h (σN, σN ′) , h (σN ′, σN ′′)).

Lemma 3.4. Let the assumptions of Theorem 2 hold. Then, for each ε > 0, it holds

lim
M→∞

lim sup
n→∞

P(|Rn,M | > ε) = 0.
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In the final step, we apply Theorem 4.2 of Billingsley [1968]. This theorem states that for
stochastic processes (Ym,n)m,n≥1, (Y

′
n)n≥1, (Zm)m≥1, and a random variable Z, satisfying

Ym,n −→ Zm in distribution, as n → ∞, for each m,

Zm −→ Z in distribution, as m → ∞,

lim
m→∞

lim sup
n→∞

P (|Y ′
n − Ym,n| > ε) = 0, for all ε > 0,

we may conclude that Y ′
n → Z in distribution. A combination of Lemmas 3.2, 3.3 and 3.4

thus yields the desired convergence in (3.4) and thus finishes the proof.

3.3. Proof details.

Proof of Lemma 3.1. We start by noting the following inclusions

{
Un 6= U (η)

n

}
⊂

bn⋃

j=1

{
Wn,j 6= W

(η)
n,j

}
⊂

bn⋃

j=1

m⋃

k=1





∣∣∣∣∣∣


 1

ℓn

∑

t∈Bn,j

Xk
t


− E

[
Xk

1

]
∣∣∣∣∣∣
> 2a/m



 .

Hence, using the fact that for each k, the random variables
(

1
ℓn

∑
t∈Bn,j

Xk
t − E

[
Xk

1

])
, j =

1, . . . , bn, have the same distribution, and by an application of Chebychev’s inequality, we
obtain

P(Un 6= U (η)
n ) ≤ m2 bn

4a2ℓn

m∑

k=1

Var

(
1√
ℓn

ℓn∑

t=1

Xk
t

)
.

By Lemma A.1, it holds Var
(

1√
ℓn

∑ℓn
t=1 X

k
t

)
≤
(∑

i∈Z δi((X
k
t )t∈Z)

)2
and thus, we have

P(Un 6= U
(η)
n ) ≤ Cbn/ℓn, which converges to zero by assumption. �

Proof of Lemma 3.2. Let M ≥ 1 be fixed. We intend to approximate U
(M)
n once more to

obtain a U-statistic Ũ
(M)
n with independent entries. Thus, we define

W̃
(M)
n,j :=

√
ℓn (g · η)




 1

ℓn

jℓn−M−1∑

t=(j−1)ℓn+M+1

E
[
Xk

t | F t+M
t−M

]



m

k=1




for j = 1, . . . , bn, assuming that n is large enough such that 2M ≤ ℓn. Due to the shortening

of the blocks Bn,j by M observations on each side, the W̃
(M)
n,j ’s are independent. Next, we

define

Ũ (M)
n :=

1

bn (bn − 1)

∑

1≤j 6=k≤bn

h
(
W̃

(M)
n,j , W̃

(M)
n,k

)
.

Since the function g · η is Lipschitz-continuous, it holds

∣∣∣W (M)
n,j − W̃

(M)
n,j

∣∣∣ ≤ C
m∑

k=1

1√
ℓn

(j−1)ℓn+M∑

t=(j−1)ℓn+1

E

[∣∣Xk
t

∣∣
∣∣∣F t+M

t−M

]
+C

m∑

k=1

1√
ℓn

jℓn∑

t=jℓn−M

E

[∣∣Xk
t

∣∣
∣∣∣F t+M

t−M

]
.

Taking expectations, we obtain

E

[∣∣∣W (M)
n,j − W̃

(M)
n,j

∣∣∣
]
≤ C

M√
ℓn

since E [Xm
1 ] < ∞ by assumption. Thus, for the U-statistic, we have

√
bnE

[∣∣∣
(
U (M)
n − E

[
U (M)
n

])
−
(
Ũ (M)
n − E

[
Ũ (M)
n

] )∣∣∣
]
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≤2

√
bn

bn (bn − 1)

∑

1≤j 6=k≤bn

E

[∣∣∣h
(
W

(M)
n,j ,W

(M)
n,k

)
− h

(
W̃

(M)
n,j , W̃

(M)
n,k

)∣∣∣
]

≤C
√
bnE

[∣∣∣W (M)
n,1 − W̃

(M)
n,1

∣∣∣
]
≤ CM

√
bn√
ℓn
,

where the last but one inequality follows by the Lipschitz-continuity of the kernel h and the

stationarity of the W
(M)
n,j ’s and of the W̃

(M)
n,j ’s.

In the following, it hence suffices to prove that
√
bn

(
Ũ

(M)
n − E

[
Ũ

(M)
n

] )
converges in

distribution to a centred normal random variable NM with variance 4γ2
M . We first show that

γ2
M,n := Cov

(
h
(
W̃

(M)
n,1 , W̃

(M)
n,2

)
, h
(
W̃

(M)
n,1 , W̃

(M)
n,3

))
→ γ2

M

and afterwards the convergence in distribution
√
bn

γM,n

(
Ũ (M)
n − E

[
Ũ (M)
n

] )
→ N(0, 4),

which combined yield the assertion.
We start by verifying γ2

M,n → γ2
M by means of Lemma A.6. To apply Lemma A.6, we have

to check that the sequence
((
W̃

(M)
n,1

)2)
n≥1

is uniformly integrable. By the assumptions on g

and η, the gradient of g · η is uniformly bounded over Rm, such that

(
W̃

(M)
n,1

)2
=ℓn

(
g2 · η2

)
(
v0 +

(
1

ℓn

ℓn−M−1∑

t=M+1

E
[
Xk

t | F t+M
t−M

]
)m

k=1

− v0

)

≤ℓnC
2

m∑

k=1

(
1

ℓn

ℓn−M−1∑

t=M+1

E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

]
)2

and uniform integrability follows from Lemma A.2. We additionally have to show that

W̃
(M)
n,1 → N (0, σ2

M) in distribution to apply Lemma A.6. To do so, we will use the differen-
tiability of g · η at v0 and the fact that (g · η) (v0) = 0 in order to write

(g · η) (v0 + z) =
m∑

k=1

zk
∂g

∂xk

(v0) + ε (z) ,

where ε (z) / ‖z‖2 → 0 as ‖z‖2 → 0. Setting z =
(

1
ℓn

∑ℓn−M−1
t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] ))m
k=1

,

we thus obtain

W̃
(M)
n,1 =

1√
ℓn

ℓn−M−1∑

t=M+1

m∑

k=1

∂g

∂xk
(v0)

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] )

+
√

ℓnε

((
1

ℓn

ℓn−M−1∑

t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] )
)m

k=1

)
.

By the central limit theorem (see Lemma A.3 in the appendix), the first of the above terms
converges to a centred normal distribution with variance σ2

M . Moreover, due to the properties
of the function ε and the strong law of large numbers, the second of the above terms converges
in probability to 0. Indeed,

√
ℓnε

((
1

ℓn

ℓn−M−1∑

t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] )
)m

k=1

)
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=
ε
((

1
ℓn

∑ℓn−M−1
t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] ))m
k=1

)

√
∑m

k=1
1
ℓn

(∑ℓn−M−1
t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] ))2

·

√√√√
m∑

k=1

1

ℓn

(
ℓn−M−1∑

t=M+1

(
E
[
Xk

t | F t+M
t−M

]
− E

[
Xk

1

] )
)2

,

which is a product of the form AnBn, where (An)n≥1 converges in probability to 0 and

(Bn)n≥1 is tight. We hence have W̃
(M)
n,1 → N (0, σ2

M) in distribution and Lemma A.6 implies

γ2
M,n → γ2

M .

Turning towards showing
√
bn
(
Ũ

(M)
n − E[Ũ

(M)
n ]

)
/γM,n → N(0, 4) in distribution, we have

to check the assumptions of Theorem 1 and therefore have to prove the uniform integrability

of ((W̃
(M)
n,1 /γM,n)

2)n≥1. The uniform integrability of
((
W̃

(M)
n,1

)2)
n≥1

has already been shown

above. Moreover, since we will show in the proof of Lemma 3.3 below that γ2
M → γ2 > 0,

there exists an M0 such that for all M ≥ M0, it holds γ2
M > 0. Since for fixed M ≥ M0,

we have shown above that γ2
M,n → γ2

M , there exists an n0,M such that γ2
M,n ≥ γ2

M/2 > 0

for all n ≥ n0,M . Hence, the sequence (γ−2
M,n)n≥n0,M

is bounded and ((W̃
(M)
n,1 /γM,n)

2)n≥n0,M
is

uniformly integrable, such that Theorem 1 yields the desired convergence. �

Proof of Lemma 3.3. It suffices to prove that γ2
M → γ2. Since h is Lipschitz-continuous, the

mapping x 7→ Cov (h (xN, xN ′) , h (xN, xN ′′)) is continuous, where N , N ′ and N ′′ denote
three independent standard normal random variables. Therefore, we only need to check that
σ2
M → σ2, where

σ2
M =

2M+1∑

t=−2M−1

Cov

(
E

[
m∑

k=1

∂g

∂xk
(v0)X

k
0

∣∣∣FM
−M

]
,E

[
m∑

k=1

∂g

∂xk
(v0)X

k
t

∣∣∣F t+M
t−M

])

and

σ2 =
∑

t∈Z
Cov

(
m∑

k=1

∂g

∂xk

(v0)X
k
0 ,

m∑

k=1

∂g

∂xk

(v0)X
k
t

)
.

By construction, σ2
M =

∑
t∈Z Cov

(
E

[∑m
k=1

∂g
∂xk

(v0)X
k
0

∣∣∣FM
−M

]
,E
[∑m

k=1
∂g
∂xk

(v0)X
k
t

∣∣∣F t+M
t−M

])

and a small calculation shows
∣∣σ2

M − σ2
∣∣

=

∣∣∣∣∣
∑

t∈Z
Cov

(
m∑

k=1

∂g

∂xk

(v0)
(
Xk

0 − E
[
Xk

0 | FM
−M

] )
,

m∑

k=1

∂g

∂xk

(v0)
(
Xk

t − E
[
Xk

t | F t+M
t−M

] )
)∣∣∣∣∣ .

Note that

∑

i∈Z
δi

((
m∑

k=1

∂g

∂xk
(v0)

(
Xk

t − E

[
Xk

t

∣∣∣F t+M
t−M

]))

t∈Z

)

≤
∑

i∈Z

m∑

k=1

∂g

∂xk

(v0) δi

((
Xk

t − E

[
Xk

t

∣∣∣F t+M
t−M

])

t∈Z

)
≤ 2

∑

i∈Z

m∑

k=1

∂g

∂xk

(v0) δi
((
Xk

t

)
t∈Z
)
,
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which is finite by assumption (2.4). We can thus apply Lemma A.2 from the appendix to
the above sum of covariances and obtain

∣∣σ2
M − σ2

∣∣ = lim
n→∞

1

n
· E



(

n∑

t=1

m∑

k=1

∂g

∂xk

(v0)
(
Xk

t − E

[
Xk

t

∣∣∣F t+M
t−M

]))2



≤
(∑

i∈Z
δi

(( m∑

k=1

∂g

∂xk

(v0)
(
Xk

t − E

[
Xk

t

∣∣∣F t+M
t−M

]))

t∈Z

))2

,

where the last inequality follows by Lemma A.1. We have already shown above that the
last expression is finite. Moreover, for each fixed i, it holds by the martingale convergence
theorem that

lim
M→∞

δi

(( m∑

k=1

∂g

∂xk
(v0)

(
Xk

t − E

[
Xk

t

∣∣∣F t+M
t−M

]))

t∈Z

)
= 0

and by dominated convergence, it thus follows |σ2
M − σ2| → 0. �

Proof of Lemma 3.4. Due to Chebychev’s inequality, it suffices to prove

lim
M→∞

lim sup
n→∞

‖Rn,M‖2 = 0.

By the definition of Rn,M , the above equality holds if the sum
∑

N≥1 aN converges, where

aN := sup
n≥1

1

b
3/2
n

∥∥∥∥∥
∑

1≤j 6=k≤bn

(
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)
− E

[
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)]

−
(
h
(
W

(N)
n,j ,W

(N)
n,k

)
− E

[
h
(
W

(N)
n,j ,W

(N)
n,k

)]))∥∥∥
2
.

Splitting the supremum up into those cases of n for which ℓn ≥ 2(N +1) and those for which
ℓn < 2(N + 1), we have to prove the convergence of

∑
N≥1 aN,1 and

∑
N≥1 aN,2, where

aN,1 := sup
n≥1,2(N+1)≤ℓn

1

b
3/2
n

∥∥∥∥∥
∑

1≤j 6=k≤bn

(
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)
− E

[
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)]

−
(
h
(
W

(N)
n,j ,W

(N)
n,k

)
− E

[
h
(
W

(N)
n,j ,W

(N)
n,k

)]))∥∥∥
2
,

aN,2 := sup
n≥1,2(N+1)>ℓn

1

b
3/2
n

∥∥∥∥∥
∑

1≤j 6=k≤bn

(
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)
− E

[
h
(
W

(N+1)
n,j ,W

(N+1)
n,k

)]

−
(
h
(
W

(N)
n,j ,W

(N)
n,k

)
− E

[
h
(
W

(N)
n,j ,W

(N)
n,k

)]))∥∥∥
2
.

We bound aN,1 by an application of Lemma A.5 from the appendix to obtain

aN,1 ≤ C sup
n≥1,2(N+1)≤ℓn

∥∥∥W (N+1)
n,1 −W

(N)
n,1

∥∥∥
2
.

In order to bound aN,2, we notice that by assumption, bn < ℓn ≤ 2(N +1) ≤ CN for n large
enough. Consequently, by the Lipschitz-continuity of h,

aN,2 ≤ 2 sup
n≥1,2(N+1)>ℓn

√
bn

∥∥∥W (N+1)
n,1 −W

(N)
n,1

∥∥∥
2
≤ 2 sup

n≥1,2(N+1)>ℓn

√
N
∥∥∥W (N+1)

n,1 −W
(N)
n,1

∥∥∥
2
.
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Using the Lipschitz-continuity of g · η and Lemma A.1, we derive that

∥∥∥W (N+1)
n,1 −W

(N)
n,1

∥∥∥
2
≤ C

m∑

k=1

∑

i∈Z
δi

((
E
[
Xk

t | F t+N+1
t−N−1

]
− E

[
Xk

t | F t+N
t−N

])
t∈Z

)
.

The above summands are 0 for |i| ≥ N+2, while for |i| < N+2, we get by similar arguments
as in the proof of Lemma A.4 that

δi

((
E
[
Xk

t | F t+N+1
t−N−1

]
− E

[
Xk

t | F t+N
t−N

])
t∈Z

)
≤ δN+1

((
Xk

t

)
t∈Z

)
+ δ−N−1

((
Xk

t

)
t∈Z

)
.

We thus obtain the bounds

aN,1 ≤ CN
m∑

k=1

(
δN+1

( (
Xk

t

)
t∈Z
)
+ δ−N−1

( (
Xk

t

)
t∈Z
))

and

aN,2 ≤ CN3/2

m∑

k=1

(
δN+1

( (
Xk

t

)
t∈Z
)
+ δ−N−1

( (
Xk

t

)
t∈Z
))
.

The convergence of
∑

N≥1 aN,1 and
∑

N≥1 aN,2 then follows from assumption (2.4). �

Proof of Proposition 2.7. The proof is divided into two parts. First, we show that

lim
n→∞

√
bn

(
1

bn (bn − 1)

∑

1≤j 6=k≤bn

(
E

[
h
(
W

(η)
n,j ,W

(η)
n,k

)]
− E [h (Zn,j, Zn,k)]

))
= 0,

where

Zn,j =
1√
ℓn

m∑

k=1

∂g

∂xk

(v0)
∑

t∈Bn,j

(
Xk

t − E
[
Xk

1

])
,

and afterwards that

lim
n→∞

√
bn

(
1

bn (bn − 1)

∑

1≤j 6=k≤bn

E [h (Zn,j, Zn,k)]− E [h (Zn, Z
′
n)]

)
= 0.

The assertion then follows from Theorem 2.
Starting with the first part, due to the Lipschitz-continuity of h and stationarity, it suffices

to show that

lim
n→∞

√
bnE

[∣∣∣W (η)
n,1 − Zn,1

∣∣∣
]
= 0.

By the assumptions imposed on g and η, there exists a constant C such that for each
z = (zk)

m
k=1 ∈ R

m, it holds
∣∣∣∣∣(g · η) (z)−

m∑

k=1

∂g

∂xk

(v0)
(
zk − E

[
Xk

1

])
∣∣∣∣∣ ≤ C ‖z − v0‖2 .

With the choice z =
(

1
ℓn

∑
t∈Bn,1

Xk
t

)m
k=1

, this yields

√
bnE

[∣∣∣W (η)
n,j − Zn,1

∣∣∣
]
≤ C

√
bnℓn

m∑

k=1

E




 1

ℓn

∑

t∈Bn,1

(
Xk

t − E
[
Xk

1

])



2
 .

Lemma A.1 from the appendix now implies that
√
bnE

[∣∣∣W (η)
n,j − Zn,1

∣∣∣
]
≤ C

√
bn/ℓn, which

converges to 0 by assumption.
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Turning towards the second part, we define

An,j :=
1√
ℓn

m∑

k=1

∂g

∂xk
(v0)

∑

t∈Bn,j

(
E
[
Xk

t | σ (εu, |u− t| ≤ ℓκn)
]
− E

[
Xk

1

])

and

A′
n,j :=

1√
ℓn

m∑

k=1

∂g

∂xk
(v0)

∑

t∈B′

n,j

(
E
[
Xk

t | σ (εu, |u− t| ≤ ℓκn)
]
− E

[
Xk

1

])
,

where

B′
n,j := {k ∈ N, (j − 1)ℓn + 1 + ℓκn ≤ k ≤ jℓn − ℓκn} .

Note that by construction, the sequence of random variables
(
A′

n,j

)
j≥1

is independent. More-

over, the following decomposition holds

√
bn

∣∣∣∣∣
1

bn (bn − 1)

∑

1≤j 6=k≤bn

E [h (Zn,j, Zn,k)]− E [h (Zn, Z
′
n)]

∣∣∣∣∣

≤
√

bn
1

bn (bn − 1)

∑

1≤j 6=k≤bn

E
[∣∣h (Zn,j, Zn,k)− h

(
A′

n,j, A
′
n,k

)∣∣]

+
√

bn
1

bn (bn − 1)

∣∣∣∣∣
∑

1≤j 6=k≤bn

(
E
[
h
(
A′

n,j, A
′
n,k

)]
− E [h (Zn, Z

′
n)]
)
∣∣∣∣∣ .

By the Lipschitz-continuity of h combined with stationarity, we can bound the first of the
above terms by

C
√

bnE
[∣∣Zn,1 −A′

n,1

∣∣] ≤ C
√
bnE [|Zn,1 − An,1|] + C

√
bnE

[∣∣An,1 −A′
n,1

∣∣] .
An application of Lemma A.4 from the appendix yields

√
bnE [|Zn,1 −An,1|] ≤C

√
bn

m∑

k=1

ℓκn
∑

i:|i|>ℓκn

δi

((
Xk

t

)
t∈Z

)

≤C
√

bn/ℓnℓ
κ/2
n

m∑

k=1

∑

i:|i|>ℓκn

ℓκ/2+1/2
n δi

((
Xk

t

)
t∈Z

)

≤C
√

bn/ℓnℓ
κ/2
n

m∑

k=1

∑

i:|i|>ℓκn

|i|1/2+1/(2κ) δi

((
Xk

t

)
t∈Z

)
,

which tends to zero by the assumptions on the dependence coefficients and since bn = o(ℓ1−κ
n ).

By Lemma A.1,

√
bnE

[∣∣An,1 − A′
n,1

∣∣] ≤C

√
bn√
ℓn

m∑

k=1

∥∥∥∥∥

ℓκn∑

t=1

E
[
Xk

t | σ (εu, |u− t| ≤ ℓκn)
]
∥∥∥∥∥
2

≤C

√
bn√
ℓn

m∑

k=1

ℓκ/2n

∑

i∈Z
δi((E

[
Xk

t | σ (εu, |u− t| ≤ ℓκn)
]
)t∈Z)

≤C

√
bn√
ℓn

m∑

k=1

ℓκ/2n

∑

i:|i|≤ℓκn

δi((X
k
t )t∈Z),

which likewise tends to zero.
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For the second of the above terms, we once more use the Lipschitz-continuity of h and
stationarity in order to obtain the upper bound

√
bnE

[∣∣A′
n,1 − Zn

∣∣], whose convergence has
already been shown above since Zn = Zn,1. �

Proof of Corollary 2.9. It holds

√
bn (E [|Zn − Z ′

n|]− σE [|N −N ′|]) =
√
2σ
√

bn

(
E [|Zn − Z ′

n|]√
2σ

− E [|N |]
)

=
√

bnE [|Zn − Z ′
n|]
√
Var(Zn)− σ√
Var(Zn)

+
√
2σ
√

bn

(
E [|Zn − Z ′

n|]√
2Var(Zn)

− E [|N |]
)
.(3.6)

For the first of these terms, it suffices to show that
√
bn

∣∣∣
√

Var(Zn)− σ
∣∣∣→ 0 since E [|Zn − Z ′

n|]
can be bounded by a constant independent of n due to Lemma A.1 and since for Var(Zn) →
σ2 > 0, it holds Var(Zn) > σ2/2 for all n large enough. Proceeding as in the proof of Propo-
sition 2 in El Machkouri, Volný, and Wu [2013], we derive that for a centered time series
(Yt)t∈Z such that Yt = f

(
(εt−u)u≥0

)
, one has

(3.7)

∣∣∣∣∣Var
(

1√
N

N∑

t=1

Yt

)
−
∑

t∈Z
Cov (Y0, Yt)

∣∣∣∣∣

≤
∑

j:|j|>N

∑

i∈Z
δi
(
(Yt)t∈Z

)
δi−j

(
(Yt)t∈Z

)
+ 2

N∑

j=1

j

N

∑

i∈Z
δi
(
(Yt)t∈Z

)
δi−j

(
(Yt)t∈Z

)
.

This follows from the following arguments. First, we expand Var
(∑N

t=1 Yt/
√
N
)
in terms

of Cov (Y0, Yt) via a use of stationarity. Then we write

(3.8) Cov (Y0, Yt) =
∑

i∈Z
E [Pi (Y0)Pi (Yt)] ,

where Pi (Y ) := E [Y | σ (εu, u ≤ i)] − E [Y | σ (εu, u ≤ i− 1)]. Finally, we use the fact
that |E [Pi (Y0)Pi (Yt)]| ≤ ‖Pi (Y0)‖2 ‖Pi (Yt)‖2 due to the Cauchy-Schwarz inequality and

Theorem 1 in Wu [2005]. Letting N = ℓn, Yt =
∑m

k=1
∂g
∂xk

(v0)
(
Xk

t − E
[
Xk

1

])
and ai :=

max1≤k≤m δi

((
Xk

t

)
t∈Z

)
, we infer that for some constant C independent of n,

√
bn
∣∣Var(Zn)− σ2

∣∣ ≤ C
√

bn

m∑

k=1

∑

i≥0

ℓn∑

j=1

j

ℓn
δi

((
Xk

t

)
t∈Z

)
δi−j

((
Xk

t

)
t∈Z

)
1i≥j

+ C
√
bn

m∑

k=1

∑

i≥0

∞∑

j=ℓn+1

j

ℓn
δi

((
Xk

t

)
t∈Z

)
δi−j

((
Xk

t

)
t∈Z

)
1i≥j .

Denote A :=
∑

i≥0 ai. Then elementary computations give

∑

i≥0

ℓn∑

j=1

j

ℓn
aiai−j1i≥j =

ℓn∑

j=1

j

ℓn

∑

i≥j

aiai−j =
ℓn∑

j=1

j

ℓn

∑

k≥0

ak+jak

≤
ℓn∑

j=1

j

ℓn

∑

k≥0

ak+jA ≤ A

ℓn∑

j=1

j

ℓn
j−5/2

∑

k≥0

(k + j)5/2 aj+k ≤ C/
√

ℓn
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and

∑

i≥0

∞∑

j=ℓn+1

j

ℓn
aiai−j1i≥j =

∑

i≥ℓn+1

i∑

j=ℓn+1

j

ℓn
aiai−j ≤

∑

i≥ℓn+1

i

ℓn

i∑

j=ℓn+1

aiai−j

=
∑

i≥ℓn+1

ai
i

ℓn

i−ℓn−1∑

k=0

ak ≤ A
∑

i≥ℓn+1

ai
i

ℓn
≤ Cℓ−5/2

n .

Consequently, √
bn
∣∣Var(Zn)− σ2

∣∣ ≤ C
√

bn/ℓn,

and the convergence of
√
bn

∣∣∣
√

Var (Zn)− σ
∣∣∣→ 0 follows from

√
bn

∣∣∣
√

Var (Zn)− σ
∣∣∣ =

√
bn
∣∣Var(Zn)− σ2

∣∣ 1√
Var (Zn) + σ

.

For the second term of (3.6), we can apply Corollary 2.6 in Jirak [2016] to obtain the
bound

√
bn

(
E [|Zn − Z ′

n|]√
2Var(Zn)

− E [|N |]
)

≤ C
√

bnℓ
1−p/2
n (log ℓn)

p/2 ,

provided the assumptions stated in Corollary 2.9 hold. Indeed, Zn −Z ′
n can be expressed as

Zn − Z ′
n =

1√
ℓn

ℓn∑

t=1

φ
((

εt−u, ε
′
t−u

)
u∈N

)
,

where (ε′u)u∈Z is an independent copy of (εu)u∈Z and

φ
(
(xu, yu)u∈N

)
:=

m∑

k=1

∂g

∂xk
(v0)

(
fk
(
(xu)u∈N

)
− fk

(
(yu)u∈N

))
.

�

3.4. Verification of Examples.

Details of Example 2.3. Since ϕ is γ-Hölder continuous, there exists a constant C such that
for each x, y ∈ R, |ϕ (x)− ϕ (y)| ≤ C |x− y|γ . In particular, |ϕ (x)| ≤ C |x|γ + |ϕ (0)| and it
follows that

∣∣ϕk (x)− ϕk (y)
∣∣ = |ϕ (x)− ϕ (y)|

∣∣∣∣∣

k−1∑

j=0

ϕ (x)j ϕ (y)k−j−1

∣∣∣∣∣

≤ max {C, |ϕ (0)|}k−1 |ϕ (x)− ϕ (y)|
k−1∑

j=0

(1 + |x|γ)j (1 + |y|γ)k−j−1

≤ C ′ |x− y|γ (1 + |x|γ + |y|γ)k−1
.

For a fixed i, we thus have

δi

((
Xk

t

)
t∈Z

)
=

∥∥∥∥∥ϕ
(∑

j∈Z
ajε−j

)k
− ϕ

(∑

j∈Z
ajε

∗,i
−j

)k
∥∥∥∥∥
2

≤C ′

∥∥∥∥∥∥
|a−i|γ |εi − ε′i|

γ

(
1 +

∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j + a−iεi

∣∣∣∣∣

γ

+

∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j + a−iε
′
i

∣∣∣∣∣

γ)k−1
∥∥∥∥∥∥
2
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≤C ′
∥∥∥|a−i|γ |εi − ε′i|

γ (
1 + |a−iεi|γ + |a−iε

′
i|
γ)k−1

∥∥∥
2

+C ′

∥∥∥∥∥∥
|a−i|γ |εi − ε′i|

γ

(
1 +

∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j

∣∣∣∣∣

γ

+

∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j

∣∣∣∣∣

γ)k−1
∥∥∥∥∥∥
2

≤C ′
(∥∥∥|ε0|kγ

∥∥∥
2
+
∥∥∥|ε0|(k−1)γ

∥∥∥
2
· ‖|ε0|γ‖2

)
|a−i|kγ + C ′ |a−i|γ ‖|ε0|γ‖2

+C ′ ‖|ε0|γ‖2 |a−i|γ
∥∥∥∥∥∥

∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j

∣∣∣∣∣

(k−1)γ
∥∥∥∥∥∥
2

,

where the second inequality follows by a combination of the triangle inequality for γ ∈ (0, 1]
and the cr-inequality, and the third one is due to the independence of

∑
j∈Z,j 6=−i ajε−j and

(εi, ε
′
i).

Recall that we have to check that
∑

i∈Z i
2δi

((
Xk

t

)
t∈Z

)
< ∞ for each k = 1, . . . , m.

By assumption, E
[
|ε0|2mγ] < ∞ and

∑
i∈Z i

2 |ai|γ < ∞, such that it remains to show

E

[∣∣∣
∑

j∈Z,j 6=−i ajε−j

∣∣∣
2γ(k−1)

]
< ∞. In case 2γ (k − 1) ≤ 1, we can simply employ

E



∣∣∣∣∣
∑

j∈Z,j 6=−i

ajε−j

∣∣∣∣∣

2(k−1)γ

 ≤

∑

j∈Z,j 6=0

|aj|2(k−1)γ
E

[
|ε0|2(k−1)γ

]
,

which is finite by assumption. If 2γ (k − 1) ∈ (1, 2], then the Von Bahr-Esseen inequality
gives (up to a constant) the same upper bound. If 2γ (k − 1) > 2, Rosenthal’s inequality
yields

E



∣∣∣∣∣
∑

j∈Z,j 6=−i

ajεi−j

∣∣∣∣∣

2(k−1)γ

 ≤ C

∑

j∈Z,j 6=0

|aj |2(k−1)γ
E

[
|ε0|2(k−1)γ

]
+C

(
∑

j∈Z,j 6=0

a2jE
[
ε20
]
)(k−1)γ

.

�

Details of Example 2.4. This is a consequence of the estimation of the physical dependence
measure in Example 3 on pages 5967-5968 of Biermé and Durieu [2014] applied separately
to each function ϕk for 1 ≤ k ≤ m. �

Details of Example 2.5. In order to give a bound on δi((X
k
t )t∈Z) for a fixed i and a k ∈

{1, . . . , m}, we decompose X0 as follows: Set X0 = εiYi + Zi, where

Yi :=
∑

j′∈Z,j′ 6=−i

a−i,j′ε−j′ +
∑

j∈Z,j 6=−i

aj,−iε−j

Zi :=
∑

j,j′∈Z,j 6=j′,j 6=−i,j′ 6=−i

aj,j′ε−jε−j′.

Thus,

Xk
0 −

(
X∗,i

0

)k
=

k∑

ℓ=0

(
k

ℓ

)(
εℓiY

ℓ
i Z

k−ℓ
i − (ε′i)

ℓ
Y ℓ
i Z

k−ℓ
i

)

and since the term with index 0 vanishes, we derive that

δi((X
k
t )t∈Z) =

∥∥∥Xk
0 −

(
X∗,i

0

)k∥∥∥
2
≤

k∑

ℓ=1

(
k

ℓ

)∥∥∥
(
εℓi − (ε′i)

ℓ
)
Y ℓ
i Z

k−ℓ
i

∥∥∥
2
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≤ 2
k∑

ℓ=1

(
k

ℓ

)∥∥εℓ0
∥∥
2

∥∥Y ℓ
i Z

k−ℓ
i

∥∥
2
≤ 2

k∑

ℓ=1

(
k

ℓ

)
‖ε0‖ℓ2ℓ ‖Yi‖ℓ2k ‖Zi‖k−ℓ

2k ,

where the second inequality is due to the independence of (εi, ε
′
i) and (Yi, Zi), and the

third inequality follows from an application of Hölder’s inequality with conjugate exponents
k/ℓ and k/ (k − ℓ) for ℓ ≤ k − 1. Following the arguments given on pages 2376-2377 in
Zhang, Reding, and Peligrad [2020], we obtain

‖Zi‖2k ≤ C

√ ∑

j,j′∈Z\{−i},j 6=j′

a2j,j′ ‖ε0‖2k ≤ C

√ ∑

j,j′∈Z,j 6=j′

a2j,j′ ‖ε0‖2k ,

such that ‖Zi‖2k can be bounded independently of i. Moreover, an application of Rosenthal’s
inequality yields

‖Yi‖2k ≤ C

√ ∑

j,j′∈Z,j 6=j′

a2j,j′ ·
√ ∑

j∈Z,j 6=−i

(
a2−i,j + a2j,−i

)
‖ε0‖2k .

Thus, δi

((
Xk

t

)
t∈Z

)
≤ C

√∑
j∈Z,j 6=−i

(
a2−i,j + a2j,−i

)
and the result follows. �

A. Appendix

A.1. Auxiliary results for functionals of i.i.d. sequences. This appendix collects some
auxiliary results for functionals of i.i.d. sequences, which we require for our proofs. We
consider sequences (Xt)t∈Z of the form Xt := f

(
(εt−u)u∈Z

)
, where f : RZ → R is measurable,

(εu)u∈Z is an i.i.d. sequence and E [Xt] = 0. Denote FN
M := σ (εu,M ≤ u ≤ N). To quantify

the dependence, let (ε′u)u∈Z denote an independent copy of (εu)u∈Z and define

δi
(
(Xt)t∈Z

)
:=
∥∥X0 −X∗,i

0

∥∥
2
,

where X∗,i
0 = f

((
ε∗,i−u

)
u∈Z

)
and ε∗,iv = ε′i if v = i and ε∗,iv = εv otherwise.

We start by presenting a bound on the partial sum of (Xt)t∈Z, which is a special case of
Proposition 1 in El Machkouri et al. [2013].

Lemma A.1. The following inequality holds for all N ∈ N:
∥∥∥∥∥

N∑

t=1

Xt

∥∥∥∥∥
2

≤
√
N
∑

i∈Z
δi
(
(Xt)t∈Z

)
.

Lemma A.2. Suppose that
∑

i∈Z δi
(
(Xt)t∈Z

)
< ∞. Then the sequence

(
1
N

(∑N
t=1Xt

)2)
N≥1

is uniformly integrable. Moreover, the series
∑

t∈Z |Cov (X0, Xt)| converges and

lim
N→∞

1

N
E



(

N∑

t=1

Xt

)2

 =

∑

t∈Z
Cov (X0, Xt) .

Proof. The convergence of the series is established in Proposition 2 of El Machkouri et al.

[2013]. It remains to check the uniform integrability of
(

1
N

(∑N
t=1Xt

)2)
N≥1

. Since the

sequence is bounded in L
1, we only have to check that

lim
δ→0

sup
A:P(A)<δ

E


 1

N

(
N∑

t=1

Xt

)2

1A


 = 0.
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To do so, let X
(M)
t := E

[
Xt | F t+M

t−M

]
. Then

sup
A:P(A)<δ

E


 1

N

(
N∑

t=1

Xt

)2

1A




≤2 sup
A:P(A)<δ

E


 1

N

(
N∑

t=1

X
(M)
t

)2

1A


+ 2E


 1

N

(
N∑

t=1

(
Xt −X

(M)
t

))2



and using Lemma A.1, we obtain

sup
A:P(A)<δ

E


 1

N

(
N∑

t=1

Xt

)2

1A


 ≤2 sup

A:P(A)<δ

E


 1

N

(
N∑

t=1

X
(M)
t

)2

1A




+2

(
∑

i∈Z
δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

))2

.

Employing the uniform integrability of
(

1
N

(∑N
t=1 X

(M)
t

)2)
N≥1

for any fixed M , we derive

that

lim sup
δ→0

sup
A:P(A)<δ

E


 1

N

(
N∑

t=1

Xt

)2

1A


 ≤ 2

(
∑

i∈Z
δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

))2

.

Since δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

)
≤ 2δi

(
(Xt)t∈Z

)
, we conclude by an application of the

dominated convergence theorem. �

There moreover holds a central limit theorem for (Xt)t∈Z (see Theorem 1 in El Machkouri et al.
[2013]):

Lemma A.3. Suppose that
∑

i∈Z δi
(
(Xt)t∈Z

)
< ∞. Then the following convergence in

distribution holds

1√
n

n∑

t=1

Xt → N
(
0, σ2

)
,

where

σ2 =
∑

t∈Z
Cov (X0, Xt) .

We also require an estimate on the L
2-norm of partial sums of

(
Xt − E

[
Xt | F t+M

t−M

] )
t≥1

for some M ∈ N.

Lemma A.4. It holds
∥∥∥∥∥

N∑

t=1

(
Xt − E

[
Xt | F t+M

t−M

])
∥∥∥∥∥
2

≤ (4M + 3)
√
N
∑

i:|i|≥M

δi
(
(Xt)t∈Z

)
.

Proof. Lemma A.1 applied to Xt − E
[
Xt | F t+M

t−M

]
yields

∥∥∥∥∥

N∑

t=1

(
Xt − E

[
Xt | F t+M

t−M

])
∥∥∥∥∥
2

≤
√
N
∑

i∈Z
δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

)
.
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For |i| ≥ M + 1, we use δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

)
≤ δi

(
(Xt)t∈Z

)
, whereas for |i| ≤ M ,

we employ δi

((
Xt − E

[
Xt | F t+M

t−M

])
t∈Z

)
≤ 2

∥∥X0 − E
[
X0 | FM

−M

]∥∥
2
, thus obtaining

∥∥∥∥∥

N∑

t=1

(
Xt − E

[
Xt | F t+M

t−M

])
∥∥∥∥∥
2

(A.1)

≤2 (2M + 1)
√
N
∥∥X0 − E

[
X0 | FM

−M

]∥∥
2
+
√
N

∑

i∈Z:|i|≥M+1

δi
(
(Xt)t∈Z

)
.

In the following, we derive an upper bound for the first of the above terms. By the martingale
convergence theorem, it holds

∥∥X0 − E
[
X0 | FM

−M

]∥∥2
2
≤
∑

i≥M+1

∥∥∥E
[
X0 | F i

−i

]
− E

[
X0 | F i−1

−(i−1)

]∥∥∥
2

2
.

Moreover, ∥∥∥E
[
X0 | F i

−i

]
− E

[
X0 | F i−1

−(i−1)

]∥∥∥
2

≤
∥∥E
[
X0 | F i

−i

]
− E

[
X∗,i

0 | F i
−i

]∥∥
2
+
∥∥∥E
[
X∗,i

0 | F i
−i

]
− E

[
X0 | F i−1

−(i−1)

]∥∥∥
2

≤δi
(
(Xt)t∈Z

)
+ δ−i

(
(Xt)t∈Z

)
,

where the second inequality follows from

E
[
X∗,i

0 | F i
−i

]
= E

[
X∗,i

0 | F i−1
−i

]
= E

[
X0 | F i−1

−i

]

combined with

E

[
X0 | F i−1

−(i−1)

]
= E

[
X∗,i

0 | F i−1
−(i−1)

]
= E

[
X∗,−i

0 | F i−1
−i

]
.

By the comparison of the ℓ1- and ℓ2-norm, we thus have
∥∥X0 − E

[
X0 | FM

−M

]∥∥
2
≤

∑

i:|i|≥M+1

δi
(
(Xt)t∈Z

)
.

Inserting the above bound into (A.1) concludes the proof. �

A.2. A moment inequality for U-statistics.

Lemma A.5. Let (εu)u∈Z be an i.i.d. sequence. Let M ≥ 0 and ℓ > 2M be integers. Define

the random vectors Vj by Vj := (εu)
(j+1)ℓ+M
u=jℓ+1−M . Let h : R2 → R be a Lipschitz-continuous

function, let f1, f2 : R
ℓ+2M → R be measurable functions and let UN be defined by

UN :=
∑

1≤j<k≤N

(h (f1 (Vj) , f1 (Vk))− h (f2 (Vj) , f2 (Vk))) .

Then the following inequality holds

N−3/2 ‖UN − E [UN ]‖2 ≤ C ‖f1 (V0)− f2 (V0)‖2 ,
where C is a constant depending only on h.

Proof. The difficulty here lies in the fact that the vectors Vj , j ≥ 1, are not independent.
Denote

Hj,k := h (f1 (Vj) , f1 (Vk))− h (f2 (Vj) , f2 (Vk)) .

We will prove the inequality

‖UN − E [UN ]‖2 ≤ CN3/2 sup
k≥1

‖H0,k‖2 ,
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from which the assertion then follows by the Lipschitz-continuity of h. To verify the above
inequality, we will distinguish between the cases where N is even and those where N is odd.
Let us first consider even values of N , in which case we can write 2N instead of N . Denote
by Fk the σ-algebra generated by the random variables Vk′ for k

′ ≤ k. Then it holds

‖U2N − E [U2N ]‖2 =
∥∥∥∥∥

2N∑

k=2

k−1∑

j=1

(Hj,k − E [Hj,k | Fk−2]) +

2N∑

k=2

k−1∑

j=1

(E [Hj,k | Fk−2]− E [Hj,k])

∥∥∥∥∥
2

≤
∥∥∥∥∥

N∑

i=1

2i−1∑

j=1

(Hj,2i − E [Hj,2i | F2i−2])

∥∥∥∥∥
2

+

∥∥∥∥∥

N−1∑

i=1

2i∑

j=1

(Hj,2i+1 − E [Hj,2i+1 | F2i+1−2])

∥∥∥∥∥
2

+

∥∥∥∥∥

2N∑

k=2

k−2∑

j=1

(E [Hj,k | Fk−2]− E [Hj,k])

∥∥∥∥∥
2

+

∥∥∥∥∥

2N∑

k=2

(E [Hk−1,k | Fk−2]− E [Hk−1,k])

∥∥∥∥∥
2

.

For the first two terms, we additionally define di :=
∑2i−1

j=1 (Hj,2i − E [Hj,2i | F2i−2]) and d′i :=∑2i
j=1 (Hj,2i+1 − E [Hj,2i+1 | F2i+1−2]), such that the sequences (di,F2i)i≥1 and (d′i,F2i+1)i≥1

are martingale differences. For the third term, we use the independence between Vk and
Fk−2 to get that E [Hj,k | Fk−2] = E [Hj,−1 | Vj ], and we have to bound the moments of a
two-dependent identically distributed centred sequence. For the fourth term, we simply use
the triangle inequality. By orthogonality of (di)i≥1 and orthogonality of (d′i)i≥1, it follows

‖U2N − E [U2N ]‖2 ≤




N∑

i=1

∥∥∥∥∥

2i−1∑

j=1

(Hj,2i − E [Hj,2i | F2i−2])

∥∥∥∥∥

2

2




1/2

+




N−1∑

i=1

∥∥∥∥∥

2i∑

j=1

(Hj,2i+1 − E [Hj,2i+1 | F2i+1−2])

∥∥∥∥∥

2

2




1/2

+

∥∥∥∥∥

2N∑

k=2

k−2∑

j=1

(E [Hj,−1 | Vj]− E [Hj,−1])

∥∥∥∥∥
2

+ 4N sup
k≥1

‖H0,k‖2 .

The first of the above terms can be further bounded via



N∑

i=1

∥∥∥∥∥

2i−1∑

j=1

(Hj,2i − E [Hj,2i | F2i−2])

∥∥∥∥∥

2

2




1/2

≤




N∑

i=1

(
2i−1∑

j=1

‖(Hj,2i − E [Hj,2i | F2i−2])‖2

)2



1/2

≤




N∑

i=1

4

(
2i−1∑

j=1

‖Hj,2i‖2

)2



1/2

≤
(

N∑

i=1

16i2 sup
k≥1

‖H0,k‖22

)1/2

≤ 4N3/2 sup
k≥1

‖H0,k‖2 .

The second term can be treated analogously. In order to bound the third term, we switch
the sums over j and k to obtain

∥∥∥∥∥

2N∑

k=2

k−2∑

j=1

(E [Hj,−1 | Vj ]− E [Hj,−1])

∥∥∥∥∥
2

=

∥∥∥∥∥

2N−2∑

j=1

(2N − j + 1) (E [Hj,−1 | Vj]− E [Hj,−1])

∥∥∥∥∥
2
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≤
∥∥∥∥∥

N−1∑

i=1

(2N − 2i+ 1) (E [H2i,−1 | V2i]− E [H2i,−1])

∥∥∥∥∥
2

+

∥∥∥∥∥

N−1∑

i=1

(2N − (2i− 1) + 1) (E [H2i−1,−1 | V2i−1]− E [H2i−1,−1])

∥∥∥∥∥
2

=

√√√√
N−1∑

i=1

(2N − 2i+ 1)2 ‖Y (E [H0,−1 | V0]− E [H0,−1])‖22

+

√√√√
N−1∑

i=1

(2N − (2i− 1) + 1)2 ‖(E [H0,−1 | V0]− E [H0,−1])‖22

≤CN3/2 sup
k≥1

‖H0,k‖2 .

This proves ‖U2N − E [U2N ]‖2 ≤ CN3/2 supk≥1 ‖H0,k‖2. In order to show the corresponding
inequality for the index 2N + 1 instead of 2N , we note that U2N+1 − E [U2N+1] differs from

U2N −E [U2N ] only by the term
∑2N

j=1 (Hj,2N+1 − E [Hj,2N+1]), whose L
2-norm is smaller than

4N supk≥1 ‖H0,k‖2. This ends the proof of Lemma A.5. �

A.3. Tools for the proof of Lemma 3.2.

Lemma A.6. Let (Yn)n≥1 be a sequence of random variables such that (Y 2
n )n≥1 is uniformly

integrable and Yn → N (0, σ2) in distribution with σ > 0. Let Y ′
n and Y ′′

n be independent
copies of Yn and let h : R2 → R be a Lipschitz-continuous function. Then

lim
n→∞

Cov (h (Yn, Y
′
n) , h (Yn, Y

′′
n )) = Cov (h (N,N ′) , h (N,N ′′)) ,

where N , N ′, N ′′ are independent N(0, σ2)-distributed random variables.

Proof. By independence, the sequence of random vectors (Yn, Y
′
n, Y

′′
n ) converges in distribu-

tion to (N,N ′, N ′′). By Skorohod’s representation theorem, there exist a probability space

(Ω̃, F̃ , P̃), sequences of random variables (Zn)n≥1, (Z
′
n)n≥1 and (Z ′′

n)n≥1 and random vari-

ables Z, Z ′ and Z ′′, each defined on Ω̃, such that for all n ≥ 1, the vectors (Yn, Y
′
n, Y

′′
n ) and

(Zn, Z
′
n, Z

′′
n) have the same distribution, (Z,Z ′, Z ′′) has the same distribution as (N,N ′, N ′′),

and the sequence (Zn)n≥1 (respectively (Z ′
n)n≥1 and (Z ′′

n)n≥1) converges to Z (respectively
Z ′ and Z ′′) almost surely. Note that for each fixed n, it holds

Cov (h (Yn, Y
′
n) , h (Yn, Y

′′
n )) = Cov (h (Zn, Z

′
n) , h (Zn, Z

′′
n))

as well as
Cov (h (N,N ′) , h (N,N ′′)) = Cov (h (Z,Z ′) , h (Z,Z ′′)) .

Due to the elementary fact that Cov (Un, Vn) → Cov (U, V ) if Un → U and Vn → V in L
2, it

hence suffices to show
‖h (Zn, Z

′
n)− h (Z,Z ′)‖2 → 0.

Since h is Lipschitz-continuous and the sequence
(
Z2

n + (Z ′
n)

2 + Z2 + (Z ′)2
)
n≥1

is uniformly

integrable, the sequence
(
(h (Zn, Z

′
n)− h (Z,Z ′))2

)
n≥1

is uniformly integrable as well. By

the continuity of h, the sequence
(
(h (Zn, Z

′
n)− h (Z,Z ′))2

)
n≥1

converges to 0 almost surely.

Combined, this yields the desired L
2-convergence and finishes the proof. �
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