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U-STATISTICS OF LOCAL SAMPLE MOMENTS UNDER WEAK
DEPENDENCE

HEROLD DEHLING, DAVIDE GIRAUDO, AND SARA K. SCHMIDT

ABSTRACT. In this paper, we study the asymptotic distribution of some U-statistics whose
entries are functions of empirical moments computed from non-overlapping consecutive
blocks of an underlying weakly dependent process. The length of these blocks converges
to infinity, and thus we consider U-statistics of triangular arrays. We establish asymptotic
normality of such U-statistics. The results can be used to construct tests for changes of
higher order moments.

1. INTRODUCTION

Given some real-valued data Y7,...,Y,, and a symmetric measurable function h : R™ — R,
we define the U-statistic with kernel h as
1
U, = U,(h) = — > hYi,,...,Y:).

n
(m) 1< <2< .<tm<n

U-statistics play an important role in nonparametric statistics, as many sample statistics can
be expressed in this way, at least asymptotically. Well-known examples include the sample
variance, Gini’s mean difference, the Cramér-von Mises test statistic and the y>-test statistic
for goodness of fit. For details and further examples see e.g. Serfling [1980] and Dehling
[2006]. U-statistics have been introduced independently by Halmos [1946] and Hoeffding
[1948]. Halmos [1946] showed that for i.i.d. data, U,(h) is an unbiased estimator of the
parameter # = E [h (Y7, ...,Y},)], and that it is minimum variance unbiased in nonparametric
models. Hoeffding [1948] proved that, again for i.i.d. data and for square integrable kernels,
the U-statistic is asymptotically normal. More precisely,

Vi (Un(h) =E[h(Yr,....Yi)]) — N(0,47;)

in distribution, where 7 := Var (E [h(Y1,...,Y.,)|Y2, ..., Y,]). In the so-called degenerate
case 72 = 0, a different normalization is required to get a non-trivial limit, which will be a
non-normal distribution; see Serfling [1980] for further details. Most of the results for i.i.d.
data can be extended to weakly dependent stationary processes (Y;),~,; see e.g. Dehling
[2006] for a survey. -

In this paper, we study the asymptotic distribution of certain U-statistics whose entries are
local summary statistics of an underlying weakly dependent process (X),.,. More precisely,

we consider local statistics g(i ZteBw_ X;, i ZteBM X2 ..., i ZteBM Xtm), 1<j <0,

which can be expressed as a function of the first m empirical moments of the consecutive
non-overlapping blocks

(1.1) Bpii=1{G —1)la+1,....0}

Key words and phrases. U-Statistic, Triangular array, Central limit theorem.
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2 H. DEHLING, D. GIRAUDO, AND S. K. SCHMIDT

for 1 < j <b,. We assume the block length ¢, to converge to infinity. Given an appropriate
scaling factor v//, and certain regularity assumptions on g: R™ — R, we will show that the
statistics

(1.2) W, = \/Eg(% ; Xt,% ; X2 .., g 3 Xm)
teBy,j teByj

t€Bn,

are each asymptotically normal. We are then interested in U-statistics of the type

(1.3) Upi=————= > h(Wa; War).
b (bn — 1) 1<j#k<bn

Such U-statistics arise naturally in nonparametric tests for the constancy of parameters
of the underlying process (X;)iez. Schmidt, Wornowizki, Fried, and Dehling [2021] test for
the constancy of the variance by analysing Gini’s mean difference of the logarithmic local

sample variances, i.e. they choose h(z,y) = |z — y| and W, ; = /£, log(;- Ziz”(] D1 (Xe—

Ziw’(] Dent1 X +)?). Schmidt [2021] tests for changes in the mean by considering Gini’s

mean dlfference of the local sample means W, = \/% Zte B, X;. In both works, the
behaviour of the test statistic under the hypothesis is determined by deriving a central limit
theorem for U,. The setup considered in the present paper allows for testing for constancy
of higher order characteristics of the distribution of X}, such as the skewness or kurtosis; see
Example 2.1 below.

Note that the entries of U, from (1.3) stem from a triangular array (W, ;), ;o >, and
that under certain regularity assumptions made in this paper, they each converge to a normal
law as ¢,, — co. Moreover, assuming the number b,, of blocks to converge to infinity as well,
there additionally holds (under appropriate assumptions) a central limit theorem for the U-
statistic itself. The limit distribution of U, is hence determined by the double asymptotics of
the U-statistic and its entries. It is the goal of this paper to investigate more systematically
such structures and to find minimal conditions that guarantee asymptotic normality of the
resulting U-statistics of type (1.3).

2. MAIN RESULTS

We are interested in U-statistics of triangular arrays of the form (1.3), where h: R* — R
denotes a symmetric kernel function. We will henceforth always assume that the kernel fulfils

(2.1) | (z,y)] < C O+ [z] +[yl)

for all x,y € R and some constant C. For the results under dependence later on, we will
require the stronger assumption of Lipschitz-continuity.
Our first result is a central limit theorem for U,,, given the triangular array (W, ;)1<j<b,n>1

is row-wise i.i.d. with a very mild assumption on the distribution of the random variables
Wi j.

),

Theorem 1. Let (Wo ;) <, o>y be @ row-wise i.i.d. triangular array such that b, — oo as
n — oo. Assume that (2.1) holds, that 72 := Cov (h (W1, Wna) ,h (Wya, Wy3)) > 0, and
that the sequence (W3,1/%2z)n>1 s uniformly integrable. Then the following convergence in
distribution holds -
von ( 1

(2.2) ol W

> h(Way, Way) —Eh (Wn,l,Wn,z)]> — N (0,4).

1<j#k<bn
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A related result was obtained in Lowe and Terveer [2021] for incomplete U-statistics of
independent data.

The above theorem lays the groundwork for the more specific problems we investigate in
this paper. As opposed to Theorem 1, the triangular array (W), j)1<j<p,n>1 We consider from
now on is in general not row-wise independent as the underlying process (X;),., is weakly
dependent. More specifically, we assume the stationary sequence (X;);cz to be expressible as
a functional of an i.i.d. process. Thus, we can write X, := f ((5t “)uGZ) where f: R -+ R

is measurable and (&), is i.i.d. In order to quantify the dependence, let (¢},),., be an
independent copy of (5U)uez and define

(23) 52 ((Xt)tEZ) = HXO — X,

where X' = f (( ) eZ) and ' = &} if v =i and €' = ¢, otherwise. We thus measure

the contribution of ¢; to X, by looking at the difference between X, and a coupled version
X" for which g; is replaced by an independent copy. This weak dependence concept was
introduced by Wu [2005] under the term physical dependence measure and is now frequently
used in statistical applications (see, e.g., EI Machkouri [2014], Liu, Xiao, and Wu [2013], Wu
[2008] and Wu [2011]).

In the following, the triangular array (W, ;)1<j<b,n>1 is assumed to be of the form (1.2).
Example 2.1 presents some problems that are covered by this structure.

Example 2.1. (1) Schmidt et al. [2021] propose a test for constancy of the variance
based on the test statz’stz’c
U, = bn Z f}logsm logsnk‘
1<] k<bn
where sid = ZteBW_ (X;— i ZreBW_ X.)2. In our setting, this corresponds tom = 2,
g(w1,02) = log(zg — a7) and h(z,y) = |z —yl.
(2) Considering higher moments, one can construct a test for the constancy of the skew-
ness or the kurtosis in a similar fashion to (1) by considering Gini’s mean difference
(that is, h(x,y) = |v —y|) of the blockwise estimates 4, ;, j = 1,...,b,, or Ry,
j=1,...,b,, respectively. Note that an empirical version of the skewness is given by

3
<€n ZtEBn JJ ( t f n TEBn g )
3
1 ZteBw < ZteBw ) < ZteBn,j Xt) < ZteBw )
3/2
(% Lien, X2 = ( Sien,, X0)°)

which 1s covered in our setting via the function

fyn:j =

)

Trs — 35(711’2 + 21’?
3/2
(22— 22)”

An empirical version of the kurtosis is given by

R B 1 ZtEBnJ ( 1 ZTGBnJ )
2
<E ZteBn,j (Xt - i ZTGBw‘ XT) )

g(xla T, 1’3) =

HTL7J -
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(EEH-GE) GG MEE Y

EBnyj tGBn,j tEBn,j tEBn,j
1 2,1 , 1 1
ro; 5 X) (5 3 %) -3 3 %))
tEBn,j tEBn,j tEBn,j

which corresponds to the function
T4 — 4r173 + 62379 — 377
(w2 — 27)?
We now state a central limit theorem for U-statistics of this more concrete type of trian-
gular array (1.2). The question of the central limit theorem for U-statistics whose entries are

Bernoulli shifts has been addressed in Hsing and Wu [2004] and Giraudo [2021], but these
results do not treat the case of arrays.

g(x1, 2,3, 24) =

Theorem 2. Assume that the following conditions are satisfied.

(1) The function h is Lipschitz-continuous.
(2) E[X?™] < 0o and

(2.4) ZZ 25 ((XF) o) < 0.

€7 k=1

(3) The function g satisfies g (vo) = 0, where vy = (E [Xk]) v € R™. There exists an
a > 0 such that g is differentiable at each point of [];-, (E [ } 2a,E [Xﬂ + Qa)
and the gradient of g is bounded on [[;-_, ( [Xk} 2a,E [Xk} + Qa).
(4) The sequences (by),~, and (,),~; go to infinity as n goes to infinity. Moreover,
limy, s 400 by /4, = 0.
Let n: R™ — [0,1] be a smooth function with n(x) =1 if ||z —voll, < a and n(z) = 0 if
|z — volly > 2a, and define

1
W =\, (g 1) Xt
" t€By, o1
If
Xk k
(2.5) ZZ:COV (Z o (vo) X5, ;Tk (vo) Xt) > 0,

the following convergence in distribution holds

(2.6) Von (Un Z E [h (W,E@,W“? )D — N (0,4%),

1<]7ék<bn
where
7% := Cov (h(oN,oN'),h(cN',oN"))
for independent standard normally distributed random variables N, N' and N”.

Remark 2.2. Note that the partial derivatives in (2.5) arise as a consequence of the delta
method.

In the examples below, we provide some classes of processes (X;);ez that fulfil the above
condition (2.4). For more details, we refer to Section 3.4.
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Example 2.3. Let X; be a Holder continuous function of a linear process as considered, for
instance, in Ho and Hsing [1997] and Wu [2006]. More precisely, define X; as

Xi=¢ (Z aj€t—j> )

jE
where p: R — R is y-Holder continuous for some v € (0,1], (a;),c; s a sequence of real

numbers such that Y, 7% |a;]" < 00 and (€.,) ¢y is an i.i.d. sequence such that E [|50|2m7} <

00. Then (X;),e, satisfies condition (2.4).
Example 2.4. Assume X; can be written as a function of a Gaussian linear process: Let
}/:‘, = Z AjEt—j,
JEZ
where ¢ : R — R, (e4),c 95 an i.i.d. sequence, €y has a standard normal distribution and

a; € R for all j € Z with 3, |a;| < 0o as well as 33, , a5 = 1. Such processes were

considered, e.g., in Nualart [2009]. Given that ¢ (Yy) € L? and E[p (Yo)] = 0, the following
expansion holds:

(Vi) =D (@) Hy (Yy),

where the g-th Hermaite polynomaial is defined by

)= e (5) e (<)

%@%z%EWGQHA%»

and

provided that 3~ qlc, (¢)* converges. Then condition (2.4) is met if > jend’ lajl < oo and

iim}cq (¢" —E [¢" (Y0)])] < oo.

k=1 g=1
Example 2.5. Let (X;),o, be a Volterra process, i.e. let
Xp= ) aeesEeg,
7.5 €L, j#]

where (€,) ez 15 i.i.d. centred, Elef] < oo and 37, ey iuia5 ;0 < 00. Such processes and
extensions to Volterra series are considered in Rugh [1981] and Priestley [1988]. IfE[e2m] <

oo as well as
Y72 (@ +a) <o

JEZ J'€L,j'F#5

then (Xy),e, satisfies condition (2.4).

It would be more natural to centre U, in (2.6) by > ey E[h (Wi, Way)] rather
than by the truncated version 37, o, E [h (W(”) W(”,zﬂ. However, the conditions of

n?.] ’ n7

Theorem 2 do not guarantee that E [|h (W, ;, W,, x)|] exists, as the following example shows.
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Example 2.6. Consider the case m = 2, g(x1,x2) = logxel,,~o and h(x,y) = |z —y
with i.i.d. observations (Xi)wez. Since Wy 1 and W, o are consequently likewise independent
and identically distributed, finiteness of E[|W, 1 — W, 2|] is equivalent to the finiteness of
E[[Wh1l]. Now, it suffices to find an i.i.d. sequence (X;),o, such that E[X]] < oo and

e () -

By choosing the distribution of X1 as
P (X12 = exp (— exp (exp (k:)))) =27k

for k> 1, it follows
1 &
"og=1

Taking expectations and using independence leads to

log < ZX2> u > Zexp (exp(k)) 27" = 0.

k>1

sz(zm mmwwl
k>1 b

= Z exp (exp k) lnfil{xtzzoxp(_ exp(exp(k))) }*
k>1

N2y { X2=exp(— exp(exp(k))) }

By imposing additional assumptions on the function g, the dependence coefficients as
well as the sequences (), and ({,),,,, we are able to replace the centring term in (2.6)

computed from the W(" s by an expression that does not require truncation.
Proposition 2.7. Assume that the assumptions of Theorem 2 hold. If additionally all the
second order partial derivatives of g at v exist and if there exists a k € (0,1) such that
Yoz dorey |Z‘%+% 0; <(Xk)tez;) < oo and b, /17" — 0, then the following convergence in
distribution holds

Vo (Uy ~E[h(Z,, Z,)]) = N (0.47%)

where

m In
dg
E:g— )Y (xF-E[x1])
k: t=1
and Z!, is an independent copy of Z,.

Remark 2.8. The above proposition introduces a centring term which is easier to handle
than the original one in Theorem 2. However, if we want to use U, as a test statistic for

testing for a constant value of the parameter g (E [X;],E[X?],...,E[X]), we need to be
able to explicitly calculate the centring term. This is achieved by the following corollary,
where we show that, for the important example when h(z,y) = |z — y|, we can replace

E[|Z,— Z|| by c E[[N — N'|] = 20/+/m. The remaining parameter o can be estimated by
standard procedures for estimating long-run variances.

Corollary 2.9. Suppose that the time series (X;),, can be written as a one-sided Bernoulli

shift, that is, X; = f ((5t_u)u>0). We assume moreover that there exists a 2 < p < 3 such
that -
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(1) E[|X:|"™] < o0 and
(2.7) DD (%6 (XP)iez) + 2612 (X[ )iez)) < o0,
>0 k=1
where §; ,((Xt)tez) = HXO .4 o and
(2) Voo ln " (10g £,)""* + /bl — 0.

Denote

1
), 2, e

1<j#k<bn
where W, ; is defined as in (1.2). Then the following convergence in distribution holds

V(U — %) — N(0,492),

where o and +* are defined as in Theorem 2.

U, =

3. PROOFS

3.1. Proof of Theorem 1. We use the Hoeffding decomposition of the kernel function h
and define

Op :=E[h (W1, Wha)l,
hyn(z) == E[h(x, Wy2)] — O,
hon (2, y) = h(2,y) = hin (2) = h1pn (y) = On.
At the level of the U-statistic, we then obtain

1
Umn)—-E[U = hWy s Whk) — 0n
() ~BU)] =g > RV Wi
1<j#k<bn
2 & 1
= Z Ry (Whj) + m Z hom (Wajs Wak) -
" =1 naATn 1<j#k<bn
In the following, we will prove the convergence in distribution
b
2 mn
(3.1) > i (Way) = N (0,4),

and the convergence in probability

1
(3.2) S D e (Way, Wag) = 0,

bn"n 1<jzkes,

where v2 = Cov (h (W,,1, Wy2), h (W, 2, W, 3)). The assertion then follows by an application
of Slutzky’s Lemma.

Starting with (3.1), we will apply Lindeberg’s central limit theorem to the triangular array
Yo =hi,W.;)/ (%\/E) . Note that by construction, the Y,, ;’s are identically distributed
with E[Y,,1] = 0. Moreover, it holds Var (Y,,1) = 1/b, since by independence

Var (hl,n (Wn,l)) = Var (E [h (Wn,la ng) | Wn,l])

=E [E [h (Wmla Wn72) | Wn,l]ﬂ - (E [E [h (Wn,b Wn,2) | Wn,l“)2

= /RE [ (&, Wa2) B (a2, W 3)] dPyw, , () = (B [B (W1, Wa2)])?
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=E[h (W1, W) - h (W1, W) — (E [h (W1, Wio)])?
= Cov (h (W1, Wp2),h (Wya, Wa3)) =92

It thus remains to verify the Lindeberg condition, that is, to show that for all £ > 0,

b7l
> E Yy, 5e] = 0.
j=1

Since the random variables Y,, ;,1 < j < b, are identically distributed, Lindeberg’s condition
reduces to

2 _ 2 _ D
D EV2 Ly a] = bE [ViiLlgy, 50] =E L { |h1,n(72vn,1)\>gm} -0

Jj=1

Observe that by property (2.1) of the kernel function h, we have |hy, (z)| < 3CE[|[W,1|] +
C'|z| and hence hi,, (z) < 18C?E [W2,] + 2C?%?, from which it follows that

hi, (W, I/V2
—n Wot) 1502 4 90
Tn Vn
Consequently, the uniform integrability of the sequence (A%, (W) /%) , follows from

that of the sequence (W?,/72) _ , and thus Lindeberg’s condition is met.
It remains to verify (3.2). Since E [ho, (W j, War) hon (Wi, Waw)] = 0 if {j, k} #
{j', k'}, we obtain

3/2 212

(3.3) E <L > hQ,n(anj,Wn,k)> _ 2 —1p [h2,, (W1, Wao)] .

By the properties of the kernel function i and the definition of hg,, there exists a constant
C independent of n, x and y such that |ha, (z,y)] < C (1 + |z| + |y| + E[|W,.1]]) and hence
E [h%n (W1, Wao)] < C'E [ng} for a constant C” independent of n. Combining this with
(3.3), we get that

2
1 20
E <b3/2 Z hon (W, Wnk)) < o sup E {

n Tn 1<j#k<bn n n>1

W2
o

and the uniform integrability of (V[/'m1 / fy,%)n>1 guarantees the finiteness of the above supre-
mum. This concludes the proof of (3.2) and that of Theorem 1.

3.2. Sketch of proof for Theorem 2. This section outlines the proof ideas for Theorem 2,
while all details can be found in the next section. First, we reduce the problem to the case

where in U,, the term W, ; is replaced by W,(LZ) =Vl (91 ((z Xien,, XF) ). We thus

define
U = b—l > n(wnwin).

1<j7$k<bn

The next lemma shows that we can replace U, in the central limit theorem by U,(L")

Lemma 3.1. Let the assumptions of Theorem 2 hold. Then P (Un + U}ﬁ) — 0. In partic-
ular, (\/E (Un — U,S"))) converges in probability to zero.

n>1
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It thus suffices to prove the convergence in distribution

(3.4) Vb (U,gm - m Y OE [h (W,E@,W“? )D — N (0,477).

1<j#k<bn

To do so, we use a second approximation step and replace the W )’ by

m

1
Wi = Vagen | | Y EXFIFES) )

n tGBn,j k=1

where ]-"ﬁ =0 (ey, M <u<N) for M| N € Z with M < N. The random variables X, are
thus replaced by random variables depending only on those ¢;,_, with |t —u| < M. Note
that this way, the entries of the U-statistic become almost independent (up to some small
overlap in consecutive blocks). We define

UM = o (i w0
1<]7ék<bn

We can now decompose the expression on the left hand side of (3.4) for each fixed M > 1
via

(3.5) Vo, (UM —E [UM]) + Ry,
where the remainder term is given by the telescoping sum
Ron = Z S (W W) < E b (W Wi

N>M 1<j#k<bn
- (P~ (3 wi)]))
n,g) ? n,y) ’ n, :
The following three lemmas show that the first term in (3.5) converges to the desired normal

distribution, while the continuity of g-n will guarantee that the remainder term R,, »; becomes
asymptotically negligible.

Lemma 3.2. Let the assumptions of Theorem 2 hold. Then, there exists an My € N such
that for all fixed M > My, the sequence (@(U,(LM) — IE‘E[U}(LM)]))H>1 converges in distribution
to a centred normally distributed random variable with variance

43, = 4Cov (h (o N,onN') b (o3 N, o N")),

where N, N and N" are three independent standard normal random variables and

M+1
oay = Z Cov (E 89 99 ])
t=—M—1

8:6 8x
The central ingredient in the proof of Lemma 3.2 is Theorem 1. To meet its conditions,

we approximate UM by yet another U-statistic, which has independent entries (details are
given in the next section).

E (vo) XF

U(] XO‘fM

Lemma 3.3. Let the assumptions of Theorem 2 hold. Then the sequence (47&)]\/[21 converges
to 4v% = 4Cov (h (cN,oN') ,h (o N',aN")).
Lemma 3.4. Let the assumptions of Theorem 2 hold. Then, for each € > 0, it holds

hm limsup P(| R, n| > €) = 0.

M—oco no0o
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In the final step, we apply Theorem 4.2 of Billingsley [1968]. This theorem states that for
stochastic processes (Yinn),, n>15 (Ya)ps1s (Zim) 1, and a random variable Z, satisfying

Yn — Zp, in distribution, as n — oo, for each m,
Zmm — Z in distribution, as m — oo,

lim limsupP (Y, — Y,,nl >¢) =0, forall e > 0,

—00 n—oo

we may conclude that Y, — Z in distribution. A combination of Lemmas 3.2, 3.3 and 3.4
thus yields the desired convergence in (3.4) and thus finishes the proof.

3.3. Proof details.
Proof of Lemma 5.1. We start by noting the following inclusions

bn b, m
(U, 40"} | {Ww- 4 W,gg?} Uy Z XF| —E x| > 2a/m
j=1 j=1k=1 " t€By,;

Hence, using the fact that for each k, the random variables ( ™ Y oie B, X L_E [Xf]), j =

1,...,b,, have the same distribution, and by an application of Chebychev s inequality, we

obtain
4
1 i k
(U 7& Uv(T7 2€ E Var <\/—f: tEZI Xt) .

By Lemma A.1, it holds Var (WZZ” Xk> < (X 5i((Xf)t€Z))2 and thus, we have
P(U, # Ul ) < Ob, /¢, which converges to zero by assumption. O

Proof of Lemma 3.2. Let M > 1 be fixed. We intend to approximate UM once more to
obtain a U-statistic UT(LM) with independent entries. Thus, we define

- 1 Gln—M—1
M
Wl =vVign (|- > E[XFIAES]
" t=(j—1)ln+M+1 e

for j =1,...,by,, assuming that n is large enough such that 2/ < £,. Due to the shortening
of the blocks B, ; by M observations on each side, the W,Ef\f)’s are independent. Next, we

define
rr(M) . _ (M) 157(
0 ==y o (Wi w0
1< J#k<bn
Since the function g - n is Lipschitz—continuous, it holds

U k t+ M - 1 - k t+ M
Wy - W }<02f Py [»xtwa_M}w;mt:ﬂ;MEﬂxtwa_M}.

Taking expectations, we obtain

o ws - w) <o o

since E [X]"] < oo by assumption. Thus, for the U-statistic, we have

VBE|(e0 - E[ven]) - (700 B [007] )|
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/b, —~ —~
s, 2, Bl () - (7 )
Vba

<CvbE [|[wi) - Wi N
where the last but one inequality follows by the Lipschitz-continuity of the kernel A and the
stationarity of the W,S\f)’s and of the Wéf\f)’s.
In the following, it hence suffices to prove that /b, (NT(LM) - E [NT(LM)} ) converges in
distribution to a centred normal random variable N, with variance 4v3,. We first show that

2= Cov (1 (W0, DY (W00, 00 > 3,

n,2 n,l » n

]gCM

and afterwards the convergence in distribution

which combined yield the assertion.

We start by verifying 73, — 73, by means of Lemma A.6. To apply Lemma A.6, we have
to check that the sequence ((I/I/,(Lf‘f))z)n>1 is uniformly integrable. By the assumptions on g
and 7, the gradient of ¢ - n is uniformly bounded over R™, such that

)\ 2 2 2 1Z7L_M_l k t-+M "
(Wn,l ) =Ly, (9 1 ) Vo + 7 Z E [Xt | ]:t—M] — Yo
k=1

™ o4=M+1

m ln—M—1 2

<3 (£ w1 7 w1
k=1 \ " t=M+1

and uniform integrability follows from Lemma A.2. We additionally have to show that

/VIZ(AJ) — N (0,0%,) in distribution to apply Lemma A.6. To do so, we will use the differen-

tiability of g - n at vy and the fact that (g -7n) (vo) = 0 in order to write

(900 (i +2) = Y- aus'® (1) +2 ().

where e (2) / [|2]l, = Oas ||z, = 0. Setting 2 = (% Car (E[XE]FA] - E[XF] )>k:1’
we thus obtain

N 1 bn—M—-1 m 8
0 S S ) e x| ) ()
" =M+1 k=1
1 ln—M—1 m
i (27 el ia i) )
" o=M+1 k=1

By the central limit theorem (see Lemma A.3 in the appendix), the first of the above terms
converges to a centred normal distribution with variance o2,. Moreover, due to the properties
of the function € and the strong law of large numbers, the second of the above terms converges
in probability to 0. Indeed,

Vi (173 et iz e )))

" o=M+1
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ln—M—1 M "
(Aot E®xF AR -E X))

m (S ® x| A -2 [xE))

> (EMZ (B [XE | 7] —E[x1] ))2,

12
k=1 "™ \t=M+1

which is a product of the form A, B,, where (An)nZl converges in probability to 0 and
(Bn),>; is tight. We hence have Wﬂ/]) — N (0,0%,) in distribution and Lemma A.6 implies
2 2
Ympn — Y- N N
Turning towards showing /b, (Ur(LM) - E[Ur(LM)]) /Ymn — N(0,4) in distribution, we have
to check the assumptions of Theorem 1 and therefore have to prove the uniform integrability
of (W, n 1 /7M 2)2)n>1. The uniform integrability of ((Wé{‘f))z)ml has already been shown

above. Moreover, since we will show in the proof of Lemma 3.3 below that 73, — ~* > 0,
there exists an M, such that for all M > M, it holds 73, > 0. Since for fixed M > My,
we have shown above that 73,, — 73, there exists an ngy such that 73, > ~3,/2 > 0

for all n > ng . Hence, the sequence (7;4?”)”2”0’]\4 is bounded and ((Wé%)/vMﬂF)nZnOM is
uniformly integrable, such that Theorem 1 yields the desired convergence. O

Proof of Lemma 3.5. Tt suffices to prove that v3, — 2. Since h is Lipschitz-continuous, the
mapping = — Cov (h (zN,xN") , h(zN,zN")) is continuous, where N, N and N” denote
three independent standard normal random variables. Therefore, we only need to check that
o2 — 0%, where

2M+1 m m
dg dg
0'12\4: Z Cov (E ZT]C(UO)X(I; ./_"yM 7E Z I (UO>)(1‘{C f;t'i'l\ﬂ/?[])
t=—2M—1 k=1 k=1

and

tez k=1 k=1
By construction, o3, = ,., Cov (E [Z;ﬂ 689 (vg) X ‘]—"M ] E [ 1 % (v) XF ffﬁ\f])
and a small calculation shows
o8 — o
"9 "9
5 0o (5528 (- k1 220,55 22 o (3 - Lt 4] )|
tez k=1 'k k=1 "~k
Note that
9
(3 at o (st e lxza])) )
1EL k=1 teZ
0 dg
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which is finite by assumption (2.4). We can thus apply Lemma A.2 from the appendix to
the above sum of covariances and obtain
2
=)

1 "9
it 8| (355 52 o (-8 [

< <Z§i<<§;%’k(vg) (xt — & [xt|Fe]) )tez))z,

where the last inequality follows by Lemma A.1. We have already shown above that the
last expression is finite. Moreover, for each fixed 4, it holds by the martingale convergence

theorem that
"9
s (o (e b)) ) -0

and by dominated convergence, it thus follows |02, — o%| — 0. O

Proof of Lemma 5.4. Due to Chebychev’s inequality, it suffices to prove

lim li = 0.
i 121:S£plan7M||2 0

By the definition of R, »s, the above equality holds if the sum n>1an converges, where

1
on =sup s |57 (n (WO W) < [ (W )]
21 by'” |1 <jzk<b,

() = s o))

Splitting the supremum up into those cases of n for which ¢, > 2(N + 1) and those for which
l, < 2(N + 1), we have to prove the convergence of ZN21 ay, and ZNZl ay 2, where

) .

1
anq = sup —
; 3/2
n>1,2(N+1)<t, bn/

Z (h (W(N+1>, W,Ef\,i“)) —E [h <WT(L{}7+1)’ Wr(:\]i—l—l))]

n7j
1<j#k<bn

() = o))

)

2

1
o= s S (n (W) < [ (0w
n>1,2(N+1)>¢n by, \<}Zh<by

(N) (N) (N) (N)
-(n (i)~ n (w3 wi)]))],
We bound ay; by an application of Lemma A.5 from the appendix to obtain

any < C sup HWfﬁH) — Wfﬁ)H )
n>1,2(N+1)<ly, 2

In order to bound ay 2, we notice that by assumption, b, < ¢, < 2(N +1) < CN for n large
enough. Consequently, by the Lipschitz-continuity of h,

ang < 2 sup Vbn

n>1,2(N+1)>0y,

W(N""l) . W(N)

n,1 n,1

<2 sup VN HW,(LZYH) — W(N)H .
2 ’ 2

n,1
n>12(N+1)>4,
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Using the Lipschitz-continuity of g - n and Lemma A.1, we derive that

Wiy —wip| < Ci >0 (B [xF | FENR] —E[XF | FEN)) es) -

k=1 i€Z

The above summands are 0 for |[i| > N +2, while for |i| < N+2, we get by similar arguments
as in the proof of Lemma A.4 that

o (B [XF | FENH] —E[XF | FEY) ) < v (X5 1) +0onet (X))
We thus obtain the bounds

ana SONS (rer (X)) + 05 1((XE) 1)

k=1
and
ana SONY2 Y (O ((XF) ) +0na (X))
k=1
The convergence of 3y~ an1 and Yy, ayz then follows from assumption (2.4). O

Proof of Proposition 2.7. The proof is divided into two parts. First, we show that

;gw(m > (2 (w3018)] - El0 s 200]) ) =0

1<j#k<bn

where

S Y (xE-B L),

k: t€Bn,

and afterwards that

. 1 /
7}1_{{)10 V by (m Z E 1 (Znj, Zng) — E[h(Zn, Zn)]) = 0.
1<j#k<bn
The assertion then follows from Theorem 2.
Starting with the first part, due to the Lipschitz-continuity of h and stationarity, it suffices

to show that
lim \/bnE HW(” } —0.

n—oo
By the assumptions imposed on g and 7, there exists a constant C' such that for each
z = (zx)j; € R™, it holds

Za—g ) (2~ E [x1])

With the choice z = <él D teBoa f)k this yields

< CHZ_UOHz-

2

]gc\/mkiﬂz =3 (xE-E X))

" tEBn,l

E HW,EZ.) — Zni

Lemma A.1 from the appendix now implies that /b, HW;LUJ) Zna
converges to 0 by assumption.

} < C\/bn/ly, which
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Turning towards the second part, we define

Arym S ) (B [XE | 0 (e u— ] < £5)] — E[XF])

E" k=1 0$k teEBy, ;
and
, 1 = 89 K
A= D g () D0 (BN o (e fu—t] < )] ~E[X}]),
k=1 teBl, ;
where

Bl ={keN,(j— 1)l + 1+ <k<jb,— 0}

Note that by construction, the sequence of random variables (A’ ) is independent. More-

over, the following decomposition holds
1

bo | E[h(Zn;, Zox) — E[h(Z,, Z
1<j#k<bn

1 / /
S\/Ebi Z E Hh (Zn,ja Zn,k) —h (An]aAn,k)H

n (bn —1) 1<j#k<bn
+\/Em ISJ;% (E[h (A4, ,,A,)] —ER(Z,, Z;)])‘ .

By the Lipschitz-continuity of A combined with stationarity, we can bound the first of the
above terms by

C\/EE HZml - Ail,l” < C1\/51[3 HZn,l - An,lH + C\/QE HAn,l - A;@,IH :

An application of Lemma A.4 from the appendix yields

VOB | Zn1 — Anal] <C\/72€H Z 0; ( teZ)

k=1 \|>£'<
<C /b /f EH/ZZ Z gﬁ/2+1/25 ( )teZ)
k=1 i:|i|>e%
COVRTEEPS S i e ; 6 (X))
k=1 q:|i|>05

which tends to zero by the assumptions on the dependence coefficients and since b,, = o(£17%).
By Lemma A.1,

VOE [|Ans — E[X} | o (euJu—t] < €7)]
2
PN S(E[XF | o (u Ju—t] < 09)])iez)
\FZ Z
\/72?@/2 Z 6 tEZ
" k=1 isli| <o

which likewise tends to zero.
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For the second of the above terms, we once more use the Lipschitz-continuity of h and
stationarity in order to obtain the upper bound /b, E HA’M — ZnH, whose convergence has
already been shown above since Z,, = Z,, ;. O

Proof of Corollary 2.9. It holds
VB (€112, - Z,]) - oB [N - ) = Vaa /B, (2122l gy

(36)  =VhE[|z, -z eI Z0 s <—Z/H—EHNH>-

Var(Z,) 2Var(Z,)

For the first of these terms, it suffices to show that v/b,, ‘ \/ Var(Z,) — a‘ — 0since E[|Z, — Z/|]

can be bounded by a constant independent of n due to Lemma A.1 and since for Var(Z,) —
0? > 0, it holds Var(Z,) > ¢%/2 for all n large enough. Proceeding as in the proof of Propo-
sition 2 in El Machkoun Volny, and Wu [2013], we derive that for a centered time series
(Y),ez such that Y; = Eiu u>0) one has

£ ((
Var< Z) > Cov (Yp,Y))
Z Z (YDez) 0imj ((Y2),ez) +2Z N 6 (Vo)) B (Vi)ies)

7j=1 €L

(3.7)

This follows from the following arguments. First, we expand Var (Zi\; Y/ VN ) in terms
of Cov (Yp,Y;) via a use of stationarity. Then we write
(3.8) Cov (Yo, Y;) = > E[P (Y],
1€Z
where P;(Y) = E[Y

that [E[F; (Yo) P; (V)]
Theorem 1 in Wu [20

o(ew,u<i)] —E[Y | 0(ey,u <i—1)]. Finally, we use the fact
| < ||P (Yo)|lo | P (Yy)]|, due to the Cauchy-Schwarz inequality and
05]. Letting N = £,, YV; = > -, 8xk( 0) (XF —E[X}]) and a; :=

Maxi<i<m 0; <(X k teZ) we infer that for some constant C' independent of n,

Vb [Var(Z,) = 0*| < €/, ZZZ 00 ((X8) ) Bies ((XF) ) Tz

=1 >0 j=1
VR Y Lo (00 ,0) i (X)) 1
k=1 i>0 j=fp+1 "

Denote A := Zi>0 a;. Then elementary computations give

ZZ ] 7 Qili—j Z>J Z . Zazaz —j = Z ZCL[H_)CLk

>0 j=1 n z>] 7j=1 nk>0

LS A< AS LY k) 0 < O

]1"k>0 31" k>0
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and
ZZ jaa,]p]zz Zja,azjgz Zalazj
i>0 j=ln+1 b i>0n+1 j=Cn+1 bn i>0n+1 "] On+1
. i—lp—1
Z Zak<AZaZ—<C€5/Q.
i>ln+1 b i>0n+1
Consequently,
Vb |Var(Z,) — 02| < C\/bu /by,
Var (Z,) — O’} — 0 follows from
1
b |V ‘ V. 2 .
ar \/7‘ ar(Zn) = | Var (Z,) + o

For the second term of (3.6), we can apply Corollary 2.6 in Jirak [2016] to obtain the

bound
E[|Z, — Z.]] . )
Vb, | 22— Znl _R(IN|] | < C\/bu P2 (log £,)"/?,
( N (Z,) [[N]]) < n " (log )

provided the assumptions stated in Corollary 2.9 hold. Indeed, Z,, — Z/ can be expressed as

T = Z 6 ((rmela) o)

where (£},),c7 is an independent copy of (5u) wez and

¢ ((%,yu uEN : Z axk (xu)uEN) - fk ((yu)ueN)) :

3.4. Verification of Examples.

Details of Example 2.5. Since ¢ is y-Holder continuous, there exists a constant C' such that
for each z,y € R, |p (x) — o (y)| < C|z —y|". In particular, |p (z)] < C'|z|” + |¢ (0)] and it
follows that

" (2) — " ()] = | () —

k—1

WD e @ o)

J=0

e
—_

< max{C, e O}l @) = @ () 3 (141l (1 [y

Il
o

<Cr—y[ (1 + [z + [y
For a fixed 7, we thus have

5 <(Xk teZ) _ (Za] _]) —gp(Zajg*_’;)k

JEZ JEZ

ol
<C"|||la_|" |e; — €| (1 - Z aje_j+a_ig;

/
E aje_j + a—g;

*y) k-1

2
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k-1
la—|" |e; — €| (1 + |a_ses|” + |aici]") H2

\ k—1
JEL,jF—i JEL,jF—i )

k
Mol ) lasil 4+ € lasil Hleol I

(k—1)y

v
+Cl |CI,_7;|FY |5i — E;P (1 + +

2
<o ([t + o

E a;E_j

JELjF#—1

+C" ol [l la—il

Y

2

where the second inequality follows by a combination of the triangle inequality for v € (0, 1]
and the ¢,-inequality, and the third one is due to the independence of > ez jr—i OiE—j and

(€i>€;)'
Recall that we have to check that Y, ,%; ((th)tez> < oo for each k = 1,...,m.

By assumption, E [|50|2m7}

2y(k—1)
E |:’ZjEZ,j;£—i aje—j }

< oo and ), ,i*|a;|” < oo, such that it remains to show

< 00. In case 2y (k — 1) <1, we can simply employ

2(k—1)y
E Z Cl,jE_j

JEL,j#—i

2(k—1 2(k—1
< Z |aj|( )VE[|€0|( )“/]’

JEZ,j#0

which is finite by assumption. If 2y (k —1) € (1,2], then the Von Bahr-Esseen inequality
gives (up to a constant) the same upper bound. If 2y (k — 1) > 2, Rosenthal’s inequality
yields

E

E A;E;—j

JEL,jF#—1

2(k—1)y (k=1)v
<C Z |aj|2(k—1)~/E [‘60|2(k—1)’7] +C< Z CL?E [53]) .

JEL,j#0 JEL,j#0

O

Details of Example 2./. This is a consequence of the estimation of the physical dependence
measure in Example 3 on pages 5967-5968 of Biermé and Durieu [2014] applied separately
to each function ©* for 1 < k < m. O

Details of Example 2.5. In order to give a bound on §;((X})ez) for a fixed i and a k €
{1,...,m}, we decompose X, as follows: Set Xy = ¢;Y; + Z;, where

Yiim Y anigegpt Y e

jI€Lj'#—i JEL j#—i
Zi = Z Q5 51€_5E_jr.
3.3 €LGF#F JF—1,5 F—i
Thus,
k Yk
k *i Oy A rk—t C b rrk—t
Xo — (Xo Z) = Z (f) (Ez‘Yi Z;7" = (&) Y Z; )
=0

and since the term with index 0 vanishes, we derive that

(X0 hee) = || 8 - ()] < z (0) (- ey vz,

2
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k k
k k
<23 () lebl vzl < 23 () el I 12
=1 =1

where the second inequality is due to the independence of (e;,¢;) and (Y, Z;), and the
third inequality follows from an application of Holder’s inequality with conjugate exponents
k/l and k/ (k —{) for ¢ < k — 1. Following the arguments given on pages 2376-2377 in

Zhang, Reding, and Peligrad [2020], we obtain

1Zillo, < © Y. &yllalu<C

3:3'€Z\{=i},5 75"

2.

3,3’ €L,3#5"

a3 v ll€olly »

such that || Z;||,;, can be bounded independently of i. Moreover, an application of Rosenthal’s
inequality yields

Wil <C | Y a2y | Y (a2, +a2.,) lleolly -

juj,EZvj#j/ j€Z7j§£—i

Thus, 0; ((th)tez> < C\/Zjezﬁé_ (a%, ;4 a2 _;) and the result follows. O

A. APPENDIX

A.1. Auxiliary results for functionals of i.i.d. sequences. This appendix collects some
auxiliary results for functionals of i.i.d. sequences, which we require for our proofs. We
consider sequences (X;),., of the form X, := f ((5t—u)uez)a where f: RZ — R is measurable,
(€u)yez is an ii.d. sequence and E[X;] = 0. Denote FL := 0 (g,, M < u < N). To quantify
the dependence, let (e},),o, denote an independent copy of (e,),., and define

0 (Xirez) = [| X0 = X5

>

where X" = f <( ) 62) and e’ = ¢! if v =i and /' = ¢, otherwise.

We start by presenting a bound on the partial sum of (X;)
Proposition 1 in El Machkouri et al. [2013].

+ez» Which is a special case of

Lemma A.1. The following inequality holds for all N € N:
Z X < VN 6 ((Xe)ez)
2 €L

Lemma A.2. Suppose that >, , 6;((X4),c; ) < 00. Then the sequence (%(Zi\il Xt)z)
is uniformly integrable. Moreover, the series ), ., |Cov (Xo, X;)| converges and

ngr;-E (th> = Cov (X, Xy).

teZ

N>1

Proof. The convergence of the series is established in Proposition 2 of El Machkouri et al.
[2013]. It remains to check the uniform integrability of (%(Zi\; 1 Xt)z) N1 Since the
sequence is bounded in L!, we only have to check that

lim sup [E _<2Xt> 14| =

6=0 A:P(A)<s
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To do so, let XM .= E [X; | Fi*3/]. Then

AR
sup [E —<2Xt> 14

Ap<s | N
1 (& ’ EA ’
<2 sup E|=(S"xM) 1,] 428 |= ( )
ApA<s | N (; ' ! N ;

and using Lemma A.1, we obtain

N 2
1
sup E —(th> 14] <2 sup E (ZXW) 14
t=1

A:P(A)<o A:P(A)<o

+2 (Za (X -E[x f;jﬁ])tez>>2.

€L

C oz

Employing the uniform integrability of (%(Zi\i 1 Xt(M))2) N> for any fixed M, we derive
that -

limsup sup B —<th> 14 <2<Za( Xt|f;_+ﬁ])tez>>2.

=0 A:P(A icZ
Since 6; ((Xt - E [Xt | Hjﬁ})teZ) < 2¢; ((Xt>t€Z)7 we conclude by an application of the
dominated convergence theorem. 0

There moreover holds a central limit theorem for (X;),., (see Theorem 1 in El Machkouri et al.
2013)):

Lemma A.3. Suppose that
distribution holds

w201 (X),ez) < o0. Then the following convergence in

1 n
%ZXt — N(O,O’2),
t=1

where

o’ = Z Cov (Xo, X¢) .

teZ

We also require an estimate on the L?-norm of partial sums of (X; — E [X, | F/71[])
for some M € N.

Lemma A.4. It holds

t>1

X | 7

2 i:|i|>M

Proof. Lemma A.1 applied to X; — E [Xt | Hﬂ‘ﬂ yields

X, | F) <\/_Z(5( ~E[X | F) )

€L




U-STATISTICS OF LOCAL SAMPLE MOMENTS UNDER WEAK DEPENDENCE 21

For |i| > M + 1, we use ¢; ((Xt —E[X; | fffﬁ])t@) < 6; ((Xt),ez), whereas for |i| < M,
we employ J; ((Xt ~E[X;| fffﬂj‘//[[])tez) <2 HXO —E [Xo | FM,]

N

> (X —E[X, | FE])

t=1

H2 , thus obtaining

(A1)

2

<2@M+ 1) VN || X —E [Xo | F¥ L, + VN >0 6 (X)) -

i€Z:|i|>M+1

In the following, we derive an upper bound for the first of the above terms. By the martingale
convergence theorem, it holds

X0~ E[Xo | P42 S0 HE Xo | FL]=E[Xo | Fl )| i

) .
i>M-+1

Moreover,
|E (%o 7] - B [X%0 1 7L,
<|E[Xo | F] —E x5 | L], + HIE [Xo" | FL,] —E [XO | fi—(;_l)]

<0i ((Xt)teZ) + 0 (( )teZ)
where the second inequality follows from

E[X;' | FL =B [X" | F5' =E [Xo | 753

2

combined with
B X | £l | = B[ AL =BG A1),
By the comparison of the ¢!- and ¢?>-norm, we thus have
X —E[Xo [ FE]lL, < D) 6 (X)ies)
i > M1

Inserting the above bound into (A.1) concludes the proof. O

A.2. A moment inequality for U-statistics.

Lemma A.5. Let (g,) be an i.i.d. sequence. Let M > 0 and ¢ > 2M be integers. Define

UEZL
the random wvectors V; by V; = (EU)EL]J;%YMM Let h: R* — R be a Lipschitz-continuous

function, let fi, fo: RF2M 5 R be measurable functions and let Uy be defined by

Uyv:= Y (Wi (V) i (Vi) = h(f2 (V) fa (Vi) -

1<j<k<N
Then the following inequality holds
N2 Uy = E[Un]ll; < C i (Vo) = f2 (Vo).
where C' is a constant depending only on h.

Proof. The difficulty here lies in the fact that the vectors V;,j7 > 1, are not independent.

Denote
Hjp o= h(fr(V;), fr (Vi) = h (fa(V5), f2 (Vi) -
We will prove the inequality

Uy~ EUnll, < CN* sup | ol
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from which the assertion then follows by the Lipschitz-continuity of h. To verify the above
inequality, we will distinguish between the cases where N is even and those where N is odd.
Let us first consider even values of N, in which case we can write 2N instead of N. Denote
by F the o-algebra generated by the random variables Vj, for & < k. Then it holds

ON k-1 ON k-1
Uy =B [Uanllly = | D) (Hjw —E[Hjp | Fad) + D> (B[Hji | Fios] — B [Hjx))
k=2 j=1 k=2 j=1 2
N 2i-1 N-1 2i
S ZZ ]22_ ]2z|f2z ZZ ]2z+1_ j2’l+1|f2l+l 2])
i=1 j=1 =1 j=1 )
ON k-2 2N
+ ZZ [(Hj g | Froo] —E[H;x]) Z [Hi—1k | Fio] —E[Hg-1£))
=2 j=1 2 k=2 2
For the first two terms, we additionally define d; := Z?:ll (Hjo2 —E[Hjo | Fai—s]) and d} :=

23;1 (Hj2iv1 — E[Hj2i1 | Faiv1-2]), such that the sequences (di, Fo;);»q and (d}, Fait1);s
are martingale differences. For the third term, we use the independence between V. and
Fi—o to get that E[H; | Fr—o| = E[H;_1 | Vj], and we have to bound the moments of a
two-dependent identically distributed centred sequence. For the fourth term, we simply use

the triangle inequality. By orthogonality of (d;),», and orthogonality of (d}),.,, it follows
N ||2i-1 2\ 1/2
[Uan = E[Uan]lly < [ DD (Hjoi — B [Hjai | Faica))
i=1 || j=1 )
N-1|| 2i 2\ 1/2
+ Z 21 — E[Hjoi1 | Faiv1-2])
=1 || j=1 2
ON k-2
+ Z H; | V;] = E[H; _1])|| +4Nsup|Hogll,-

The first of the above terms can be further bounded via

N ||2i—1 2\ /2 2i—1 2\ /2
SIS (H0 — E 1t | 7)) z(zn o B[ | Fa 1>||2)
i=1 || j=1 9

1/2 N 1/2
< (Z 16i° SUPHHMH;) < AN sup || Holl, -
= E>1 k>1

24 (221 1 22-2)2

The second term can be treated analogously. In order to bound the third term, we switch
the sums over j and k to obtain
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N—1
< (2N 27, + 1) (E [H2i7_1 ‘ ‘/22] — E [H2i7_1])
—1 2
N—
Z (20 = 1)+ 1) (E[Hai—1,-1 | Vai1] —E[Hai—1,-1])
—1 2
N-1
(2N = 2i + 1)*||Y(E [Ho— | Vo] — E [HO,—l])H;
i=1
N-1
+ (2i — 1) + 1)*||(E [Ho—1 | Vo] — E [HO,—l])H;

=1

<CN3/? sup | Hoxll -

This proves ||Uyy — E [U2N]||2 < CN3/2supysy |[Hokll,- In order to show the corresponding

inequality for the index 2N + 1 1nstead of 2N, we note that Uyyy1 — E [Uayy4] differs from
Usn —E [Usn]| only by the term Z . (Hjon+1 — E[Hjon+1]), whose L2-norm is smaller than
4N supy> ||[Hokll,- This ends the proof of Lemma A.5. O

A.3. Tools for the proof of Lemma 3.2.

Lemma A.6. Let (V,),-, be a sequence of random variables such that (Y,?),~, is uniformly
integrable and Y,, — N (0,02) in distribution with o > 0. Let Y/ and Y be independent
copies of Yy, and let h: R? — R be a Lipschitz-continuous function. Then

lim Cov (h(Y,,Y!),h(Y,,Y")) = Cov (h (N,N'),h (N, N")),
n—oo
where N, N', N are independent N (0, 0?)-distributed random variables.

Proof. By independence, the sequence of random vectors (Y, YY) converges in distribu-
tion to (N, N', N”). By Skorohod’s representation theorem, there exist a probability space
(Q, F,P), sequences of random varialoles (Zn)ps1s (Z3)p> and (Z7),~, and random vari-
ables Z, Z' and Z”, each defined on €2, such that for all n > 1, the vectors (Y,,Y,,Y,’) and
(Zn, Z!, Z") have the same distribution, (Z, Z’, Z") has the same distribution as (N, N', N"),
and the sequence (Z,),, (respectively (7)., and (Z}),,) converges to Z (respectively

Z" and Z") almost surely. Note that for each fixed n, it holds
Cov (h (Y., Y)) , h(Y,,Y))) = Cov (h(Z,, Z)) ,h(Z,, Z))))
as well as
Cov (h (N,N'),h (N,N"))=Cov (h(Z,2"),h(Z,2")).
Due to the elementary fact that Cov (U,,V,) — Cov (U, V) if U, — U and V,, — V in L2, it
hence suffices to show
1A (Zn, Z,) = h(Z, Z')[|, — 0.
Since h is Lipschitz-continuous and the sequence (Z2 + (Z!) + 2%+ (7 )2)n>1 is uniformly
integrable, the sequence ((h(Z,,Z)) —h(Z, Z’))Q)n>1
the continuity of h, the sequence ((h(Z,,Z)) — h(Z, Z’))z)n>1 converges to 0 almost surely.

is uniformly integrable as well. By

Combined, this yields the desired L2-convergence and finishes the proof. O
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