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F-59655 Villeneuve d’Ascq, France.

ciprian.tudor@univ-lille.fr

February 18, 2023

Abstract

Let (X1, X2, . . . , Xn) be a random vector and denote by P(X1,X2,...,Xn) its probability distribu-
tion on Rn. Inspired by [11], we develop a multidimensional Stein-Malliavin calculus which allows
to measure the Wasserstein distance between the law P(X1,X2,...,Xn) and the probability distribu-
tion PZ⊗P(X2,...,Xn), where Z is a Gaussian random variable. That is, we give estimates, in terms
of the Malliavin operators, for the distance between the law of the random vector (X1, ..., Xn) and
the law of the vector (Z,X2, ..., Xn), where Z is Gaussian and independent of (X2, ..., Xn). Then
we focus on the particular case of random vectors in Wiener chaos and we give an asymptotic
version of this result. In this case, if we consider a n-dimensional sequence with components in
Wiener chaos, such that the first component is asymptotically Gaussian and the rest of the vector
converges to an arbitrary limit, we are able to evaluate the distance between this vector and its
limit. To illustrate our method, we derive the rate of convergence for the Wasserstein distance
for a two-dimensional sequence of multiple stochastic integrals, the first converging to a normal
law and the second to a Rosenblatt distribution.

2010 AMS Classification Numbers: 60F05,60G15,60H05,60H07.

Key words: Stein’s method, Malliavin calculus, multiple stochastic integrals, asymptotic inde-
pendence.

1 Introduction

The Stein’s method constitutes a collection of mathematical techniques that allow to give quantitative
bounds for the distance between the probability distributions of random variables. It has been
initially introduced in the paper [13] and then developed by many authors. We refer, among many
others to the monographs and surveys [3], [12], [14] for a detailed description of this method. Of
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particular interest is the situation when one random variable is Gaussian, but the cases of other
target distributions has been analyzed in the literature.

A more recent theory is the so-called Stein-Malliavin calculus which combines the Stein’s method
with the techniques of the Malliavin calculus. The first work in this direction is [4] (see [5] for a
more detailed exposition) and since, numerous authors extended, refined or applied this theory. In
this theory, the bounds obtained for the distance between the law of an arbitrary random variable
and the target distribution are given in terms of the Malliavin operators.

The starting point of the Stein’s method for normal approximation is the following observation:
Z ∼ N(0, σ2) with σ > 0 if and only if

σ2Ef ′(Z)−EZf(Z) = 0

for every function f : R→ R such that E|f ′(Z)| <∞. Then, one can think that if a random variable
X has the propery that σ2Ef ′(X)−EXf(X) is close to zero for a large class of functions f , then the
probability distribution of X should be close to N(0, σ2). From this observation, the whole Stein’s
theory has been constructed, leading to various bounds for the distance between the probability law
of the random variable X and the normal distribution N(0, σ2).

In this work, we deal with a variant of this method recently developed in the reference [11]
that allows to measure the distance between the components of a random vector (X1, X2), where
X1 ∼ N(0, σ2) and X2 has an arbitrary distribution. The nice observation made in [11] is that
X1 ∼ N(0, σ2) and X1 is independent of X2 if and only if

σ2E∂x1f(X1, X2)−EX1f(X1, X2) = 0

for a large class of differentiable functions f : R2 → R. We denoted by ∂x1f the partial derivative of
f with respect to its first variable. As in the standard Stein’s method, one follows the intuition that
if some random vector (X1, X2) satisfies that σ2E∂x1f(X1, X2)−EX1f(X1, X2) is close to zero, then
X1 should be close in law to N(0, σ2) and P(X1,X2) should be close to PX1 ⊗ PX2 , where P(X1,X2) is
the law of (X1, X2) while PX stands for the law of the random variable X. By combining this idea
with Malliavin calculus, in [11] one gives bounds for the Wasserstein distance between P(X1,X2) and
PX1 ⊗ PX2 in terms of the Malliavin operators.

Our purpose is, in a first step, to generalize the above idea by considering random vectors of
arbitrary dimension. Then, we focus on the particular case of sequences of random variables belonging
to a Wiener chaos and we give asymptotic-type results. We consider a random sequence (Xk, k ≥ 1)
that belongs to a Wiener chaos of fixed order which converges in law as k →∞ to Z ∼ N(0, σ2) and
a multidimensional sequence (Yk, k ≥ 1) = (Y1,k, ...., Yn,k, k ≥ 1) also with components in Wiener
chaos which converges in law, as k →∞, to a random vector Y = (Y1, ...., Yn) and we obtain explicit
quantitative estimates for the Wasserstein distance between P(Xk,Yk) and PZ⊗PY for k large enough.
In particular, if Xk belongs to the qth Wiener chaos and Yj,k belongs to the qjth Wiener chaos with
qj < q for all j = 1, 2, ..., n then the sequences (Xk, k ≥ 1) and (Yk, k ≥ 1) = (Y1,k, ...., Yn,k, k ≥ 1) are
asymptotically independent, in the sense that their limits Z and (Y1, ..., Yn) are independent. This
fact is related to the main findings in [6] and [7]. As an application, we derive the rate of convergence
for the Wasserstein distance for a two-dimensional sequence of multiple stochastic integrals, the first
converging to a normal law and the second to a Rosenblatt distribution.
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We organized our paper as follows. In Section 2 we introduce and analyze the main elements
of the multidimensional Stein method: the Stein operator, the Stein equation and its solution. In
Section 3 we combine the Stein method with the tools of Malliavin calculus in order to obtain
estimates for the Wasserstein distance between random vectors with the same marginals but with
different correlation structure between their components. In Section 4 we state and prove asymptotic
versions of the these results, by focusing on random vectors with components in Wiener chaos.
We illustate our method by an example treated in Section 5, by regarding the situation of a two-
dimensional random sequence whose first component converges to a Gaussian law and the second
component satisfies a non-central limit theorem. Section 6 is the Appendix where we included the
basic concepts of Wiener chaos and Malliavin calculus needed in our work.

2 Multidimensional Stein method

The basis of the Stein’s method consists in the definition of the Stein’s operator and of the Stein’s
equation. For the normal approximation, the standard operator is

Lf(x) = σ2f ′(x)− xf(x), x ∈ R,

which acts on suitable differentiable functions f : R → R. This operator satisfies EL(Z) = 0 if and
only if Z ∼ N(0, σ2). The corresponding Stein’s equation is

Lf(x) = Eh(x)−Eh(Z), x ∈ R,

where h : R → R is a given function such that E|h(Z)| < ∞. The idea of the Stein’s method is
to find a solution fh to the Stein’s equation with nice properties and to use it in order to obtain
estimates for Eh(X)−Eh(Z) for an arbitrary random variable X.

We follow the same line in a multidimensional context. Now, the purpose is not the normal
approximation but to quantify the distance between the probability distribution of a random vector
(X1, ..., Xn) and the random vector (Z,X2, ..., Xn) where Z is a centered Gaussian random variable
with variance σ2 and it is independent of (X2, ..., Xn).

Let us consider the operator N given by

N f(x1, . . . , xn) = σ2∂x1f(x1, ..., xn)− x1f(x1, ..., xn), x1, ..., xn ∈ R, (1)

where ∂x1f denotes the partial derivative of f with respect to its first variable. The operator N acts
on the set of differentiable functions f : R2 → R.

Recall that if X is a random variable, we denote by PX its probability distribution while for a
random vector (X1, ..., Xn), we use the notation P(X1,...,Xn). The following two lemmas show that the
operator (1) characterizes the law of X1 and the independence of X1 and (X2, ..., Xn). The material
from this section is inspired from Section 5 in [11].

Lemma 1. Assume X1 ∼ N(0, σ2) and X1 is independent of the random vector (X2, ..., Xn). Then
EN (X1, ..., Xn) = 0 for all f : Rn → R differentiable with E|∂x1f(X1, ..., Xn)| <∞.

Proof: By the standard Stein method, for all x2, ..., xn ∈ R,

σ2E∂x1f(X1, x2, ..., xn) = EX1f(X1, x2, ..., xn)
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or

σ2

∫
R
∂x1f(x1, ..., xn)dPX1(x1) =

∫
R
x1f(x1, ..., xn)dPX1(x1).

Let us integrate with respect to the probability measure P(X2,...,Xn). We have

σ2

∫
Rn−1

(∫
R
∂x1f(x1, ..., xn)dPX1(x1)

)
dP(X2,...,Xn)(x2, ..., xn)

= σ2

∫
Rn
∂x1f(x1, ..., xn)dPX1(x1)⊗ dP(X2,...,Xn)(x2, ..., xn)

= σ2

∫
Rn
∂x1f(x1, ..., xn)dP(X1,...,Xn)(x1, ..., xn) = σ2E∂x1f(X1, ..., Xn),

where we used the independence of X1 and (X2, ..., Xn) for the first equality on the above line.
Similarly,∫

Rn−1

(∫
R
x1f(x1, ..., xn)dPX1(x1)

)
dP(X1,...,Xn)(x2, ..., xn)

=

∫
Rn
x1f(x1, ..., xn)dPX1(x1)⊗ P(X2,...,Xn)(x1, ..., xn) =

∫
Rn
x1f(x1, ..., xn)dP(X1,...,Xn)(x1, ..., xn)

= EX1f(X1, ..., Xn).

We also have a lemma in the converse direction. By ‖ · ‖ we denote the infinity norm on Rn.

Lemma 2. Consider a random vector (X1, ..., Xn) with E|X1| <∞. Assume that

EN (X1, ..., Xn) = 0 (2)

for all differentiable functions f with ‖∂x1f‖∞ <∞. Then X1 ∼ N(0, σ2) and X1 is independent of
(X2, ..., Xn).

Proof: Let ϕ be the characteristic function of the vector (X1, ..., Xn), i.e.

ϕ(λ1, ..., λn) = E
(
ei(λ1X1+....+λnXn)

)
,

for λ1, ..., λn ∈ R. By applying (2) for the real and imaginary parts of ϕ, we get

∂λ1ϕ(λ1, ..., λn) = iE
(
X1e

i(λ1X1+....+λnXn)
)

= iσ2E
(
∂x1e

i(λ1X1+....+λnXn)
)

= −λ1σ
2ϕ(λ1, ..., λn).

By noticing that for every λ2, ..., λn ∈ R, ϕ(0, λ2, ..., λn) = ϕ(X2,...,Xn)(λ2, ..., λn) (the characteristic
function of the vector (X2, ..., Xn)), we obtain

ϕ(λ1, ..., λn) = ϕ(X2,...,Xn)(λ2, ..., λn)e−
σ2x21

2 ,
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and this implies X1 ∼ N(0, σ2) and X1 independent of (X2, ..., Xn).

Let us now introduce the multidimensional Stein’s equation

N f(x1, ..., xn) = h(x1, ..., xn)−Eh(Z, x2, ..., xn), x1, ..., xn ∈ R, (3)

where Z ∼ N(0, σ2). In (3), h : Rn → R is given and we assume that h is continuously differentiable
with bounded partial derivatives. Let us show that (3) admits a solution with suitable properties.

Proposition 1. Let h : Rn → R be continuously differentiable with bounded partial derivatives. Then
(3) admits a unique bounded solution which is given by

fh(x1, ..., xn) = − 1

σ2

∫ 1

0

1

2
√
t(1− t)

E
[
Zh
(√

tx1 +
√

1− tZ, x2, ..., xn

)]
dt. (4)

Moreover, we have the following bounds:

1.
‖fh‖∞ ≤ ‖∂x1h‖∞. (5)

2.

‖∂x1fh‖∞ ≤
1

σ

√
2

π
‖∂x1h‖∞. (6)

3. For j = 2, ..., n,

‖∂xjfh‖∞ ≤
1

σ

√
π

2
‖∂xjh‖∞. (7)

Proof: By using the dominated convergence theorem, we get, by taking the derivative with respect
to x1 in (4),

∂x1fh(x1, ..., xn) = − 1

σ2

∫ 1

0

1

2
√

1− t
E
[
Z∂x1h

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
. (8)

Now, we apply the standard Stein identity to the function g(x) = h
(√
tx1 +

√
1− tx, x2, ..., xn

)
and

we obtain

E
[
Z∂x1h

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
= Eg′(Z) = σ2

√
1− tE

[
∂x1h

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
. (9)

By plugging (9) into (4), the function fh can be written as

fh(x1, ..., xn) = −
∫ 1

0

1

2
√
t
E
[
∂x1h

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
dt. (10)
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By (8) and (10), we can write

∂x1fh(x1, ..., xn)− x1fh(x1, ..., xn)

=

∫ 1

0
E

[(
− Z

2
√

1− t
+

x1

2
√
t

)
∂x1h

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
= E

∫ 1

0

d

dt
h
(√

tz1 +
√

1− tZ, x2, ..., xn

)
dt = h(x1, ..., xn)−Eh(Z, x2, ...., xn).

Consequently, fh given by (4) is a solution to (3). To prove (5), we use (10) to get

‖fh‖∞ ≤
∫ 1

0

1

2
√
t
‖∂x1h‖∞ ≤ ‖∂x1h‖∞

The bound (6) follows from (8) since

‖∂x1fh‖∞ ≤
E|Z|
σ2
‖∂x1h‖∞ ≤ σ−1

√
2

π
‖∂x1h‖∞.

To prove (7), we differentiate with respect to xj , j = 2, ..., n in (4),

∂xjfh(x1, ..., xn) = − 1

σ2

∫ 1

0

1

2
√
t(1− t)

E
[
Z∂xjh

(√
tx1 +

√
1− tZ, x2, ..., xn

)]
dt

and

‖∂xjfh‖∞ ≤
E|Z|
σ2
‖∂xjh‖∞

∫ 1

0

1

2
√
t(1− t)

dt =
1

σ

√
π

2
‖∂xjh‖∞.

To finish the proof, we notice that for any other solution gh to (3), one has

∂x1

(
e−

x21
2σ2 (fh(x1, ..., xn)− gh(x1, ..., xn))

)
= 0

so gh(x1, ...xn) = fh(x1, ..., xn) + e
x21
2σ2 c(x2, ..., xn) so gh is bounded if and only if c(x2, ..., xn) = 0.

By Proposition 1, if fh is the solution (4) to the Stein’s equation (3), we have

σ2∂x1fh(x1, ..., xn)− x1fh(x1, ..., xn) = h(x1, ..., xn)−Eh(Z, x2, ..., xn)

for any h differentiable with bounded partial derivatives. Let X1, ..., Xn be random variables with
E|X1| <∞. Let us integrate with respect to θ := P(X1,...,Xn) in the above identity. We have∫

Rn
h(x1, ..., xn)dθ(x1, ..., xn) = Eh(X1, ..., Xn)
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and ∫
Rn

Eh(Z, x2, ..., xn)dθ(x1, ..., xn)

=

∫
Rn

(∫
R
h(z, x2, ..., xn)dPZ(z)

)
dθ(x1, ..., xn)

=

∫
Rn−1

(∫
R
h(z, x2, ..., xn)dPZ(z)

)
dP(X2,...,Xn)(x2, ..., xn)

=

∫
Rn
h(x1, x2, ..., xn)dPZ ⊗ P(X2,...,Xn)(x2, ..., xn) =

∫
Rn
h(x1, x2, ..., xn)dη(x1, ..., xn),

with
η = PZ ⊗ P(X2,...,Xn).

Therefore

σ2E∂X1fh(X1, ..., Xn)−EX1fh(X1, ..., Xn) = Eh(X1, ..., Xn)−Eh(X ′1, X2, ..., Xn)

=

∫
Rn
h(x1, x2, ..., xn)dθ(x1, ..., xn)−

∫
Rn
h(x1, x2, ..., xn)dη(x1, ..., xn) (11)

where X ′1 has the same law as Z ∼ N(0, σ2) and X ′1 is independent of (X2, ..., Xn).

3 Stein method and Malliavin calculus

We use the ideas of the Stein method for normal approximation (see [5]) to prove the following result.
Let

A = {h : Rn → R, h is Lipschitz continuous with ‖h‖Lip ≤ 1}

and let F,G be two n-dimensional random vectors such that h(F ), h(G) ∈ L1(Ω) for every h ∈ A.
Then the Wasserstein distance between the probability distributions of F and G is defined by

dW (PF , PG) = sup
h∈A
|Eh(F )−Eh(G)| . (12)

We denoted by ‖h‖Lip the Lipschitz norm of h given by

‖h‖Lip = sup
x,y∈Rn,x 6=y

|h(x)− h(y)|
‖x− y‖

,

with ‖ · ‖ the Euclidean norm in Rn. The operators D,L, δ below are defined with respect to an
isonormal process (W (h), h ∈ H), see the Appendix. By 〈·, ·〉 we denote the scalar product in the
Hilbert space H.

Theorem 1. Let X1, ..., Xn be centered random variables in D1,2. Let θ = P(X1,...,Xn) and η =
PZ ⊗ P(X2,...,Xn), where Z ∼ N(0, σ2). Then

dW (θ, η) ≤ C

E
∣∣σ2 − 〈D(−L)−1X1, DX1〉

∣∣+
n∑
j=2

E
∣∣〈D(−L)−1X1, DXj〉

∣∣ . (13)
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Proof: Let h : Rn → R be continuously differentiable wth bounded derivatives and let fh be
the corresponding solution to the Stein’s equation (3). By using the well-known formula X1 =
δD(−L)−1X1 in (11), we obtain, by integrating by parts∫

Rn
h(x1, x2, ..., xn)dθ(x1, ..., xn)−

∫
Rn
h(x1, x2, ..., xn)dη(x1, ..., xn)

= σ2E∂x1fh(X1, ..., Xn)−EδD(−L)−1X1fh(X1, ..., Xn)

= σ2E∂x1fh(X1, ..., Xn)−E〈D(−L)−1X1, Dfh(X1, ..., Xn)〉

= σ2E∂x1fh(X1, ..., Xn)−E
n∑
j=1

∂xjfh(X1, ..., Xn)〈D(−L)−1X1, DXj〉

= E∂x1fh(X1, ..., Xn)
(
σ2 − 〈D(−L)−1X1, DX1〉

)
−E

n∑
j=2

∂xjfh(X1, ..., Xn)〈D(−L)−1X1, DXj〉.

Hence, by using inequalities (6) and (7) in Proposition 1,∣∣∣∣∫
Rn
h(x1, x2, ..., xn)dθ(x1, ..., xn)−

∫
Rn
h(x1, x2, ..., xn)dη(x1, ..., xn)

∣∣∣∣
≤ C

E
∣∣σ2 − 〈D(−L)−1X1, DX1〉

∣∣+
n∑
j=2

E
∣∣〈D(−L)−1X1, DXj〉

∣∣ . (14)

To finish the proof, we borrow again an argument from [11] (proof of Lemma 9 in this reference) to
approximate a Lipschitz function by continuously differentiable functions with bounded derivatives.
Indeed, if h ∈ A and ε > 0, then consider

hε(x1, ..., xn) = Eh
(
x+
√
εN1, ..., xn +

√
εNn

)
,

where N1, ..., Nn are independent standard normal random variables. Then hε is differentiable and
it safisfies

‖hε − h‖∞ →ε→0 0, max
j=1,...,n

‖∂xjhε‖∞ ≤ ‖hε‖Lip ≤ ‖h‖Lip ≤ 1.

Therefore, by (14),∣∣∣∣∫
Rn
h(x1, x2, ..., xn)dθ(x1, ..., xn)−

∫
Rn
h(x1, x2, ..., xn)dη(x1, ..., xn)

∣∣∣∣
≤ 2‖hε − h‖∞ +

∣∣∣∣∫
Rn
hε(x1, x2, ..., xn)dθ(x1, ..., xn)−

∫
Rn
hε(x1, x2, ..., xn)dη(x1, ..., xn)

∣∣∣∣
≤ 2‖hε − h‖∞ + C

E
∣∣σ2 − 〈D(−L)−1X1, DX1〉

∣∣+

n∑
j=2

E
∣∣〈D(−L)−1X1, DXj〉

∣∣
and we conclude by letting ε→ 0.

The corollary below is used to deal with random vectors with components in Wiener chaos.
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Corollary 1. With the notation from Theorem 1, if X1, ..., Xn ∈ D1,4, then

dW (θ, η) ≤ C

(E
∣∣σ2 − 〈D(−L)−1X1, DX1〉

∣∣2) 1
2

+

n∑
j=2

(
E
∣∣〈D(−L)−1X1, DXj〉

∣∣2) 1
2

 .
Proof: The proof follows from Theorem 1, by using Cauchy-Schwarz’s inequality in the right-hand
side of (13) and by noticing that 〈D(−L)−1Xi, DXj〉 belongs to L2(Ω) when Xi, Xj ∈ D1,4, for
i, j = 1, 2, ..., n.

Remark 1. As a particular case of relation (13) in Theorem 1, it follows that if X1 ∼ N(0, σ2) and
〈DX1, DX2〉 = 0 almost surely, then X1 is independent of X2.

4 The case of multiple stochastic integrals

By applying the results in previous section to the case of multiple stochastic integrals, we find pretty
surprising results.

Let us recall the following facts. If F = Iq(f) and G = Ip(g) with f ∈ H�q and g ∈ H�q, then
(see [5], Lemmas 5.2.4 and 6.2.1)

E
(
〈D(−L)−1F,DF 〉 −EF 2

)2
= E

(
1

q
‖DF‖2 −EF 2

)2

= q2
q−1∑
r=1

(r − 1)!2
(
Cr−1
q−1

)4
(2q − 2r)!‖f⊗̃rf‖2H⊗(2q−2r)

=:

q−1∑
r=1

a(r, q)‖f⊗̃rf‖2H⊗(2q−2r) , (15)

with, for r = 1, ..., q − 1,

a(r, q) = q2(r − 1)!2
(
Cr−1
q−1

)4
(2q − 2r)!. (16)

Also, if q ≥ p,

E〈D(−L)−1F,DG〉2 = E

(
1

q
〈DF,DG〉

)2

= (E(FG))2 1p=q + p2
p−1∑
r=1

(r − 1)!2
(
Cr−1
q−1

)2 (
Cr−1
p−1

)2
(p+ q − 2r)!‖f⊗̃rg‖2H⊗p+q−2r

+p2(p− 1)!2
(
Cp−1
q−1

)2
(q − p)!‖f⊗̃pg‖2H⊗(q−p)1p<q

= (E(FG))2 1p=q +

p−1∑
r=1

c(r, p, q)‖f⊗̃rg‖2H⊗p+q−2r + c(p, p, q)‖f⊗̃pg‖2H⊗(q−p)1p<q

= (E(FG))2 1p=q +

p∑
r=1

c(r, p, q)‖f⊗̃rg‖2H⊗p+q−2r , (17)

9



where, for r = 1, ..., p− 1,

c(r, p, q) = p2(r − 1)!2
(
Cr−1
q−1

)2 (
Cr−1
p−1

)2
(p+ q − 2r)! (18)

and

c(p, p, q) = p2(p− 1)!2
(
Cp−1
q−1

)2
(q − p)!1p<q. (19)

The proof of the below lemma is contained in e.g. [5]. We prefer to state it since it plays an
important role in the sequel.

Lemma 3. Let F = Iq(f) and G = Ip(g) with f ∈ H�q and g ∈ H�p. Assume q ≥ p. Then

E〈D(L)−1F,DG〉2 ≤ (E(FG))2 1p=q +
EG2

p!

p∑
r=1

c(r, p, q)‖f ⊗q−r f‖H⊗2r

with c(r, p, q) given by (18), (19).

Proof: We use the inequalities, for r = 1, ..., p− 1

‖f⊗̃rg‖2H⊗(p+q−2r) ≤ ‖f ⊗ g‖2
H⊗(p+q−2r) = 〈f ⊗r g, f ⊗r g〉H⊗(p+q−2r)

= 〈f ⊗q−r f, g ⊗p−r g〉H⊗2r ≤ ‖f ⊗q−r f‖H⊗2r‖g ⊗p−r g‖H⊗2r

≤ ‖g‖2H⊗q‖f ⊗q−r f‖H⊗2r =
EG2

p!
‖f ⊗q−r f‖H⊗2r ,

and for r = p,

‖f⊗̃pg‖2H⊗(q−p) ≤ ‖f ⊗ g‖2
H⊗(q−r) ≤ ‖g‖2H⊗p‖f ⊗q−p f‖H⊗2p

=
EG2

p!
‖f ⊗q−p f‖H⊗2p .

By combining the above bound with (17), we get the conclusion.

Leu us state the main result of this section. It gives the asymptotic independence between the
components of a random vector in Wiener chaos, which has only one components asymptotically
Gaussian.

Theorem 2. For j = 1, 2, ..., n, let
(
Xj,k = Iqj (fj,k), k ≥ 1

)
be n sequences of multiples stochastics

integrals with fj,k ∈ H�qj and q1 ≥ max(q2, ..., qn). Assume

X1,k →
(d)
k→∞ Z ∼ N(0, σ2) (20)

and
(X2,k, ..., Xn,k)→

(d)
k→∞ (U2, ...., Un), (21)

for some random variables U2, ...., Un. Also assume that

EX1,kXj,k →k→∞ 0 for every j = 2, ..., n. (22)
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Then, if θk = P(X1,k,...,Xn,k), and η = PZ ⊗ P(U2,...,Un), then

dW (θk, η) ≤ C

(E
∣∣σ2 − 〈D(−L)−1X1,k, DX1,k〉

∣∣2) 1
2

+

n∑
j=2

(
E
∣∣〈D(−L)−1X1,k, DXj,k〉

∣∣2) 1
2


+dW

(
P(X2,k,...,Xn,k), P(U2,...,Un)

)
. (23)

In particular,

(X1,k, X2,k, ..., Xn,k)→
(d)
k→∞ (Z ′, U2, ..., Un), (24)

where Z ′ ∼ N(0, σ2) and Z ′ is independent of (U2, ..., Un).

Proof: Let us denote, for k ≥ 1,

ηk = PZ ⊗ P(X2,k,...,Xn,k).

By Corollary 1, for every k ≥ 1,

dW (θk, ηk) ≤ C

(E
∣∣σ2 − 〈D(−L)−1X1,k, DX1,k〉

∣∣2) 1
2

+
n∑
j=2

(
E
∣∣〈D(−L)−1X1,k, DXj,k〉

∣∣2) 1
2

 . (25)

Also, by triangle’s inequality,

dW (θk, η) ≤ dW (θk, ηk) + dW (ηk, η)

≤ C

(E
∣∣σ2 − 〈D(−L)−1X1,k, DX1,k〉

∣∣2) 1
2

+

n∑
j=2

(
E
∣∣〈D(−L)−1X1,k, DXj,k〉

∣∣2) 1
2


+dW

(
P(X2,k,...,Xn,k), P(U2,...,Un)

)
by (25) and the bound dW (ηk, η) ≤ dW

(
P(X2,k,...,Xn,k), P(U2,...,Un)

)
, which is an immediate conse-

quence of the definition of the Wasserstein distance (12). So (23) is obtained.
Let us now show the limit theorem (24). The Fourth Moment Theorem (Theorem 3 point 4.)

implies that

E
∣∣σ2 − 〈D(−L)−1X1,k, DX1,k〉

∣∣2 →k→∞ 0

and (by point 3. in the same theorem), for every r = 1, ..., q1 − 1,

‖f1,k ⊗r f1,k‖H(⊗2q−2r) →k→∞ 0. (26)

By (26), (22) and Lemma 3, for j = 2, ..., n,

E
∣∣〈D(−L)−1X1,k, DXj,k〉

∣∣2 ≤ C [(EX1,kXj,k)
2 1qj=q1

+

qj∑
r=1

c(r, qj , q1)‖f1,k ⊗q1−r f1,k‖H⊗2r

]
→k→∞ 0.

11



Thus, by (25),
dW (θk, ηk)→k→∞ 0. (27)

To get (24) we notice that for every f : Rn → R continuous and bounded,∣∣∣∣∫
Rn
fdθk −

∫
Rn
fdη

∣∣∣∣
≤

∣∣∣∣∫
Rn
fdθk −

∫
Rn
fdηk

∣∣∣∣+

∣∣∣∣∫
Rn
fdηk −

∫
Rn
fdη

∣∣∣∣ .
The first summand in the right-hand side above goes to zero as k → ∞ due to (27) while from the
assumptions of the theorem, the sequence (ηk, k ≥ 1) of probability measures on Rn converges weakly
to η and therefore the second term also goes as k →∞.

Remark 2. • Condition (20) can be replaced by EX2
1,k →k→∞ σ2 and any of the assumptions

from points 2.-4. of Theorem 3. On the other hand, condition (22) is clearly satisfied if
q1 > max(q2, ..., qn).

• From Theorem 2, we can deduce a result in [10] concerning the normal convergence of sequences
of vector-valued multiple stochastic integrals. That is, if (Ip(fk), k ≥ 1) and (Iq(gk), k ≥
1) are two sequences of multiple stochastic integrals that converges in law, as k → ∞, to
Z1 ∼ N(0, σ2

1) and Z2 ∼ N(0, σ2
2) respectively and EIp(fk)Iq(gk) →k→∞ 0, then the vector

(Ip(fk), Iq(gk), k ≥ 1) converges in distribution, as k → ∞, to the centered Gaussian vector
(Z1, Z2) with independent components and EZ2

1 = σ2
1,EZ

2
2 = σ2

2. Moreover, the bound (23)
corresponds to the estimate in Theorem 6.2.2 of [5].

• It is also possible to give a quantitative bound for the distance between θk = P(X1,k,...,Xn,k) and
η = PZ ⊗ P(U2,...,Un) in terms of the contractions of the kernels fj,k. Indeed, by (15), (17) and
Lemma 3,

dW (θk, η) ≤ C

q1−1∑
r=1

a(r, q)‖f1,k⊗̃rf1,k‖2H⊗(2q−2r) +

n∑
j=2

(E(X1,kXj,k))
2 1q1=qj

+
n∑
j=2

EX2
j,k

qj !

qj∑
r=1

c(r, p, qj)‖f1,k⊗̃q1−rf1,k‖H⊗2r

 ,
with a(r, q) defined by (16) and c(r, p, q) by (18), (19). However, this bound in not optimal (it
can be seen from the example treated in Section 5), see Remark 3.

As a consequence of Theorem 2, we obtain that every random sequence in the qth Wiener chaos
is asymptotically independent of any random variable belonging to the sum of the first q− 1 Wiener
chaoses.

Corollary 2. Let (Xk, k ≥ 1) = (Iq(fk), k ≥ 1) with fk ∈ H�q for every k ≥ 1. Assume Xk →
(d)
k→∞

Z ∼ N(0, σ2). Let G =
∑q−1

p=0 Ip(gp) where gp ∈ H�p for p = 0, 1, ..., q − 1. Then

dW
(
P(Xk,G), PZ ⊗ PG

)
≤ C

[(
E
(
σ2 − 〈D(−L)−1Xk, DXk〉

)2) 1
2

+
(
E〈D(−L)−1Xk, DG〉2

) 1
2

]
.

(28)
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In particular,

(Xk, G)→(d)
d→∞ (Z ′, G)

where Z ′ ∼ N(0, σ2) is independent of G.

Proof: The bound (28) is a direct consequence of Corolarry 1. By the Fourth Moment Theorem

(Theorem 3), E
(
σ2 − 〈D(−L)−1Xk, DXk〉

)2 →k→∞ 0. Now,

〈D(−L)−1Xk, DG〉 =

q−1∑
p=1

〈D(−L)−1Xk, DIp(gp)〉

and then, with c(r, p.q) from (18, (19),

E〈D(−L)−1Xk, DG〉2 ≤ cq

q∑
p=1

E〈D(−L)−1Xk, DIp(gp)〉2

≤ cq

q−1∑
p=1

p∑
r=1

c(r, p, q)‖fk ⊗q−p fk‖H⊗2r

and again by the Fourth Moment Theorem (Theorem 3, point 3.), ‖fk ⊗q−p fk‖H⊗2r →k→∞ 0 for
every r = 1, ..., p.

5 Application: Quantitative bounds in a central-noncentral limit
theorem

Our approach allows to give qualitative bounds for the multidimensional sequences of multiple
stochastic integral when only one of these sequences converges to a normal distribution. Here we
illustrate the method by treating a two -dimensional sequence in Wiener chaos, one component be-
ing asymptotically Gaussian and the second component satisfying a non-central limit theorem. Such
estimates are new in the literature and they cannot be obtained via the standard Stein method. Let
(BH , t ≥ 0) be a fractional Brownian motion with Hurst index H ∈ (0, 1). For N ≥ 1, define

VN = q!
1√
N

N∑
k=0

Hq

(
BH
k+1 −BH

k

)
, (29)

where Hq is the Hermite polynomial of degree q. Then, the Breuer-Major theorem (see [1]) states

that, if H ∈
(

0, 1− 1
2q

)
the sequence (VN , N ≥ 1) converges to a Gaussian random variable Z ∼

N(0, σ2
q,H), where the variance σ2

q,H is explicily known.
On the other hand, the sequence (UN , N ≥ 1) given by

UN = 2N1−2H
N−1∑
i=0

H2

(
BH
k+1 −BH

k

)
, N ≥ 1, (30)
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converges in distribution, for H ∈
(

3
4 , 1
)
, to c2,HR

(2H−1) where R(2H−1) is a Rosenblatt random
variable with Hurst parameter 2H − 1 and again the constant c2,H > 0 is known.

Moreover, the random sequence (VN , UN ) converges in law, as N → ∞, to (Z, c2,HR
(2H−1)),

with Z independent of R(2H−1). This can be obtained from the main findings in [6] or [7] but it also
follows from our Theorem 2. The purpose is to find the rate of convergence, under the Wasserstein
distance, for this two-dimensional limit theorem.

Let us assume in the sequel

H ∈
(

3

4
, 1− 1

2q

)
and q ≥ 3. (31)

By Theorem 2, we have

dW

(
P(VN ,UN ), PZ ⊗ Pc2,HR(2H−1)

)
≤ C

[(
E
(
σ2 − 〈DVN , D(−L)−1VN 〉

)2) 1
2

+ dW (PUN , Pc2,HR(2H−1)) +

√
E (〈DVN , DUN 〉)2

]
.

We known the rate of convergence to their limits for each of the sequences (VN , N ≥ 1) and
(UN , N ≥ 1). If one assumes (31), then (see Theorem 4.1 in [4])

(
E
(
σ2 − 〈DVN , D(−L)−1VN 〉

)2) 1
2 ≤ CH,q

N
H−1 if H ∈

(
3
4 ,

2q−3
2q−2

]
N qH−q+ 1

2 if H ∈
(

2q−3
2q−2 ,

2q−1
2q

)
.

(32)

Moreover, for any H satisfying (31) (see [2] or [5], relation (7.4.13))

dW (UN , c2,HR
(2H−1)) ≤ CHN

3
2
−2H . (33)

In particular, if q = 3, it follows from (32) and (33) that

dW (VN , Z) + dW (UN , c2,HR
(2H−1)) ≤ CH

(
N

3
2
−2H +N3H− 5

2

)
(34)

≤

{
N

3
2
−2H if H ∈

(
3
4 ,

4
5

)
N3H− 5

2 if H ∈
[

4
5 ,

5
6

) (35)

Let us estimate the quantity
√

E (〈DVN , DUN 〉)2. Denote by H the canonical Hilbert space asso-
ciated to the fractional Brownian motion, defined as the closure of the set of step functions on the
positive real line with respect to the scalar product

〈1[0,t], 1[0,s]〉H = EBH
t B

H
s =

1

2
(t2H + s2H − |t− s|2H).

We can write, if Iq is the multiple stochastic integral with respect to the isonormal process generated
by BH ,

VN = Iq(FN ) with fN =
1√
N

N∑
k=1

h⊗qk
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and

UN = I2(gN ) with gN = N1−2H
N∑
l=1

h⊗2
l ,

where hk = 1[k−1,k) for k = 1, ..., N . In particular ‖hk‖H = 1 and

〈hk, hl〉H = ρH(k − l) with ρH(v) =
1

2

(
(v + 1)2H + (v − 1)2H − 2v2H

)
, v ≥ 1. (36)

We also have ρH(0) = 1 and we define ρH on Z by setting ρH(−v) = ρH(v) if v < 0. Thus

〈DVN , DUN 〉 = 2qN
1
2
−2H

N∑
k,l=1

Iq−1(h
⊗(q−1)
k I1(hl)〈hk, hl〉

= 2qN
1
2
−2H

N∑
k,l=1

[
Iq(h

⊗(q−1)
k ⊗ hl) + (q − 1)Iq−2(h

⊗(q−1)
k ⊗1 hl)

]
〈hk, hl〉

= 2qN
1
2
−2H

N∑
k,l=1

[
Iq(h

⊗(q−1)
k ⊗ hl) + (q − 1)Iq−2(h

⊗(q−2)
k )〈hk, hl〉

]
〈hk, hl〉,

where we applied the product formula (47). Consequently,

E〈DVN , DUN 〉2

≤ cqN
1−4H

 N∑
i,j,k,l=1

〈h⊗(q−1)
i ⊗̃hj , h⊗(q−1)

k ⊗̃hl〉〈hi, hj〉〈hk, hl〉+ 〈hi, hk〉q−2〈hi, hj〉2〈hk, hl〉2


≤ cqN
1−4H

 N∑
i,j,k,l=1

〈hi, hk〉q−1〈hi, hj〉〈hk, hl〉〈hj , hl〉+

N∑
i,j,k,l=1

〈hi, hk〉q−2〈hi, hj〉〈hk, hl〉〈hi, hl〉〈hj , hk〉

+
N∑

i,j,k,l=1

〈hi, hk〉q−2〈hi, hj〉2〈hk, hl〉2
 =: a1,N + a2,N + a3,N .

We used Lemma 4.5 in [15] in order to expres the scalar product 〈h⊗(q−1)
i ⊗̃hj , h⊗(q−1)

k ⊗̃hl〉. Using
the inequality

〈hi, hj〉〈hk, hl〉〈hi, hl〉〈hj , hk〉 ≤
1

2

(
〈hi, hj〉2〈hk, hl〉2 + 〈hi, hl〉2〈hk, hj〉2

)
,

we get a2,N ≤ a3,N so we have to estimate a1,N and a3,N . Now, by (36),

a3,N = cqN
1−4H

N∑
i,j,k,l=1

ρH(i− k)q−2ρH(i− j)2ρH(k − l)2

≤ cqN
1−4H

N∑
i,k=1

ρH(i− k)q−2

(
N∑

a=−N
ρH(a)2

)2

.

15



By using the bound
∑N

a=−N ρH(a)2 ≤ cHN4H−3 we obtain

a3,N ≤ cq,HN
4H−5

N∑
i,k=1

ρH(i− k)q−2 ≤ cq,HN4H−4
∑
k≥1

k(2H−2)(q−2)

≤ cq,HN
4H−4


1, if H < 1− 1

2(q−2)

log(N) if H = 1− 1
2(q−2)

N (2H−2)(q−2)+1 if H ∈
(

1− 1
2(q−2) , 1−

1
2q

)
.

For q = 3, we have for H ∈
(

3
4 ,

5
6

)
,

a3,N ≤ cHN6H−5 (37)

Let us deal with

a1,N = cq,HN
1−4H

N∑
i,j,k,l=1

ρH(i− k)q−1ρH(i− j)ρH(k − l)ρH(j − l).

This summand is the most complicated. Similar quantities (but not exactly the same!) have been
treated in e.g. [4], proof of Theorem 4.1. We decompose the sum over (i, j, k, l) ∈ {1, ..., N}4 upon
the following cases:

1. (i = j = k = l),

2. ((i = j = k, l 6= i), (i = j = l, k 6= i), (i = k = l, j 6= i), (j = k = l, i 6= j)),

3. ((i = j, k = l, k 6= i), (i = k, j = l, j 6= i), (i = l, j = k, j 6= i)),

4.

((i = j, k 6= i, k 6= l, l 6= i), (i = k, j 6= i, j 6= l, k 6= l), (i = l, k 6= i, k 6= j, j 6= i),

(j = k, k 6= i, k 6= l, l 6= i), (j = l, k 6= i, k 6= l, j 6= i), (k = l, k 6= i, k 6= j, j 6= i)) .

5. i, j, k, l are all different.

We denote by a
(j)
1,N , j = 1, 2, 3, 4, 5 the sum of all the terms from the groups 1.-5. defined above. The

first of these terms can be easily estimated since

a
(1)
1,N = cq,HN

1−4H
N∑
i=1

ρH(0)q+2 = cq,HN
2−4H . (38)

For, the first sum from point 2.

cq,HN
1−4H

N∑
i,l=1

ρH(i− l)2 ≤ cq,HN2−4H
N∑
i=1

i4H−4 ≤ cq,HN2−4HN4H−3 = cq,HN
−1
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while the second from point 2.

cq,HN
1−4H

N∑
i,k=1

ρH(i− k)q ≤ cq,HN2−4H
∑
k∈Z

ρH(k)q ≤ cq,HN2−4H .

So, by symmetry,

a
(2)
2,N ≤ cq,H(N−1 +N2−4H) ≤ cq,HN−1. (39)

The sums from group 3. are similar to the those from group 2. and we get

a
(3)
1,N ≤ cq,HN

−1. (40)

Let us with the summands corresponding to point 4. The first one in this set reads

cq,HN
1−4H

∑
i 6=k 6=l 6=i

ρH(i− k)q−1ρH(k − l)ρH(i− l)

≤ cqN2−4H
N∑

a,b=−N
|ρH |(a− b)q−1|ρH |(a)|ρH |(b) ≤ cqN2−4H

N∑
a,b=−N

|ρH |(a− b)q−1|ρH |(a)2

≤ cq,HN2−4H
N∑

a=−N
|a|4H−4

2N∑
b=−2N

|b|(2H−2)(q−1).

It follows that this term is less than

cq,H


N−1 if H < 1− 1

2(q−1)

N−1 logN if H = 1− 1
2(q−1)

N (2H−2)(q−1)+2 if H ∈
(

1− 1
2(q−1) , 1−

1
2q

)
.

Regarding the second summant in 4., we can bound as follows

cq,HN
1−4H

∑
i 6=j 6=l 6=i

ρH(i− j)ρH(i− l)ρH(j − l)

≤ cq,HN1−4HN3N6H−6 1

N3

∑
i 6=j 6=l 6=i

(
|i− j|
N

)2H−2( |i− l|
N

)2H−2( |j − l|
N

)2H−2

= cq,HN
2H−2 1

N3

∑
i 6=j 6=l 6=i

(
|i− j|
N

)2H−2( |i− l|
N

)2H−2( |j − l|
N

)2H−2

≤ cq,HN2H−2,

since the quantity 1
N3

∑
i 6=j 6=l 6=i

(
|i−j|
N

)2H−2 ( |i−l|
N

)2H−2 ( |j−l|
N

)2H−2
is a Riemann sum that converges

to
∫

[0,1]3 |x− y|
2H−2|y− z|2H−2|z− x|2H−2dxdydz <∞. We have similar bounds for the other terms

and we get

a
(4)
1,N ≤ cq,HN

2H−2. (41)

Notice that the estimation of the dominant term, the second in this group is sharp.
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For the only summand in group 5., we separate its analysis uopon all the possible orders:
i > j > k > l, i > j > l > k, ....... The first summand is treated as follows

cqN
1−4H

∑
i>j>k>l

ρH(i− k)q−1ρH(i− j)ρH(k − l)ρH(j − l)

≤ cq,HN
1−4H

∑
i>j>k>l

|i− k|2H−2)(q−1)|i− j|2H−2|k − l|2H−2|j − l|2H−2

≤ cq,HN
1−4H

∑
i>j>k>l

|i− k|(2H−2)(q−1)|i− j|2H−2|k − l|4H−4

≤ cq,HN
1−4H

∑
i>j>k

|i− k|(2H−2)(q−1)|i− j|2H−2
N∑

l=−N
|l|4H−4

≤ cq,HN
−2

∑
i>j>k

|i− k|(2H−2)(q−1)|i− j|2H−2

≤ cq,HN
−2
∑
i>k

|i− k|(2H−2)(q−1)
N∑

j=−N
|j|2H−2 ≤ cq,HN2H−3

∑
i>k

|i− k|(2H−2)(q−1)

≤ cq,HN
2H−2

N∑
k=1

k(2H−2)(q−1).

With analogous estimates for the other cases of point 5., we obtain

a
(5)
1,N ≤ cq,H


N2H−2 if H < 1− 1

2(q−1)

N2H−2 logN if = 1− 1
2(q−1)

N (2H−2)q+1 if H ∈
(

1− 1
2(q−1) , 1−

1
2q

)
.

(42)

So, by (38), (39), (40), (41) and (42)

a1,N ≤ cq,H

N
2H−2 if H ∈

(
3
4 , 1−

1
2(q−1)

)
N (2H−2)q+1 if H ∈

(
1− 1

2(q−1) , 1−
1
2q

)
.

Thus

E〈DVN , DUN 〉2 ≤ cq,H

N
2H−2 if H ∈

(
3
4 , 1−

1
2(q−1)

)
N (2H−2)q+1 if H ∈

(
1− 1

2(q−1) , 1−
1
2q

)
,

, (43)

the bound on the first branch being immaterial for q = 3, 4. If q = 3, then

E〈DVN , DUN 〉2 ≤ cHN6H−5. (44)

We obtain

dW

(
(VN , UN ), (Z, c2,HR

(2H−1))
)
≤ cq,H

N
H−1 +N

3
2
−2H for H ∈

(
3
4 , 1−

1
2(q−1)

)
N (H−1)q+ 1

2 +N
3
2
−2H for

(
1− 1

2(q−1) , 1−
1
2q

)
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For q = 3, we have from (34), (37) and (44),

dW

(
(VN , UN ), (Z, c2,HR

(2H−1))
)
≤ cH

{
N

3
2
−2H if H ∈

(
3
4 ,

4
5

)
N3H− 5

2 if H ∈
[

4
5 ,

5
6

)
.

Remark 3. It follows from the above calculation that the quantity
(
E〈DVN , DUN 〉2

) 1
2 , which some-

how measures the correlation between VN and UN has the same size, for N large, as dW (VN , Z)
(compare (32) and (43)).

6 Appendix: Wiener-Chaos and Malliavin derivatives

Here we describe the elements from stochastic analysis that we will need in the paper. Consider H
a real separable Hilbert space and (W (h), h ∈ H) an isonormal Gaussian process on a probability
space (Ω,A, P ), which is a centered Gaussian family of random variables such that E [W (ϕ)W (ψ)] =
〈ϕ,ψ〉H . Denote by In the multiple stochastic integral with respect to B (see [8]). This mapping
In is actually an isometry between the Hilbert space H�n(symmetric tensor product) equipped with
the scaled norm 1√

n!
‖ · ‖H⊗n and the Wiener chaos of order n which is defined as the closed linear

span of the random variables Hn(W (h)) where h ∈ H, ‖h‖H = 1 and Hn is the Hermite polynomial
of degree n ∈ N

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as follows: for m,n positive integers,

E (In(f)Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (45)

It also holds that
In(f) = In

(
f̃
)

where f̃ denotes the symmetrization of f defined by the formula

f̃(x1, . . . , xn) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable with respect to the σ-
algebra generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F =

∞∑
n=0

In(fn) (46)

where fn ∈ H�n are (uniquely determined) symmetric functions and I0(f0) = E [F ].

Let L be the Ornstein-Uhlenbeck operator

LF = −
∑
n≥0

nIn(fn)
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if F is given by (46) and it is such that
∑∞

n=1 n
2n!‖fn‖2H⊗n <∞.

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space Dα,p as the closure of the set
of polynomial random variables with respect to the norm

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω)

where I represents the identity. We denote by D the Malliavin derivative operator that acts on
smooth functions of the form F = g(W (h1), . . . ,W (hn)) (g is a smooth function with compact
support and hi ∈ H)

DF =
n∑
i=1

∂g

∂xi
(W (h1), . . . ,W (hn))hi.

The operator D is continuous from Dα,p into Dα−1,p (H) .
We will intensively use the product formula for multiple integrals. It is well-known that for

f ∈ H�n and g ∈ H�m

In(f)Im(g) =
n∧m∑
r=0

r!

(
n
r

)(
m
r

)
Im+n−2r(f ⊗r g) (47)

where f ⊗r g means the r-contraction of f and g (see e.g. Section 1.1.2 in [8]).
The Fourth Moment Theorem states as follows.

Theorem 3. ([9] and [5]) Fix n ∈ N. Consider a sequence (Fk = In(fk))k∈N of square integrable
random variables in the n-th Wiener chaos. Assume that

lim
k→∞

E[F 2
k ] = lim

k→∞
‖fk‖2H�n = 1. (48)

Then, the following statements are equivalent.

1. The sequence of random variables (Fk = In(fk))k≥1 converges to the standard normal law in
distribution as k →∞.

2. limk→∞E[F 4
k ] = 3.

3. limk→∞ ‖fk ⊗l fk‖H⊗2(n−l) = 0 for l = 1, 2, . . . , n− 1.

4. ‖DFk‖2H converges to n in L2(Ω) as k →∞.

We also need to introduce the Skorohod integral integral (or the divergence operator), denoted
by δ, which is the adjoint operator of D. Its domain is

Dom(δ) =
{
u ∈ L2 (Ω;H) ,E |〈DF, u〉H | ≤ C‖F‖2

}
and we have the duality relationship

EFδ(u) = E〈DF, u〉H , F ∈ S, u ∈ Dom(δ). (49)
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