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Abstract

If Y is a random vector in R?. we denote by Py its probability distribution. Consider a random
variable X and a d-dimensional random vector Y. Inspired by [14], we develop a multidimensional
Stein-Malliavin calculus which allows to measure the Wasserstein distance between the law P x y)
and the probability distribution Pz ® Py, where Z is a Gaussian random variable. That is, we give
estimates, in terms of the Malliavin operators, for the distance between the law of the random
vector (X,Y) and the law of the vector (Z,Y), where Z is Gaussian and independent of Y. Then
we focus on the particular case of random vectors in Wiener chaos and we give an asymptotic
version of this result. In this situation, this variant of the Stein-Malliavin calculus has strong and
unexpected consequences. Let (X, k > 1) be a sequence of random variables in the pth Wiener
chaos (p > 2), which converges in law, as k — oo, to the Gaussian distribution N(0,02). Also
consider (Yg,k > 1) a d-dimensional random sequence converging in distribution, as k — oo,
to an arbitrary random vector U in R% and assume that the two sequences are asymptotically
uncorrelated. We prove that, under very light assumptions on Yy, we have the joint convergence
of (Xk,Yg),k > 1) to (Z,U) where Z ~ N(0,0?) is independent of U. These assumptions are
automatically satisfied when the components of the vector Y; belong to a finite sum of Wiener
chaoses or when Y, =Y for every k > 1, where Y belongs to the Sobolev-Malliavin space D!:2.

2010 AMS Classification Numbers: 60F05,60G15,60H05,60H07.
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1 Introduction

The Stein’s method constitutes a collection of mathematical techniques that allow to give quantitative
bounds for the distance between the probability distributions of random variables. It has been



initially introduced in the paper [17] and then developed by many authors. We refer, among many
others to the monographs and surveys [3], [15], [16], [I8] for a detailed description of this method.
Of particular interest is the situation when one random variable is Gaussian, but the cases of other
target distributions have been analyzed in the literature.

A more recent theory is the so-called Stein-Malliavin calculus which combines the Stein’s method
with the techniques of the Malliavin calculus. The first work in this direction is [6] (see [7] for a
more detailed exposition) and since, numerous authors extended, refined or applied this theory. In
this theory, the bounds obtained for the distance between the law of an arbitrary random variable
and the target distribution are given in terms of the Malliavin operators.

The starting point of the Stein’s method for normal approximation is the following observation:
Z ~ N(0,0?) with o > 0 if and only if

o’Ef'(Z) - EZf(Z) =0

for every absolutely continuous function f : R — R such that E|f’(Z)| < oco. Then, one can think
that if a random variable X has the property that o2Ef’(X) — EX f(X) is close to zero for a large
class of functions f, then the probability distribution of X should be close to N(0,02). From this
observation, the whole Stein’s theory has been constructed, leading to various bounds for the distance
between the probability law of the random variable X and the normal distribution N(0,0?).

In this work, we deal with a variant of this method recently developed in the reference [14]
that allows to measure the distance between the components of a random vector (X;, X3), where
X1 ~ N(0,0%) and Xs has an arbitrary distribution. The nice observation made in [I4] is that
X1 ~ N(0,0%) and X is independent of X5 if and only if

0*Ed,, f(X1,X2) — EX1f(X1,X2) =0

for a large class of differentiable functions f : R> — R. We denoted by 0, f the partial derivative
of f with respect to its first variable. As in the standard Stein’s method, one follows the intuition
that if some random vector (X1, Xo) satisfies that 02Ed,, f(X1, X2) — EX1 f(X1, X») is close to zero,
then X; should be close in law to Z ~ N(0,0?) and Px, x,) should be close to Pz ® Px,. By
combining this idea with Malliavin calculus, in [I4] one gives bounds for the Wasserstein distance
between P(x, x,) and Px, ® Px, in terms of the Malliavin operators.

Our purpose is, in a first step, to generalize the above idea by considering random vectors of
arbitrary dimension. This extension of the Stein’s method combined with Malliavin calculus allows
to obtain the following estimate: if X € D2 and Y = (V1,...,Yy) is such that Y; € D12 for all
j=1,...,d, then (we denote by dy, the Wasserstein distance and Z ~ N (0, 0?))

d
dw (Pixy), Pz @ Py) <C |E|o® = (D(-L) ' X, DX)y| +EY _[(D(-L)7' X, DY))ul|, (1)
j=1

with C' > 0. We denoted by D, L the Malliavin derivative and the Ornstein-Uhlenbeck operator with
respect to an isonormal process (W(h),h € H), where (H,(-,-)m) is a real and separable Hilbert
space.

Then, we focus on the particular case of sequences of random variables belonging to a Wiener
chaos and we give asymptotic-type results. We will here show that the convergence of a sequence



of multiple stochastic integrals to the Gaussian law has other strong and unexpected consequences.
Let H be an Hilbert space and let I, denote the multiple integral of order p > 1 with respect to an
isonormal process (W (h),h € H). Assume that p > 2 is an integer number and for every k > 1,
Xy = I,(fx) where fr € H®P are symmetric functions. Suppose that
d
X -\ 7~ N(0,0%),

k—

where o > 0 and 7 —(@ 7 stands for the convergence in distribution. Then the following facts hold
true:

o If Y =(Y7,...,Yy) is a d-dimensional random vector with components in the Malliavin-Sobolev
space D%2 and Xj,Y are asymptotically uncorrelated (i.e. EX.Y, =100 0 for every j =
1,...,d), then

(X, Y) 2 (Z,V),

k—o0
with Z’ ~ N(0,0?) independent of Y.

o Let (Yr, =(Yik,....Yar), k> 1) be a sequence of random vectors such that each component
belongs to a finite sum of Wiener chaoses and Yy, —(® U (U is an arbitrary random vector).
Then, if X}, Y, are asymptotically uncorrelated (i.e. for every j =1,...,d, EX,Y 1 =100 0),
then

(Xn, Yi) -2 (Z,1),

where Z' ~ N(0,0?) and Z’,U are independent.

o Let (Y= (Yig,...,Yqr),k > 1) be a sequence of random vectors such that each component
belongs to D2 and satisfies an additional (pretty natural) condition (assumption in The-
orem . Suppose that Y, —(@ U, with U is an arbitrary d-dimensional random vector, and
X, Y, are asymptotically uncorrelated. Then

(Xk, Yi) 2 (2,0),

k—o0

where Z' ~ N(0,0?) and Z’,U are independent.

These findings may have direct consequences to statistics and limit theorems since many estimators
can be expressed as multiple stochastic integrals (see e.g. [2I]). The main idea of the proof consists in
combining the Fourth Moment Theorem with the Stein-Malliavin bound . Let us emphasize that
the assumption p > 2 is crucial. When p = 1, we cannot expect to have results as those listed above.
Indeed, take X = I1(h) with h € H,||h| =1, s0 X ~ N(0,1). Then Y = I1(h)? — 1 = I5(h®?) is an
element of the second Wiener chaos, but X and Y are not independent (see e.g. the independence
criterion in [22]).

We organized the paper as follows. In Section 2, we develop in a multidimensional context the
variant of the Stein-Malliavin calculus introduced in [14]. Section 3 contains the statement of our
main result concerning the asymptotic independence on Wiener chaos and a short discussion around
it and its consequences. Section 4 contains the proof of the main result, which is detailed into several
steps. In Section 5 we included several applications of our theory, while Section 6 is the the appendix
where we present the basic tools needed throughout our work.



2 Multidimensional Stein method

In this paragraph, we generalize the variant of the Stein’s method introduced in Section 5 of [14] to
any dimension d > 1. Then, we combine it with the techniques of the Malliavin calculus in order to
obtain the estimate ([1).

2.1 The method

The basis of the Stein’s method consists in the definition of the Stein’s operator and of the Stein’s
equation. For the normal approximation, the standard operator is

Lf(x)=0*f'(zx) —af(z), z€R,

which acts on suitable differentiable functions f : R — R. This operator satisfies ELf(Z) = 0 for
every f : R — R differentiable with E|f’(Z)| < oo if and only if Z ~ N(0,02%). The corresponding
Stein’s equation is

Lf(z) =Eh(z) —Eh(Z), z€eR,

where h : R — R is a given function such that E|h(Z)| < co. The idea of the Stein’s method is
to find a solution f to the Stein’s equation with nice properties and to use it in order to obtain
estimates for Eh(X) — Eh(Z) for an arbitrary random variable X.

We follow the same line in a multidimensional context. Now, the purpose is not the normal
approximation but to quantify the distance between the probability distribution of a random vector
(X,Y) and the random vector (Z,Y) where Z is a centered Gaussian random variable with variance
o2 and it is independent of Y.

Let us consider the operator A/ given by

Nf(z,y)=0%0:f(z,y) —xf(z,y), v€RyeR? (2)

where 0., f denotes the partial derivative of f with respect to its first variable. The operator N acts
on the set of differentiable functions f : R*! — R.

Recall that if Y is a random vector, we denote by Py its probability distribution. The following
two lemmas show that the operator characterizes the law of X and the independence of X and
Y. The material from this section is inspired from Section 5 in [14].

Lemma 1. Assume X ~ N(0,02) and X is independent of the random vector Y. Then EN f(X,Y) =
0 for all f : R — R differentiable with E|0, f(X,Y)| < oc.

Proof: By the standard Stein method, for all y € R¢,
o?Ed, f(X,y) = EXf(X,y)

or

UQ/Rfo(x,y)dPX(x) :/Rxf(x,y)dPX(:L‘).



Let us integrate with respect to the probability measure Py. We have (the use of Fubini’s theorem
is based on Lemma 2.1 in [16])

o2 /Rd (/R 3xf($aY)dPX($)> dPy(y)
_ o2 /R 0uf(2.y)APx(2) € dPy(y)

= & [0S @ ¥R (oY) = PBOLS(X.Y),
where we used the independence of X and Y for the first equality on the above line. Similarly,

/Rd </R xf(%}’)dpx(x)) dPy(y)

- / £ (,y)dPx () ® Py(y) = / (2, y)dP . (2, y)
RA+1

Rd+1
= EXf(X,Y).
|
We also have a lemma in the converse direction. By || - ||oc We denote the infinity norm on R4*1,
Lemma 2. Consider a random vector (X,Y) with E|X| < co. Assume that
ENf(X,Y)=0 (3)

for all differentiable functions f : R — R with ||0,f|lec < 00. Then X ~ N(0,0%) and X is
independent of Y.

Proof: Let ¢ be the characteristic function of the vector (X,Y), i.e.
(A1, A) = B (X0 )
for \; € R and X € R?. By applying for the real and imaginary parts of ¢, we get

Or (A1, A) = iE <Xei(/\1X+w))

= i0c’E (@Cei()‘lx"')‘y)) = —Mle(AL ).

By noticing that for every A € R, (0, A) = py(A) (the characteristic function of the vector Y), we

obtain
2)\2

PN = ey(Ne 7,
and this implies X ~ N(0,0?) and X independent of Y.



Let us now introduce the multidimensional Stein’s equation
Nf(x7Y):h(xay)_Eh(Zvy)7 (L’GR,yERd (4)

where Z ~ N(0,02). In (4)), b : RT! — R is given and we assume that A is continuously differentiable
with bounded partial derivatives. Let us show that admits a solution with suitable properties.

Proposition 1. Let h : R — R be continuously differentiable with bounded partial derivatives.
Then admits a unique bounded solution which is given by

I 1
T,y)=—— ———E | Zh (Vtz + V1 —tZ, dt. 5
Moreover, we have the following bounds:
1.
[fnlloe < |02y hlloo- (6)
2.
1 /2
10z fnlloo < \/7||(9zh||oo- (7)
oV
3' FO’Fj = ]-a "’ad7 lfy = (yla "'ayd)}
1 /=
19y, lloe < /5 102, hll e (®)

Proof: By using the dominated convergence theorem, we get, by taking the derivative with respect
to z in (),

I
Dol y) = _02/0 A= Z0un (Vie +VT=i2,y)] . )
Now, we apply the standard Stein identity to the function g(z) = h (\/im +v1—tz, y) and we obtain
E {Z@Ih (x/i +VIi—iz, y)}

= E¢'(Z)=0?V1—tE [Omh <ﬂx +V1—-tZ, yﬂ . (10)

By plugging into , the function f; can be written as

1

Fulz,y) = —/0 5iE [&Ch (\/iﬁ VI —tz,y)} dt. (11)



By @ and , we can write

amfh(x7 y) - .Tfh(l', y)

_ /OlE [(—2\/%+2f/%) Ouh (\/ix+mZ,y>]

1
= E/o %h (\/Z:r +V1—tZ, y) dt = h(z,y) — Eh(Z,y).

Consequently, fp, given by is a solution to (4)). To prove @, we use to get

1
1
1 fnlloo < /O 571l < 02l

The bound @ follows from @ since

E|Z 1 /2
focsile < B2 ot < 07ty 2000

o2

To prove , we differentiate with respect to y;,j =1, ...,d in (5,

By, fr(z,y) = _% /01 2\/“117_75)]3 [Zayjh (\/?fx +V1—tZ, y)} dt

and

E|Z| ! 1 1 [x
il < 220 Bl | —e—dt = = [T 110, Bl
12, o < 2Nl [ 5t = 2. Z10, 1

To finish the proof, we notice that for any other solution gy to , one has
_a?
0. (7% (fey) — an(ay)) ) =0

2

so gn(z,y) = fu(z,y) + ez%c(y) so g is bounded if and only if ¢(y) = 0.

By Proposition 1} if f;, is the solution to the Stein’s equation (4)), we have

028th(¢73’) - Zﬂfh('x,}’) = h(:ﬂ,y) - Eh(Zvy)

for any h differentiable with bounded partial derivatives. Let X, Y be random vectors with E| X | < co.
Let us integrate with respect to 6 := Py y) in the above identity. We have

/RdﬂLl h(x7Y)d0($,y) — Eh(X, Y)



and

/ Eh(Z,y)d0(z,y)
Rd+1

= [ ([ reyarae) o)
_ /R d ( /[R h(z,y>sz(z>) dPy(y)

— / h(x,y)dPZ®Py(y):/ h(z,y)dn(z,y),
Rd+1

Rd+1
with
n=P;® Py.
Therefore
o*Ed, frn(X,Y) — EX f,(X,Y) = EL(X,Y) — En(Z',Y)
Rd+1 Rd+1

where Z' has the same law as Z ~ N(0,0?) and Z’ is independent of Y.

2.2 Stein method and Malliavin calculus

Let

A= {h:R" = R, h is Lipschitz continuous with ||h| ;) < 1}
and let F,G be two n-dimensional random vectors such that h(F), h(G) € L'(Q) for every h € A.
Then the Wasserstein distance between the probability distributions of F' and G is defined by

dw (Pr, Pe) = sup [Bh(F) — BA(G)|. (13)

We denoted by ||h||1ip the Lipschitz norm of h given by

h(z) — h(y
bl = sup |h(z) — h( )\7
z,yER™ x#y H$ - y”R”

with || - ||g» the Euclidean norm in R™. The operators D, L, below are defined with respect to an
isonormal process (W (h),h € H), see the Appendix. By (:,:) we denote the scalar product in the
Hilbert space H.

We use the ideas of the Stein method for normal approximation (see [7]) to prove the following
result.

Theorem 1. Let X be a centered random variable in DY? and let Y = (Y1,...,Yy) be such that
Y; €DY2 forall j=1,...,d. Let 0 = Pixy) and n = Pz ® Py, where Z ~ N(0,02). Then

d
dw(0,n) < C | E|o® — (D(-L)"'X,DX)|+ Y E[(D(-L)"'X,DY;)| | . (14)



Proof: Let h : R™! — R be continuously differentiable wth bounded derivatives and let f), be
the corresponding solution to the Stein’s equation . By using the well-known formula X =
SD(—L)"'X in , we obtain, by integrating by parts

/ h(li,}’)d@(%}’)—/ h(z,y)dn(z,y)
Rd+1 Rd+1

= 0’E0,fu(X,Y) —ESD(—L) ' X f,(X,Y)
UQEamfh(Xv Y) - E<D(_L)71X7 th(X7Y)>
= Ea:vfh<X7 Y) (02 B <D(_L)_1X7 DX))

d
_Ezamjfh(Xv Y)<D<_L>_1X7 DYvJ>
j=1

Hence, by using inequalities and in Proposition

/ Wz, y)db(z,y) — / h(z, y)dn(z,y)
RdJrl Rd+1

d
<C|EJ0e® - (D(-L)'X,DX)|+ Y E[(D(-L)"'X,DY})| | . (15)
j=1

To finish the proof, we borrow again an argument from [I4] (proof of Lemma 9 in this reference) to
approximate a Lipschitz function by continuously differentiable functions with bounded derivatives.
Indeed, if h € A and £ > 0, then consider

he(xvyl-"ayd) =Eh (.T + \/EN, Y1+ \/gNla vy Yd T+ \/gNd) ’

where N, Ny, ..., Ng are independent standard normal random variables. Then h. is differentiable

and it safisfies
[he = Blloc —e=0 0, [Ozhelloc < |hellLip < [|PllLip <1

and
.gaxdllayjhsﬂoo < lhellLip < |PlLip < 1.

)

Therefore, by ,

/Rdﬂ h(z,y)do(z,y) - /Rd+1 h(fUaY)dU(%Y)‘

he(,y)dn(z, Y)‘

d
< 2|he — hllos + C | E|o? = (D(—L) ' X, DX)| + Y "E|[(D(-L) ' X, DY;)]
j=1

< 2fhe— Bl + ‘ / he(z,y)d6(z,y) - /
R+1 R

d+1

and we conclude by letting € — 0.



The corollary below is used to deal with random vectors with components in Wiener chaos.

Corollary 1. With the notation from Theorem if X,Y1...,Y; € DY, then

ST
=

dw(0,m) < C (E\02—<D(—L)—1X,DX)\2) + (E\<D(—L)—1X,D3fj>\2) . (16)

d
=1

J

Proof: The proof follows from Theorem [I} by using Cauchy-Schwarz’s inequality in the right-hand
side of (14) and by noticing that (D(—L)~'X, DY;) belongs to L?(Q2) when X,Y; € Db, for j =
1,2,...d.

|

Remark 1. As a particular case of relation in Theorem [1], it follows that if X1 ~ N(0,0?)
and (DX1,DX2) = 0 almost surely, then X, is independent of Xo. In particular, this means that, if
X1 =1I1(h) and Xo = >, <o In(gn) (with h € H, g, € H™ for everyn > 1), then h®1 g, = 0 almost
everywhere on H®"~1 implies the independence of X1 and Xo. This is related to the independence
criterion for multiple stochastic integrals in [22], which states that two random variables Ip(f) and

I,(q) (with f € H®P,g € H®?) are independent if and only if f ®1 g vanishes almost everywhere on
H®p+q—2

3 Asymptotic independence on Wiener chaos

The variant of the Stein’s method presented in Section [2|lead to some strong consequences when it is
applied to sequences of multiple stochastic integrals. Here we describe and discuss our main findings
in the case of the Wiener chaos. The proofs will be detailed in the next section.

3.1 Preliminary tools

Let us start with some auxiliary results that will be used several times in the sequel. Recall that
H is a real and separable Hilbert space and W = (W (h),h € H) is an isonormal process on the
probability space (2,G, P), where G is the sigma-algebra generated by W. The operators D, L and
the multiple stochastic integral I,,p > 1 are all with respect to W'.

This our first auxiliary result. The contraction of two kernels has been defined in the appendix

(see )

Lemma 3. Let f1, f3 € H®P and fo, f4 € H®? with p,q > 1. Then, for everyr =0,....,p A q,

(f1 ®@r fo, f3 @r fa) govra—2r = (f1 @p—r f3, fo @q—r fa)go2r.

Proof: This is e.g. Lemma 4.4 in [20]. [ |

The following well-known result allows to express the L?-norm of (D(—L)~'X, DY) when X
and Y are multiple stochastic integrals.

10



Lemma 4. Let X = I,,(f) and Y = I,(g) with p,q > 1 and f € H*?,g € H®?. Then

PAg
E(D(—L)_lX, DY>12LI = (E(XY))21p=q + Z C(Tap-Q)Hf@rgH%]@mqum

r=1
where ¢(r,p, q) are strictly positive combinatorial contants forr =1,...,(p Aq) — 1 and

0, ifp=gq

c(pNq,p,q) = {> 0.if p £ q.

Proof: See e.g. [7], Lemma 6.2.1. [ |

We will also need the celebrated Fourth Moment Theorem proven in [I12]. See also [11] for point
4. below.

Theorem 2. ([12] and [7]) Fiz an integer n > 1. Consider a sequence (F = I,(fx),k > 1) of
square integrable random variables in the nth Wiener chaos. Assume that

lim E[F?] = i ! 2 on=1. 1
Jim [F] k;ﬂ;oankllHo (17)

Then, the following statements are equivalent.

1. The sequence of random variables (Fy, = I,(fx),k > 1) converges to the standard normal law
in distribution as k — oo.

2. limy_,00 E[F] = 3.
3. limg o0 || f& @1 kaH(g,z(n_z) =0forl=1,2,...,n—1.

4. |IDFy||% converges to n in L*(Q) as k — oc.

3.2 Main result

In this paragraph, we state our main findings and we discuss some consequences. The main result
of this work states as follows. The notation dy below stands for the Wasserstein distance, see ([13]).

Theorem 3. Let us consider the integer numbers p > 2, d > 1. Let (Xi,k > 1) be a sequence of
random variables such that for every k > 1, Xy, = I,(fx) with fi, € H®P. Assume that

Xe =\ 72~ N(0,0?). (18)

k—o0

Let Yy, k > 1) = (Y1 ks, Yar), k > 1) be a sequence of random vectors such that, for every j =
1,...,d, the random variable Y;} belongs to D2, and it admits the chaos expansion

o0
Yir = ZIn(gr(i;g) with 97(3% c HO"
n=0

11



and

o
sup Z 0| gn k|| Fm — Moo 0. (19)
k21 p=Mt1

Suppose that there exists a random vector U in R? such that

Yy @ U (20)

Then, if
EX.Yjr — koo 0 for every j=1,....d (21)

we have

(Xk, Yk) _>l(;2>oo (Z/, [U),

where Z' ~ N(0,0%) and Z' is independent by the random vector U. Moreover, for every k > 1,

dw (Pix,. i), Pz © Pu) (22)

d
< C |E|o® = (D(~L)' X3, DXp)| + > E[(D(~L) "' Xy, DY, )| | + dw (Y3, U).
j=1

Let us make some comment around Theorem [l

e Condition is automatically verified when X belongs to a finite sum of Wiener chaoses
or when Y;;, = Yj for every k > 1 (this is stated in Corollary . On the other hand, this case
(when the components of Y}, are in a finite sum of Wiener chaoses) will be proven before the
main result, as a step of the proof of Theorem [3]

e The assumption also appears in the paper [4], in the context of the normal approximation
of Wiener space (see also Theorem 6.3.1 in [7]).

e The quantitative bound is a direct consequence of the results in Section . It will be
actually used inside the proof of the main result (Theorem [3).

e The uncorrelation condition is obviously crucial for the joint convergence of (X, Yy) in
Theorem (3 Another interesting question is what happens if we assume, instead of , that

EXLYr koo €,

with ¢; # 0 for j = 1,...,d. Can we deduce the joint convergence of (Xj, Y}) to a random vector
with marginals Z and U? In the case when U follows a Gaussian distribution, the answer is
given by the main result in [I3]. In order to give a complete answer, we need to know how to
characterize the law of the vector (Z,U) when Z ~ N(0,0?) is not independent of U and the
law of U is not Gaussian.

Let us state the following corollary of the above theorem.

12



Corollary 2. Consider the sequence (Xy, k > 1) as in Theorem[5 and Y = (Y1, ..., Yy) be a random
vector in R%. Assume that for every j =1,...,d, Y; € D2 . Also assume

EXrpYj; = k00 0. (23)
Then (@ holds true and for k > 1,

dw (Pix,v), Pz © Py) (24)

d
< C |B|o® —(D(=L)"'Xi, DX)| + D E[(D(=L) " X, D] | -
j=1

Proof: It is an immediate consequence of Theorem (3| since ((19) is obviously satisfied. |

Remark 2. Corollary | actually says that any sequence in the pth Wiener chaos with p > 2 is
asymptotically independent of any (regular enough) d-dimensional random vector in L*(, G, P) (with
components in DV2) if the uncorrelation assumption 1$ satisfied.

Let us give a possible explanation of this phenomenon. Since (X, k > 1) satisfies @), it follows
from Theorem (3 that, forr =1,..,p—1,

| & @r frll gozo—2r —k—00 0.

Let h € H. Then, by Lemmal[3 and Cauchy-Schwarz’ inequality,

| fe ®1 hllger—1 = (fe @1 h, fr @1 h) gor—
= (fx ®p-1 fo, h @ h)ypgo2 < || fr ®p1 Fiell ez || hll% —kesoo O.

This intuitively means, taking into account the independence criterion of two multiple integrals proven
in [22], that Xy, = Ip(fx) and W(h) = I1(h) are asymptotically independent for any h € H. Then
X is asymptotically independent by any functional of W and by density by any random variable in
L3(2,G, P) (recall that G is the sigma-algebra generated by W ).

4 Proof of the main result

The proof of the main result will be done into several steps. We start with an (intriguing) technical
lemma (Lemma |5 below) which plays a crucial role in our proofs. Then we prove the result in the
case when the components of Y belong each of them to a Wiener chaos of fixed order, we continue
with the case when these components are in a finite sum of Wiener chaos and finally we conclude
the proof of Theorem [3] Our arguments use intensively the auxiliary tools recalled in Section [3.1
the Lemma [5| and the Stein-Malliavin bounds , obtained in Section

4.1 A key lemma

As mentioned, the below lemma is a central point in our approach.
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Lemma 5. Let p > 2 and q > 1 be two integer numbers. Let (X, k > 1) be that such for every
k>1, Xg = L,(fr) with fr € HP. Assume

X =\ 7~ N(0,0?). (25)

k—o0

Then, for every g € H®4,

r=1,..,pANqifp#q

| & @r gl gpta—2r —k—o00 O for every .
r=1,...,(pANq)—1ifp=q.

Proof: Without loss of generality, we can assume that H = L?(T, B,v), where v is a sigma-finite
measure without atoms.

Let p > g. Then the conclusion follows easily from Lemma [3|and point 3. in the Fourth Moment
Theorem (Theorem . Indeed, for every 1 <r < ¢q < p,

||fk Qr g”?{@p-kq—?r = <fk Qr g, fk Qp g>H®P+q—2’“ = <fk ®pfr fk»g ®qfr g>H®2T
< | fe ®p—r frllaeerlg ®g—r gl oo (26)

and || fx ®p—k frllg2r —k—o00 0 by Theorem 2|since 1 < p—r < p—1. We employ the same argument
holds when p=gand 1 <r <p-—1.

Assume now p < q. If 1 <r < p—1, then the above argument still holds, due to the inequality

”fk R g”%{®p+q—2r < ”fk ®p—r fchH@’QTHg ®q—r gHH®2T

and of the fact that 1 <p—r <p-—1.
It remains to prove that, for 2 < p < gq,

1k ®p gllL2(7a-) = k00 O- (27)
To prove , we will proceed into two steps.
Step 1. We show that for every hq,...,hq € H = L*(T), we have
| fr ®p (h1® ..... ®hq) HLQ(qup) — koo 0.

We have

14



where S, is the set of permutations of {1, ...,¢q}. Then, via the definition of the contraction ,
(fk Qp (h1® ..... ®h )) (tl, . tq,p)

= q' Z / fk ULy ooy U ( o(1 )® ®h0(q)) (ul,...,up,tl,...,tq_p)dul...dup
0E€S,

LS @ Bty (i)
0€Sy

fk(ul, U ) (hg(l) ... ha(p)) (ul, ceey up)dul...dup

- ql Z o(p+1) @ - @ h a(q— p)) (t1s s tg—p)

0ESy

/Tp X (/ fk ULy eeey U )(ul)dul) (ha(Z) X ... hg(p)) <UQ, ...,up)dug...dup
= q' z; o(pt1) ® - @ hg(q— p)) (t1, s tg—p)

ogc

X /T l(fk X1 ha(l))(UQ, ...,up) (ha(g) ®...Q hg(p)) (ug, ..., up)duQ...dup
p—

= q' Z o(p+1) @ - @ h o(qg— p)) (t1, s tqep) (f& ®1 hg(l), ha(?) Q.0 hg(p)>L2(Tp,1)

0ESy
Therefore,
ka ®p (h1® ---- % ) HLQ(TQ*P)
< = Z o)l L2y o)l L2y [{fe @1 o), ho@) ® - @ hog)) L2(ro-1)]
' 0ES,
< | Z Hha(p+1 HL2 "Hha(q)HLQ(T)ka 1 h HL2(TP 1)||h ® ®ho(p HL2 Tp—1)
GESq
< a Z Hha(l)||L2(T)""Hha(q)||L2(T)\/”fk @p—1 O fell L2(12)
T o€S,

where we used Lemma |3| and Cauchy-Schwarz’s inequality. We obtained

q
1 £e ®p (M1 ®.....@hg) I r2era—ry < | [T 175l 22 \/ka: ®p-1 DSkl L2(12)s
j=1

and this goes to zero as k — oo by point 3. in Theorem

Step 2.  We prove the claim for g € L%(T?) (the set of symmetric functions in L?*(T9)).
Consider the sequence (g™, M > 1) given by

M M
gM = Z <g, hj1 X ""hjq>L2(Tq)hj1 R ... ® hjq = Z <g, hj1 X "-'hjq>L2(Tq)hj1é'"-éh]’q
jl 7777 jq:1 jlv"'vjqzl
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where (h;,i > 1) is an orthonormal basis of H = L?(T). Then g™ are symmetric functions and
g™ — 9ll2(ray = M—00 0. We write
fe®@pg = e ®p g™ + fr @pg— fr @p g™

and

| fx ®p gllL2(ra-») < Ik ®p QMHL2(Tq*P) + 1 fk ®p g — fr @p QMHLQ(TLI*P)- (28)
Now, for every M > 1,

1fx ©p g = fr @p 9 I L2ra—ry = | fe ®p (9 — 9" L2(70-0)
< ||fk:||L2 royllg — 9" lr2(za) < Cllg — g™ 1279 (29)
We used the fact that, by (2 Q'”kaLz T9) koo 02 so the sequence (fg,k > 1) is bounded in
L2(TP).
Let € > 0. By , there exists My > 1 such that for any M > M

1 ®p 9 = fe @5 9" 2rony < 5 (30)
Take M > My. Then
M
T Rp gM = Z <9’ h]l X .. h]q>L2 T4) (fk p ( ]1®""®hjq)) .
J1yedg=1
By Step 1,
1fx @p 9™ | 2(70-9) = k00 0,
so for k large enough,
1 @5 9™l z2cron) < 5 (31)
By plugging and into , we get the claim . |

4.2 The proof of the main result when the components of Y, belongs to a Wiener
chaos

Let us make a first step to prove the main result, by dealing with the case when the random vector
Y from the statement of Theorem [3| has components that belong each of them in a Wiener chaos of
fixed (but possibly different) order.

Proposition 2. Let p > 2 and let q1,...,.qq > 1 be integer numbers. Assume that (Xp, k > 1) is
such that Xy, = L,(fx), fx € H®P and @ holds true. Let (Yi, k> 1) = (Y1, ..., Yar), k> 1) be a
sequence of random vectors such that for every k > 1,5 =1,...,d,

Yjr =1y, (9jk) with g1 € HC%
Suppose (@) and . Then
(X, Yy) = (Z,0), (32)

k—o00

where Z' ~ N(0,0?%) and Z' is independent by U. Moreover, we have the estimate .
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Proof: We first notice that is a direct consequence of of the triangle’s inequality. Indeed,
for every k > 1,

dw (P(x,,vy)» Pz © Py) dw (Pix, v,), Pz ® Py,) + dw (Pz @ Py, , Py @ Py)

<
< dw (Pix, v,), Pz ® Py,) + dw (Py,, Pu) ,

and then we use . For the rest of the proof, we will again proceed into several steps.
Step 1. We prove that for every j =1,...,d,

E(D(—L)""' X}, DY} )* =00 0. (33)
By Lemma [4] we have, for every k > 1 and j =1, ...,d,

PAG;

E<D(_L)_1Xka D}/},k>2 = (EXkaj,k’)lez(Ij + Z C(’l“, b, Qj)||fk®7’gj,k||?_l®p+qj72m (34)
r=1

where ¢(r, p, ¢;) are as in Lemma In particular, recall that c(p A gj,p, ¢;) = 0 if p # g;. By Lemma

B

‘|fk®rgj,k||é®p+q]-—2r < ka Qr gj,k”?r{@p-kqj—?r —k—00 0 (35)

for every r =1,...,pAgq; (if p#¢;) andr =1,...,(pAgj) — 1 (if p = ¢;). The relation and the
assumption imply the conclusion of this step.

Step 2. Let us use the notation

Ok = Px,,v,), M =Pz® Py, n=Pz® Py. (36)
In this step, we prove that
dw (Ok, k) — ko0 0 (37)
We know from that
1 d 1
dw (O ) < C | (E((D(-1) ' X, DXi) = 0%)°) " + 37 (B(D(-L) ' Xe, DYj1)2) | (38)
7j=1

The assumption and the Fourth Moment Theorem implies that (see Section 5 in [7]),
E ((D(—L)™' Xy, DX}) — 02)2 — ko0 0.

This fact, together with Step 1, implies .

Step 3: We deduce the convergence . Let f : R — R be a continuous and bounded function.
By using the triangle’s inequality, we have

2)d0(z / f(@)dn(x
Rd+1

x)dby(z / f(x)dny(x
Rd+1

17
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The first summand in the right-hand side converges to zero as k — oo by Step 2. The second
summand in the right-hand side also goes to zero as k tends to infinity due to the assumption ([20]).
Then, the conclusion is obtained. |

Remark 3. It is possible to write a quantitative bound for dy (0x,n) in terms of the norms of the
contractions of the kernels fi, and g;, (with the notation from Proposition @) Indeed, assume d =1
and g1 = q. Then, by using (@, Lemma and the inequality (@, we can write

p—1 (pAg)—1
dw(Ok,m) < C|(BXkYi)lpmg+ > fe @ fillfrema + D If5 @pr fill oo
r=1 r=1

1
+||fk' ®q fk‘|H®P—‘11p>q + ka: ®p gk”%{q—p1p<q-] 2.

Taking into account point 3. in Theorem[Jwe can also write, for k large enough,

N |=

p—1
dw (O, 1) < C | (Frs gi) Fron Lp=q + > 1fe @ frll rozo-2r + | fe @p gkl Ha—plp<q| (39)

r=1

The above bound may be not optimal in some cases (see Remark@ in Section .

4.3 The components of Y, belong to a finite sum of Wiener chaoses

We make a further step to get the main result by extending the result in Proposition

Proposition 3. Assume that the sequence (Xi, k > 1) is as in Pmposition@ andlet Yy = (Y1 ..., Yar)
be such that for every j = 1,...,d and for every k > 1,

No '
Yik =Y In(g}).
n=0
with Ng > 1, gﬁljzc € HO forn>0,k>1and =1,...,d. Assume (@) and . Then

(Xi, Yi) =\ (7,0 (40)

— 00

where Z ~ N(0,02) and Z',U are independent. Moreover, the estimate holds true.

Proof: Recall the notation . Again, the Stein-Malliavin bound follows directly from ({16]).
By using this estimate ,

d
dw (O, k) < C | E|o® = (D(—=L) ' Xy, DXy} | + Y  E[(D(~L) "' X, DY; i) |
=1

18



We also have, for every j =1,...,d and k > 1,

E ‘<D(—L)_1,Xk,DYj,k>H‘ = L)'xy, ZDI gnk

No No
< S EB[(D(-1) X, DL ))a| <3 <E) )" X DIn(g) \)
n=0 n=0

We notice that and the isometry of multiple stochastic integrals implies that
EXp(97)) —rosec 0, (41)

for every 7 = 1,...,d and for every n = 0,...,Ng. We use Lemma [4 to express the quantity
E |(D(-L)"'Xy, DI, (ggzc» , and then by using and Lemma we deduce that

B|(D(~L)" Xy, DI, (gfji))Hr oo 0,
for every j =1,...,d and n — 0,1, ...Ng. Thus
E[(D(—L)™", Xy, DY} ) | k00 O,
for every j = 1,...,d and this implies

dw (Ok, k) —>k—s00 0.

To deduce , we proceed as in Step 3 of the proof of Proposition

|
4.4 Proof of the main result (Theorem
Let € > 0. For M > 1, let us define,
M
Vi =3 o).
n=0
and consider the random vector in R?
Y = (VMY k> (12)
Clearly, for every k > 1,
EHY{CW — Yk”%gd — Moo 0.
Recall that by || - ||ge and (-, -)gre we denote the Euclidean norm and the Euclidean scalar product in

R?. By and the orthogonality of multiple stochastic integrals of different orders , for every
7 =1,...,d and for every M > 1,
EXkY & — koo 0. (43)
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Now, for any A; € R and A € R¢,

‘E M XA _ ReiMZ peiA U

i ‘EeiAlz’Eei(A,YkM>Rd _ EeMZ ReiA U

< ‘Eei)\1Xk+i<)\,Yk>Rd o Eei/\1Xk+i<>\,Y£4>Rd

= amki+bmr+ cmk-

4 ‘Eeiklxk‘i’i()\’Y;@M)Rd o Eei/\IZ/Eei<>\’Y£/I>Rd

Let us estimate separately the three summands from above.

Estimation of apr . By the mean value theorem,

ANk

IN

IN

<

‘ Eei<A7Yk>Rd _ E6i<A7Y£;M>]Rd

< E[YY - ¥

d 9 d 00 )
DB (k) =\ D e,
j=1 j=1 n=M+1
d 00 N
Sosup > g e

\ j=1 %21 o

and the last quantity goes to zero as M — oo due to . So, for M > M; large, apr < €.

Estimation of by .

components of YkM belong to a finite sum of Wiener chaoses. For M > M, we have

dw (P(Xk,yf,y)vPZ' ® PY,Q”)

d
< C |E|o® = (D(-L) ' Xy, DXp)u| + Y _E|o? — (D(-L) ' X}, DY) |

j=1

(44)

(45)

Basically, the convergence of this term follows from Proposition (3] since the

Using , as in Proposition [3] the both summands in the right-hand above converge to zero as
k — oo. So, for k large, by < €.

Estimation of ¢y . First notice that

CMk < )Eeio"w/@w)m — EefAUga

Let € > 0. We show that for M, k large enough,

We have

Eei<A7Y£/I>]Rd _ Eei<A’U>Rd

‘ Eei<A7YIICM>Rd _ Eei<A’U>Rd

<e.

IN

} E6i<>‘7Y]kVI>Rd _ E6i<>‘7Yk>Rd

+ ‘EeMA’Yk)Rd _ E6i<>\’U>]Rd

IN

CE|YM — Y|lpa + ‘Eemmd _ EeiA U
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We use the estimate

d oo
y |
EYY — Yilga < | sup > alllg) (0.
j=1 k21 e

and the last quantity goes to zero as M — oo due to . By using this inequality and in ,
we get . Therefore, for k, M large, cprp < €.
Consequently, the left-hand side of goes to zero as k — oc. |

5 Applications

We illustrate our results by four examples. In the first example, we deduce from Proposition [2] the
joint convergence of the Hermite variations of d + 1 correlated fractional Brownian motions. The
second example constitutes an application of Theorem [3| by considering a random variable with
infinite chaos expansion. In the third example, we treat a two -dimensional sequence in Wiener
chaos, one component being asymptotically Gaussian and the second component satisfying a non-
central limit theorem. Such estimates are new in the literature and they cannot be obtained via the
standard Stein method. Finally, in the last example, to evaluate the dependence structure between
the solution a stochastic differential equation and the random noise.

5.1 Hermite variations of correlated fractional Brownian motions

Let (W, t > 0) be a Wiener process and for H € (0,1),¢ > 0 consider the kernel
H-1 H-1
fra(s) =d(H) <(t —s5), > —(—s)] 2> , seR.

where d(H) is a normalizing constsnt that ensures that [, f 17 (s)%ds = t*# . Let Hy, Hy, ..., Hq € (0, 1)
and define, for ¢ = 0,1, ...,d,

BH — / Fo(s)dW,, >0, (48)
R

Then , for : = 0,1, ...,d, (BHi,t > O) are d + 1 (correlated) fractional Brownian motions with Hurst
parameters H;. We write, for any integer number k& > 0,

BHi

B =Bl =n(Ly,), i=0,1,...4d,

where I, stands for the multiple stochastic integral of order ¢ > 1 with respect to the Wiener process
W and for k > 0,

Ly u, = fot1,0, — [rH;- (49)

For N > 1 integer, we set

1 4 _
= TN 2 b (L) = Lo(/w) (50)



and for j =1, ...,d,

N-1
Yy, = NoO- =y T, (L?ﬁff'j) = Iy;(9n.5)- (51)
k=0
We used the notation
;N N-1
In=—= > Ly, and gy = NoOH)=1 S 700 (52)
VN k=0 ’ k=0 !

From the classical Breuer -Major theorem (see [I]) we know the limit behavior in distribution of the
sequence (50) while the Non-Central limit theorem (see e.g. [19]) gives the limit behavior of (51).
More precisely, we have the following.

Theorem 4. Consider the sequences (Xn, N > 1) and (Yn j, N > 1) given by @, , respectively.
Then

1. IfHy € (0,1 — }J),
XN —>$\?)_,oo N(()’O-;,Ho)'

2. IfH; e (1— %1) forj=1,..,d,

(d)
YN = Nooo

Cij,HjR’lij
where R?j is a Hermite random variable with Hurst parameter v; = 1+ q(H —1). The explicit
expression of the constants op Hy,cq; 1, > 0 can be found in e.g. [1], [19].

Recall that the Hermite random variable has a non-Gaussian law (it actually lives in gth Wiener
chaos) and it represents the value at time ¢ = 1 of a Hermite process. For more details on Hermite
processes, see e.g. [21].

Let

Yv=Nn1,..-,YNng), N>1.

The purpose is to show the joint convergence of the two-dimensional random sequence ((Xn, Yy ), N >
1). Let us recall some facts. For every integers k,l > 1 and for i,j = 0,1, ...,d (see [5]),

E(B, - BB, — B,7) = (L, Lum, ) 12wy = D(Hi, Hy)pgn; (k= 1),
2
where D(H;, H;) is a constant depending on H;, H; and for v € Z,

(|v+1|2H+|v—1|—2|v\2H). (53)

N | =

pr(v) =

For v sufficiently large, one has
o (v)| < Cpo* 2 (54)

We have the following result.
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Proposition 4. Let p > 1,q1,....,qq > 2 be two integer numbers and assume that for j =1,....d,
1 1
0<Hi<l——andl——<H;<1. 55
1 2p an 2q j ( )
Consider the sequences (Xn, N > 1) and (Yn, N > 1) given by (50) and (51)), respectively. Then

(Xn, Yn) =5 (Zyeqm, By G =1,y d),

N—oo

where Z ~ N(0,0, > 1) and R stands for a Hermite random variable (with Hurst index ~y;) inde-
pendent of Z. The constants op g, and cq; m, are those from Theorem .

Proof: First, we notice that, as N — oo,
Yy =D (g RY', oy cqur, RIY). (56)
The above claim can be argued in the following way: for every ¢ > 0, we have the scaling property
(Bgl, B> 0) = (cHlefl, o cHapHa > 0) ,

where 7 =(@ 7 means the equivalence of finite dimensional distributions. This is a consequence of
and of the scaling property of the Wiener process W. Then, for all N > 1, we have the equality
in law

(YN 15 Yovg) =9 (YX1 - YNa)

where, for every j =1,...,d,

N—1
= S, (s a)
~ N

k=0
with H, the Hermite polynomial of degree ¢. On the other hand, for every j =1, ...,d, the sequence
(Y](,],N > 1) converges in L?(Q2), as N — o0, to ¢y, m, R}’ (see e.g. [7]). This 1mphes

In order to apply Proposition ' we just need to check . Obviouly, this holds for P 7é q, since

in this situation EXNYy ; = 0for all N > 1 and for all j = 1,...,d. We calculate EX Y ; for p = q.
We have, by the isometry formula ,

N-1
3
EXNYN,j = p']\fp1 Hj)=3 Z LkaLlH L2(R)

k,1=0
, V-l
= pD(Ho, HyP NY =078 37 pny o, (k= 1)
k,1=0 2

and for N large enough, by ,

] =

EXNYy,| < c(Ho, Hj,p)NP(I-Hi)=3 <1+ (Nk>k<H0+Hf‘2>P>

B
Il

1

IN

N
c(Ho,Hj,p)Np(lij)*g (1 + NZk(H0+Hj2)p> '
k=1
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Assume (Hy + H; — 2)p < —1. In this case, the series ), kHo+H;=2)p converges and we get

IEXNYn,| < e(Ho, Hy, p) NP H) =2 sy 0

since H; > 1 — 2p

Assume (Ho + Hj —2)p > —1. Then the sequence S p_; k(Ho+Hi=2)P hehaves as N(Ho+H;=2)p+1
for N large and thus

EXNYn;| < c(Ho, Hj,p)NPO—Hi) =3 (1 + N(H°+Hj_2)p+1>
= c(Ho, Hj,p) (NP3 N7POZHOTE) ),
sinceH0<1—2ipande>1—i.
If (Ho + Hj — 2)p = —1, then S0, k(Ho+H;=2) hehaves as log(N) and
IEXNYn| < c(Ho, Hy, p) NP 73 og(N) =00 0.
We obtained

Np(l_HJ')_% if (Ho + H; — 2)p < -1
[EXNYy,j| < c(Ho, Hj, p) NP(=H;)—3 log(N), if (Ho+ Hj; —2)p = —1
NPU-Hj) =5 4 N—p(=Ho)4s if (Hy + H; — 2)p > —1.

In particular EXNYN ; =N 00 0 and holds. The conclusion follows by Proposition

Remark 4. 1. A quantitative bound in Proposition can be obtained via (@ or (@)
2. Let the above notation prevail. It is also possible to apply Proposition[] to the estimation of the
Hurst parameter (Ho, Hy, ..., Hg) from the discrete observations <Bljj,i =0,1,....N,7=0,1, ..., d> .
Denote, for j =0,1,...,d, "

1 N—-1 u, u, 2
Then ~ log(Sw.)
HNJ :_m7 :0317"'7d

are consitent estimators for the Hurst index H; and (see e.g. Section 5.5 in [21])
2\/N(1{\IN,0 — Ho) =Xy + RN,(]

and for j =1,...,d, R
o N?2-2H; (HN,J' — Hj) = YNJ' + RNJ
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where Ry 5,7 = 01, ...,d converge almost surely to zero as N — co. From Proposz'tz'on we get
the joint convergence in law, as N — oo, of

(2VN (o — Ho), 2N* "2 (M — H))

to
(Z, CQVHJ.R?Hjil,j =1, ,d) ,

(O,op H,) and Z is independent of R%Hj_l,j =1,...d.

5.2 Infinite chaos expansion

Let (W (h),h € H) be an isonormal process and let (h;,7 > 1) be a family of elements of H such that
for every 7,7 > 1

(hishj) o = pu (i — j),
where pgr is the auto-correlation function of the fractional noise given by . Consider the sequence
(Vn,N > 1) given by

— (7). (57)
R

and let

1
Y=V = ey —In(h7™). (58)

n>0
Obviously (Viv, N > 1) has the same finite-dimensional distribution as (when H = Hp). Assume
1
0<H<1—— 59
<H<1-3. (59)
By Theorem if holds true, then (V, N > 1) converges in law, as N — oo, to Z ~ N(0, aiH).

Moreover, we have the following estimate for the Wasserstein distance (see [6]): if N is large,

n~z, if H € (0, 1]

dw (Viv, Z) < C{nfl=1 i H € [3, 3253) (60)
nPHPE3if [ e (228, 221,

We check the joint convergence in law of the couple (Xx,Y) when N — oo and we evaluate the
Wasserstein distance associated to it.

Proposition 5. Let V,Y be given by , @, respectively. Then
(Vw,Y) =D (Z,Y)
where Z ~ N (0, aiH) is independent of Y. Moreover, for N large

1

n 5, if H € (0, %]
dw (Py vy, Pz ® Py) <Cnf'=1 if H € [Qa %) (61)
nH=1 4 ppH-rts if [ € [%,%).
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Proof: In order to get the joint convergence of ((Viv,Y), N > 1), we need to check (23). We have

N N
B(WY) = Voo STBLY = Ve STEL() L1 (15
k=1 k=1
 VEL S by = Ve S gt -1y
6\/Nk:1 ksN1)p = ve Nk:1pH

By isolating the term with k = 1, we have

1 1
E(VyY) = \/gﬁ 1+ Z(k _peH-2p | < Cﬁ’
E>2

since the series Zk21 kZH=2)p i convergent due to . Then, by Theorem
d
(Vi Y) 2o (ZY), (62)

where Z ~ N (0, a; ;) and Z,Y are independent random variables.
Let us evaluate the rate of convergence under the Wasserstein distance for . We compute
the quantity E(D(—L)"'Vx, DY)%. We have

N
1 h
D(-L) YWy = — § 1(hgP Yy, DY =Yhy
VN k=1

and N
(D(—L) "W, DY)y Z L(REPNYY (i, ha)
Hence
1 N
B(D(-L)"'Vw, DY)y = 5 D Tyt (g ) Lo (7)Y (i ) (. )
k=1
1 N p—1
= D NG By o (B @, BEP) Y2 s b ()
k,l=17r=0

where we applied the product formula . Since
27’L
Y2 = €2W(h1) =€ Z ﬁjn(h?n)a
n>0

we have, for r =0,...,p — 1,

Bl oo (h7 ' @0 i) Y

22p—27"—2

- CmEIQp—Qr—Z (hfp—l Ry hl®p—1> Top_or_a(h$2~2r2)
= e22p—2r—2<(hgp—l®rhl®}7—1’ h?2p—2r—2>H®2p72T72

= 22722y b))y (g, B )R ()

26



Consequently,

—_

p—

E(D(-L)'Vy, DY)y = e> rl(C)_1)*2% > 2T(r,p,N)

r=0

with

T(r,p,N) =

==
hE

k=1

I
2| -
M) =

1

k,l

We now evaluate T'(r,p, N) for r =0,1,...,p — 1. We write

Mz
J:
Z|
WE
)
=
ol

|

T(r,p,N

Ed

—1 kl=1;k£l
= Ti(r,p, N) + Ta(r,p, N).

Let us first treat the term Ty (r,p, N) with r = 0,1,..,p — 1. One has

1 1
Ti(rp.N) = 5 (14D (k=)@ | <O {14 (h

k>2 k>2
1 1
< o= (1 P2 < o— (1+ N2H!
< Oyt <04 (1+ )
k>1
< C(N ' N2
For Ty(r,p, N), we can write
1 X
DrpN) = 20 > pulk =1 pulk =17 pu(l = 1)
kl=1;k>1

1 2H-2)r 2H-2)(p—r 2H-2)(p—r
< CN ZﬂH(k—l)p-F Z(k_l)( (k- 1)( )e=m) (] — 1) )(p—)

N
=2 k>1>2

By v ZQTZQ pr(k —1)P < oo and so

1 2H—2
T5(0,p,N) <Cy 1+ 3 (k1)

k>2

27

(Pgg, ha )y " (P, R " (hay )™

pr(k—1)"pu(k —1)""pu(l - 1)P~

1) (2H-2)(2p—2r)

|



and for r = 1,...,p — 1, since (k — 1)2H=2@—") < (k — [)GH=2)p-7)

To(r,p, N) < C% L+ D (k=)@ — =2
k>1>2
1 N
. _1\2H-2 2H-2)
< Oy H;(Z 1) ;/A P

VAN

1
C= (1+NH=1) <CO(N~! 4 N2,
(L4 N2 < OV N2
From the above computations, we deduce that for NV sufficiently large,
E(D(-L) 'Vy,DY)% < C(N~! 4 N2H=2), (64)

By combining and , we get .

5.3 Quantitative bounds in a central-noncentral limit theorem

Our approach allows to give qualitative bounds for the multidimensional sequences of multiple
stochastic integral when only one of these sequences converges to a normal distribution. Here we
illustrate the method by treating a two -dimensional sequence in Wiener chaos, one component
being asymptotically Gaussian and the second component satisfying a non-central limit theorem.
Such estimates are new in the literature and they cannot be obtained via the standard Stein method.
Let (B},t > 0) be a fractional Brownian motion with Hurst index H € (0,1). For N > 1, define

N-1

> H, (B, - Bfl), (65)
k=0

VN = ¢!

2l

where H, is the Hermite polynomial of degree q. Then, the Breuer-Major theorem (see [1] or Theorem

) states that, if H € (O, 1- 2%1) the sequence (Viy, N > 1) converges to a Gaussian random variable

Z ~ N(0, 027 1), where the variance 02, s explicily known.

On the other hand, the sequence (Uy, N > 1) given by

N-1
Uy =2N'"*" " H, (Bf}, — Bff), N>1, (66)
k=0

converges in distribution, for H € (%, 1), to co, g R where RZH-1 is a Rosenblatt random
variable with Hurst parameter 2H — 1 and again the constant co i > 0 is known.

Moreover, the random sequence (Viv,Uy) converges in law, as N — oo, to (Z,co g RZHA=1),
with Z independent of R#~1_ This can be obtained from the main findings in [§] or [9] but it also
follows from our Theorem [3] The purpose is to find the rate of convergence, under the Wasserstein
distance, for this two-dimensional limit theorem.

We have the following result.

28



Proposition 6. Let Viy,Un be given by @ , respectively. Then Assume
3 1
H - 1—-— > 3.
6<4, 2q>:>q_3 (67)
Then
(VN, UN> —>(d) (Z, CQ’HR(2H_1))

N—oo

where Z ~ N (0, aiH) and Z is independent from the Rosenblatt random variable R®H=1) . Moreover

3_
NH L NI for e (3,1 k)

N(H—l)Q-‘r% + N%_QH fOT (1 - ﬁ7 1-— %q)

dw ((VN, Un),(Z, CQ,HR(2H71))) < cqH (68)

Proof: By Theorem |3 we have

dw (P(VN,UN)a Pz® PCQ,HR@Hfl))

< C [(E (o2 — <DVN,D(_L)_1VN>)2>; +dw(Puy, Py, gen-n) + \/E (<DVN,DUN>)2] :

We know the rate of convergence to their limits for each of the sequences (Vy, N > 1) and
(Un, N >1). If one assumes (67)), then (see Theorem 4.1 in [6])

NH-Lif [T ¢ (3 —2‘1‘3}

SIS

2 -1 2 47 2q—2
- - <
=27 2q
Moreover, for any H satisfying (see [2] or [7], relation (7.4.13))
dw (Un, cog Ry < g N2—2H. (70)
In particular, if ¢ = 3, it follows from and that
dw (Viv, Z) + dw (U, e, s R270) < Oy (N572 4 N5
3
N22H it e (3,4
<o )N T e (s) ()
N 2 if H € [5’6)

Let us estimate the quantity \/ E ((DVy, DUx))?. Denote by H the canonical Hilbert space asso-
ciated to the fractional Brownian motion, defined as the closure of the set of step functions on the
positive real line with respect to the scalar product

1
(Ljo41, Ljo.5)% = EBI' B = §(t2H + M — |t — 5.
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We can write, if I is the multiple stochastic integral with respect to the isonormal process generated
by BH,

(1=
>
g

Vy = I,(fn) with fy = —=
k=1

and
N
Uy = I(gy) with gy = N'72H " p#2,
=1

where hy = 1y 1) for k =1,..., N. In particular |hgllz; = 1 and
(Mo, ha)y = pr(k 1) (72)

with pgy from . Thus

N
(DVi,DUy) = 2gN3 21 5™ I (071 () (e, )

k=1
N

= 2qNi Y [ BTV @ hy) + (g — 1)1,_o(h297) @, hl)] (hyo, i)
kl=1
N

= 2qNE ST 1,0 @ ) + (g = Do) i ) | Gl ),
k=1

where we applied the product formula . Consequently,

E(DVN,DUN>2

< N Z (AU &n; BTV (h, hy) (i ) + (hay hie) T2 By ) (g, )2
,7,k,l=1

N N
< NS (b b R gy (g, Ba) (g By + Y (hay a2 (g, gy g, Ba) (i ) (B B
i,7,k,l=1 i,4,k,l=1

N
S (s b)) (g )| =2 ann + azx + ag -
i5.k,l=1

We used Lemma 4.5 in [2I] in order to expres the scalar product (h;@(q_l)@)hj, h?(q_l)(}éhl). Using
the inequality

(hiy hg) (g, B (i, B (g hag) < = (Chas g Chiey ha)? A+ (R, ha) (g, 1) ?)

N | —
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we get ag v < a3 n so we have to estimate a1y and az y. Now, by (72),

N
asn = NN pa(i— k) pu (i — §) pr(k —1)?

Z’7j7k7l:1
N N 2
< v S - (3 o)
i,k=1 a=—N
By using the bound Zé\]:_N pr(a)? < cgN*1=3 we obtain
N
asn < cquNMTP Z pr(i — k)12 < cq g N4 Z E(2H—2)(¢—2)
i,k=1 k>1
: 1
1, if H<1- STOE)]
< cquNMT4 Clog(N) if H =1 50b
NEH2@24 i e (1 5l 1 - 4.
For ¢ = 3, we have for H € (%, %),
agn < cyNOH5 (73)
Let us deal with
N
arn = cquN"Y " pp(i— k) pu (i — §)pu(k = Dpu (G —1).
i7j7k7l:]-

This summand is the most complicated. Similar quantities (but not exactly the same!) have been
treated in e.g. [6], proof of Theorem 4.1. We decompose the sum over (4,7, k,1) € {1,..., N}* upon
the following cases:

L (i=j=k=1),

2. (i=j=hkl#i(i=j=Lk#D) (i=k=1j#0).=k=Li#j),
3. ((i=jk=lk#0),(i=kj=1j#i)(i=1j=kj#i)

4.

(=g k#ik# LA, =k j#ij#Lk#D), (= Lk#ik#jj#i),
(G=khk#ik#L1#0),G=Lk#ik#Lj#d), (k=Lk#ik#j]#0).

5. 1,7,k,l are all different.

We denote by agj])\,,j =1,2,3,4,5 the sum of all the terms from the groups 1.-5. defined above. The
first of these terms can be easily estimated since

)

N
Ak = cquN TS pp(0)742 = gy N2, (74)
=1
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For, the first sum from point 2.

N N
cq,HN1_4H Z pr(i — )% < cq,HN2_4H Zi4H—4 < Cq’HN2—4HN4H—3 _ cq,HN_l
il=1 i=1

while the second from point 2.

N
Cq,HN174H Z pr(i— k)7 < Cq,HN274H Z pu (k)7 < Cq,HN274H-
ik=1 keZ
So, by symmetry,
asn < cqu(N7H+ N2 < ¢ gL (75)

The sums from group 3. are similar to the those from group 2. and we get
o™\ < cquNL. (76)
Let us with the summands corresponding to point 4. The first one in this set reads

CquN'"MN o (i — k) o (k= Dpu (i — 1)

i1#£k#£l#1
N N
< QNS ppl(a— BT oul @lpul() < N> S loul(a - b pil(a)?
a,b=—N a,b=—N
N 2N
ch,HN274H Z ’a‘4H74 Z ’b’(2H72)(q71).
a=—N b=—2N

It follows that this term is less than

NTVifH <1— 52

(¢—1)
cqu{ N 'ogNif H=1- 72@1_1)
NEH2a D24 e (1- 5Ly 1 - L),

Regarding the second summant in 4., we can bound as follows

cquN" N pu(i = §)pu (i — Dpu (i — 1)

iFjEIFE
< o N1-4H p3 6H—6 1 i =\ =N =
= ‘ol v 2 (w N N
Eabalta
N2H-2 1 i =\ =N =2 <o N2H-2
= CqH N3 Z . N N N > Cq,H )
iR
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) o g \2H 2 (o \2H 2 g\ 2H 2 )
since the quantity Zﬁé#l;éz‘ ( N > (T) (T) is a Riemann sum that converges

to [y [ — yl2H 2y — 222
and we get

— 2[?H=2dzdydz < co. We have similar bounds for the other terms

af'} < cquN2, (77)

)

Notice that the estimation of the dominant term, the second in this group is sharp.
For the only summand in group 5., we separate its analysis uopon all the possible orders:

1>3>k>Li>i>1>k, ... The first summand is treated as follows
NN o= R pui = Don(k —Dpr (i~ 1)
1>5>k>1
< CqH]V1 —4H Z k‘QH 2)(g— 1)’ j|2H_2|k—l‘2H_2‘j—l‘2H_2
i>5>k>1
< Ca.H Nl 4H Z k“ (2H-2)(q— 1)‘2 ‘2H72‘k_l|4H74
i>5>k>1
< Cq,HNl —4H Z |Z kf| (2H-2)(g—1) ]|2H 2 Z |l|4H 4
1>j5>k
< Cq,HN_2 Z |Z o k7|(2H_2)(q_1)|i . j|2H—2
i>j>k
N
< couN~ 22‘2 | 2H=2)(a=1) Z P2 < Cq,HNQH—SZ‘i_k|(2H—2)(q—1)
>k j=—N i>k
N
< couN*? Z jo(2H=2)(a—1)
k=1

With analogous estimates for the other cases of point 5., we obtain

N2 H <1 — gty
) <eqm { N 2log N if =1— rql 5 (78)
NEH2e i e (1- by - 1),

So, by (), (@), (7G). (77 and

N2 H e (3,1 - 5 1))

a1,N < CgH
, , (2H—2)g+1 1
N it H e (1- 5k - %)

Thus
N2H-2 if | ¢ (%, 1 ﬁ)

NCH=2at1 4f [ ¢ (1 S =il 2%1) :

E(DVy,DUN)? < ¢y (79)
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the bound on the first branch being immaterial for ¢ = 3,4. If ¢ = 3, then
E(DVy, DUy)? < cgNSH=5, (80)

We then obtain .

Remark 5. 1. For g = 3, we have from , and ,

N2 r H e (
N33 ifH € |

)

; | (81)

dw ((Viv, Un). (Z.con RT7D)) < Cy {

[SFNIINTI
DU U

)

N[

2. It follows from the above calculation that the quantity (E(DVN,DUN>2) , which somehow
measures the correlation between Vi and Uy has the same size, for N large, as dw (Vn,Z)

(compare [69) and (79)).

3. A quantitative bound for the above limit theorem can be also obtained by using the estimate
@ in Remark @ Notice that @gives

E(DVy,DUn)? < CHE (|| fn @1 fn || + || fn @2 fl]) -

By using the calculations in the proof of Theorem 4.1 in [6] and since EGy < Cg (with Cg > 0
not depending on N ), we get

E(DV, DUN)? < Cyy (N7% + N1 4 N12a0-10)
which is in general less good than . For instance, if ¢ = 3, we have
E(DVy, DUN)? < Cpy (N5 + N1 4 N31=2)

and leads, for H € (%,%), to

3H _
2 17

dw ((Vw,U), (Z,c2a ROT)) < CuN
which clearly is less optimal than .

5.4 The evolution of the solution to a semilinear stochastic equation

The theory developed in Section [2] can also be applied to quantify the evolution of a stochastic
system defined by a stochastic differential equation. We present here a very simple example (a more
complex situation, in the KPZ context, has been treated in [14]). Let A € R and consider the
stochastic equation

t
XM= Xo 4 /\/ H(XNds + W, t>0 (82)
0
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where (W, t > 0) is a Wiener process. We assume that the drift b : R — R is differentiable and
satisfies |b/(z)] < M for every z € R. Then admits a unique solution which is Malliavin
differentiable and (see e.g. Exercice 2.2.1 in [10]) for a < t,

DX = ela¥(X2)ds,

The solution to is a Gaussian process for A = 0 and for A # 0, its law is non-Gaussian if b is
nonlinear. Theorem [I] allows to quantify the dependence structure between the components of the
vector (X}, X?) at each time ¢ > 0. Indeed, by Theorem

t
dw (P(X},XSPPX?@PX?) §C/O DaXt)‘da

t t
< C/ efatb/(XsA)dsda < C/ eAM(t—A) _ i(eM/\t _ 1) — g()\).

The function ¢ provides a quantitative estimate for the dependence between X* and X° for any \,
at any time. This function converges to a constant when A — 0 and to infinity as A — co. When A
tends to —oo, g(A) converges to zero, i.e. the drift forces the solution to to be independent of
the noise at each time.

6 Appendix

In this appendix, we presents the main tools of the Malliavin calculus and the definition of Wasserstein
distance.

6.1 Wiener-Chaos and Malliavin derivatives

Here we describe the elements from stochastic analysis that we will need in the paper. Consider H
a real separable Hilbert space and (W (h),h € H) an isonormal Gaussian process on a probability
space (€2, A, P), which is a centered Gaussian family of random variables such that E [W (@)W (¢)] =
(p,9¥) . Denote by I,, the multiple stochastic integral with respect to B (see [10]). This mapping
I, is actually an isometry between the Hilbert space H®"(symmetric tensor product) equipped with
the scaled norm ﬁ” - || gen and the Wiener chaos of order n which is defined as the closed linear

span of the random variables H,, (W (h)) where h € H, ||h||zz = 1 and H,, is the Hermite polynomial

of degree n € N
- (_1)n 1.2 dm $2

The isometry of multiple integrals can be written as follows: for m,n positive integers,

E(I(f)In(9) = n{f,3)pen ifm=n,
E(In(f)Im(9)) = 0 ifm#n. (83)

It also holds that



where f denotes the symmetrization of f defined by the formula

1
f($17-- . 7xn) = ﬁ Z f(xa(l)a-'wxa(n))'

’ oS,

We recall that any square integrable random variable which is measurable with respect to the o-
algebra generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F=> Ifn) (84)
n=0

where f,, € H®™ are (uniquely determined) symmetric functions and Iy(fo) = E [F].

Let L be the Ornstein-Uhlenbeck operator
LF == nlu(fn)
n>0

if F' is given by and it is such that Y>7 | n®n!|| f,||3,e. < co.

n=1

For p > 1 and a € R we introduce the Sobolev-Watanabe space D*P as the closure of the set
of polynomial random variables with respect to the norm

1Ellap = (1 = L)% Fll oo

where I represents the identity. We denote by D the Malliavin derivative operator that acts on
smooth functions of the form F = g(W(h1),...,W(h,)) (g is a smooth function with compact
support and h; € H)

DF = Zl ggi (W(h1),..., W(hn))h.

The operator D is continuous from D®? into D1 (H) . The adjoint of D is the divergence integral,
denoted by 6. It acts from D*~ 4P (H) onto D*P.

We will intensively use the product formula for multiple integrals. It is well-known that for
f€H® and g € HO™

aumaw:%fﬂ(")(m)Lwn%q&@> (85)

T r
r=0

where f ®, g means the r-contraction of f and g (see e.g. Section 1.1.2 in [I0]). This contraction is
defined, when H = L?(T,B,v) (where v is a sigma-finite measure without atoms)

(f Ry g)(tl, R tn+m—2r> = f(ul, ey Uy b1y eeny tn_r)g(ul, ey Upy Ty 1,y ey tn_i_m_gr)dul....du,«,
TT

(86)
forr =1,...,nAmand f ® g = f ® g, the tensor product. It holds that f ®, g € H®"Tm=2r =
L2(T"t™=21) In general, the contraction f ®, g is not symmetric and we denote by f®,g its
symmetrization.
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