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Abstract

If Y is a random vector in Rd. we denote by PY its probability distribution. Consider a random
variable X and a d-dimensional random vector Y. Inspired by [14], we develop a multidimensional
Stein-Malliavin calculus which allows to measure the Wasserstein distance between the law P(X,Y)
and the probability distribution PZ⊗PY, where Z is a Gaussian random variable. That is, we give
estimates, in terms of the Malliavin operators, for the distance between the law of the random
vector (X,Y) and the law of the vector (Z,Y), where Z is Gaussian and independent of Y. Then
we focus on the particular case of random vectors in Wiener chaos and we give an asymptotic
version of this result. In this situation, this variant of the Stein-Malliavin calculus has strong and
unexpected consequences. Let (Xk, k ≥ 1) be a sequence of random variables in the pth Wiener
chaos (p ≥ 2), which converges in law, as k → ∞, to the Gaussian distribution N(0, σ2). Also
consider (Yk, k ≥ 1) a d-dimensional random sequence converging in distribution, as k → ∞,
to an arbitrary random vector U in Rd and assume that the two sequences are asymptotically
uncorrelated. We prove that, under very light assumptions on Yk, we have the joint convergence
of ((Xk,Yk), k ≥ 1) to (Z,U) where Z ∼ N(0, σ2) is independent of U. These assumptions are
automatically satisfied when the components of the vector Yk belong to a finite sum of Wiener
chaoses or when Yk = Y for every k ≥ 1, where Y belongs to the Sobolev-Malliavin space D1,2.

2010 AMS Classification Numbers: 60F05,60G15,60H05,60H07.

Key words: Stein’s method, Malliavin calculus, multiple stochastic integrals, asymptotic inde-
pendence.

1 Introduction

The Stein’s method constitutes a collection of mathematical techniques that allow to give quantitative
bounds for the distance between the probability distributions of random variables. It has been
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initially introduced in the paper [17] and then developed by many authors. We refer, among many
others to the monographs and surveys [3], [15], [16], [18] for a detailed description of this method.
Of particular interest is the situation when one random variable is Gaussian, but the cases of other
target distributions have been analyzed in the literature.

A more recent theory is the so-called Stein-Malliavin calculus which combines the Stein’s method
with the techniques of the Malliavin calculus. The first work in this direction is [6] (see [7] for a
more detailed exposition) and since, numerous authors extended, refined or applied this theory. In
this theory, the bounds obtained for the distance between the law of an arbitrary random variable
and the target distribution are given in terms of the Malliavin operators.

The starting point of the Stein’s method for normal approximation is the following observation:
Z ∼ N(0, σ2) with σ > 0 if and only if

σ2Ef ′(Z)−EZf(Z) = 0

for every absolutely continuous function f : R → R such that E|f ′(Z)| < ∞. Then, one can think
that if a random variable X has the property that σ2Ef ′(X)− EXf(X) is close to zero for a large
class of functions f , then the probability distribution of X should be close to N(0, σ2). From this
observation, the whole Stein’s theory has been constructed, leading to various bounds for the distance
between the probability law of the random variable X and the normal distribution N(0, σ2).

In this work, we deal with a variant of this method recently developed in the reference [14]
that allows to measure the distance between the components of a random vector (X1, X2), where
X1 ∼ N(0, σ2) and X2 has an arbitrary distribution. The nice observation made in [14] is that
X1 ∼ N(0, σ2) and X1 is independent of X2 if and only if

σ2E∂x1f(X1, X2)−EX1f(X1, X2) = 0

for a large class of differentiable functions f : R2 → R. We denoted by ∂x1f the partial derivative
of f with respect to its first variable. As in the standard Stein’s method, one follows the intuition
that if some random vector (X1, X2) satisfies that σ2E∂x1f(X1, X2)−EX1f(X1, X2) is close to zero,
then X1 should be close in law to Z ∼ N(0, σ2) and P(X1,X2) should be close to PZ ⊗ PX2 . By
combining this idea with Malliavin calculus, in [14] one gives bounds for the Wasserstein distance
between P(X1,X2) and PX1 ⊗ PX2 in terms of the Malliavin operators.

Our purpose is, in a first step, to generalize the above idea by considering random vectors of
arbitrary dimension. This extension of the Stein’s method combined with Malliavin calculus allows
to obtain the following estimate: if X ∈ D1,2 and Y = (Y1, ..., Yd) is such that Yj ∈ D1,2 for all
j = 1, ..., d, then (we denote by dW the Wasserstein distance and Z ∼ N(0, σ2))

dW
(
P(X,Y), PZ ⊗ PY

)
≤ C

E
∣∣σ2 − 〈D(−L)−1X,DX〉H

∣∣+ E
d∑
j=1

∣∣〈D(−L)−1X,DYj〉H
∣∣ , (1)

with C > 0. We denoted by D,L the Malliavin derivative and the Ornstein-Uhlenbeck operator with
respect to an isonormal process (W (h), h ∈ H), where (H, 〈·, ·〉H) is a real and separable Hilbert
space.

Then, we focus on the particular case of sequences of random variables belonging to a Wiener
chaos and we give asymptotic-type results. We will here show that the convergence of a sequence
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of multiple stochastic integrals to the Gaussian law has other strong and unexpected consequences.
Let H be an Hilbert space and let Ip denote the multiple integral of order p ≥ 1 with respect to an
isonormal process (W (h), h ∈ H). Assume that p ≥ 2 is an integer number and for every k ≥ 1,
Xk = Ip(fk) where fk ∈ H⊗p are symmetric functions. Suppose that

Xk →
(d)
k→∞ Z ∼ N(0, σ2),

where σ > 0 and ”→(d) ” stands for the convergence in distribution. Then the following facts hold
true:

• If Y = (Y1, ..., Yd) is a d-dimensional random vector with components in the Malliavin-Sobolev
space D1,2 and Xk,Y are asymptotically uncorrelated (i.e. EXkYj →k→∞ 0 for every j =
1, ..., d), then

(Xk,Y)→(d)
k→∞ (Z ′,Y),

with Z ′ ∼ N(0, σ2) independent of Y.

• Let (Yk = (Y1,k, ..., Yd,k), k ≥ 1) be a sequence of random vectors such that each component
belongs to a finite sum of Wiener chaoses and Yk →(d) U (U is an arbitrary random vector).
Then, if Xk,Yk are asymptotically uncorrelated (i.e. for every j = 1, ..., d, EXkYj,k →k→∞ 0),
then

(Xk,Yk)→
(d)
k→∞ (Z ′,U),

where Z ′ ∼ N(0, σ2) and Z ′,U are independent.

• Let (Yk = (Y1,k, ..., Yd,k), k ≥ 1) be a sequence of random vectors such that each component
belongs to D1,2 and satisfies an additional (pretty natural) condition (assumption (19) in The-
orem 3). Suppose that Yk →(d) U, with U is an arbitrary d-dimensional random vector, and
Xk,Yk are asymptotically uncorrelated. Then

(Xk,Yk)→
(d)
k→∞ (Z ′,U),

where Z ′ ∼ N(0, σ2) and Z ′,U are independent.

These findings may have direct consequences to statistics and limit theorems since many estimators
can be expressed as multiple stochastic integrals (see e.g. [21]). The main idea of the proof consists in
combining the Fourth Moment Theorem with the Stein-Malliavin bound (1). Let us emphasize that
the assumption p ≥ 2 is crucial. When p = 1, we cannot expect to have results as those listed above.
Indeed, take X = I1(h) with h ∈ H, ‖h‖ = 1, so X ∼ N(0, 1). Then Y = I1(h)2 − 1 = I2(h⊗2) is an
element of the second Wiener chaos, but X and Y are not independent (see e.g. the independence
criterion in [22]).

We organized the paper as follows. In Section 2, we develop in a multidimensional context the
variant of the Stein-Malliavin calculus introduced in [14]. Section 3 contains the statement of our
main result concerning the asymptotic independence on Wiener chaos and a short discussion around
it and its consequences. Section 4 contains the proof of the main result, which is detailed into several
steps. In Section 5 we included several applications of our theory, while Section 6 is the the appendix
where we present the basic tools needed throughout our work.
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2 Multidimensional Stein method

In this paragraph, we generalize the variant of the Stein’s method introduced in Section 5 of [14] to
any dimension d ≥ 1. Then, we combine it with the techniques of the Malliavin calculus in order to
obtain the estimate (1).

2.1 The method

The basis of the Stein’s method consists in the definition of the Stein’s operator and of the Stein’s
equation. For the normal approximation, the standard operator is

Lf(x) = σ2f ′(x)− xf(x), x ∈ R,

which acts on suitable differentiable functions f : R → R. This operator satisfies ELf(Z) = 0 for
every f : R → R differentiable with E|f ′(Z)| < ∞ if and only if Z ∼ N(0, σ2). The corresponding
Stein’s equation is

Lf(x) = Eh(x)−Eh(Z), x ∈ R,

where h : R → R is a given function such that E|h(Z)| < ∞. The idea of the Stein’s method is
to find a solution fh to the Stein’s equation with nice properties and to use it in order to obtain
estimates for Eh(X)−Eh(Z) for an arbitrary random variable X.

We follow the same line in a multidimensional context. Now, the purpose is not the normal
approximation but to quantify the distance between the probability distribution of a random vector
(X,Y) and the random vector (Z,Y) where Z is a centered Gaussian random variable with variance
σ2 and it is independent of Y.

Let us consider the operator N given by

N f(x,y) = σ2∂xf(x,y)− xf(x,y), x ∈ R,y ∈ Rd, (2)

where ∂x1f denotes the partial derivative of f with respect to its first variable. The operator N acts
on the set of differentiable functions f : Rd+1 → R.

Recall that if Y is a random vector, we denote by PY its probability distribution. The following
two lemmas show that the operator (2) characterizes the law of X and the independence of X and
Y. The material from this section is inspired from Section 5 in [14].

Lemma 1. Assume X ∼ N(0, σ2) and X is independent of the random vector Y. Then EN f(X,Y) =
0 for all f : Rd+1 → R differentiable with E|∂xf(X,Y)| <∞.

Proof: By the standard Stein method, for all y ∈ Rd,

σ2E∂xf(X,y) = EXf(X,y)

or

σ2

∫
R
∂xf(x,y)dPX(x) =

∫
R
xf(x,y)dPX(x).
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Let us integrate with respect to the probability measure PY. We have (the use of Fubini’s theorem
is based on Lemma 2.1 in [16])

σ2

∫
Rd

(∫
R
∂xf(x,y)dPX(x)

)
dPY(y)

= σ2

∫
Rd+1

∂xf(x,y)dPX(x)⊗ dPY(y)

= σ2

∫
Rd+1

∂xf(x,y)dP(X,Y)(x,y) = σ2E∂xf(X,Y),

where we used the independence of X and Y for the first equality on the above line. Similarly,∫
Rd

(∫
R
xf(x,y)dPX(x)

)
dPY(y)

=

∫
Rd+1

xf(x,y)dPX(x)⊗ PY(y) =

∫
Rd+1

xf(x,y)dP(X,Y)(x,y)

= EXf(X,Y).

We also have a lemma in the converse direction. By ‖ · ‖∞ we denote the infinity norm on Rd+1.

Lemma 2. Consider a random vector (X,Y) with E|X| <∞. Assume that

EN f(X,Y) = 0 (3)

for all differentiable functions f : Rd+1 → R with ‖∂xf‖∞ < ∞. Then X ∼ N(0, σ2) and X is
independent of Y.

Proof: Let ϕ be the characteristic function of the vector (X,Y), i.e.

ϕ(λ1,λ) = E
(
ei(λ1X+λY)

)
,

for λ1 ∈ R and λ ∈ Rd. By applying (3) for the real and imaginary parts of ϕ, we get

∂λ1ϕ(λ1,λ) = iE
(
Xei(λ1X+λY)

)
= iσ2E

(
∂xe

i(λ1X+λY)
)

= −λ1σ
2ϕ(λ1,λ).

By noticing that for every λ ∈ Rd, ϕ(0,λ) = ϕY(λ) (the characteristic function of the vector Y), we
obtain

ϕ(λ1,λ) = ϕY(λ)e−
σ2λ21

2 ,

and this implies X ∼ N(0, σ2) and X independent of Y.
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Let us now introduce the multidimensional Stein’s equation

N f(x,y) = h(x,y)−Eh(Z,y), x ∈ R,y ∈ Rd (4)

where Z ∼ N(0, σ2). In (4), h : Rd+1 → R is given and we assume that h is continuously differentiable
with bounded partial derivatives. Let us show that (4) admits a solution with suitable properties.

Proposition 1. Let h : Rd+1 → R be continuously differentiable with bounded partial derivatives.
Then (4) admits a unique bounded solution which is given by

fh(x,y) = − 1

σ2

∫ 1

0

1

2
√
t(1− t)

E
[
Zh
(√

tx+
√

1− tZ,y
)]
dt. (5)

Moreover, we have the following bounds:

1.
‖fh‖∞ ≤ ‖∂x1h‖∞. (6)

2.

‖∂xfh‖∞ ≤
1

σ

√
2

π
‖∂xh‖∞. (7)

3. For j = 1, ..., d, if y = (y1, ..., yd),

‖∂yjfh‖∞ ≤
1

σ

√
π

2
‖∂xjh‖∞, (8)

Proof: By using the dominated convergence theorem, we get, by taking the derivative with respect
to x in (5),

∂xfh(x,y) = − 1

σ2

∫ 1

0

1

2
√

1− t
E
[
Z∂xh

(√
tx+

√
1− tZ,y

)]
. (9)

Now, we apply the standard Stein identity to the function g(z) = h
(√
tx+

√
1− tz,y

)
and we obtain

E
[
Z∂xh

(√
t+
√

1− tZ,y
)]

= Eg′(Z) = σ2
√

1− tE
[
∂xh

(√
tx+

√
1− tZ,y

)]
. (10)

By plugging (10) into (5), the function fh can be written as

fh(x,y) = −
∫ 1

0

1

2
√
t
E
[
∂xh

(√
tx+

√
1− tZ,y

)]
dt. (11)
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By (9) and (11), we can write

∂xfh(x,y)− xfh(x,y)

=

∫ 1

0
E

[(
− Z

2
√

1− t
+

x

2
√
t

)
∂xh

(√
tx+

√
1− tZ,y

)]
= E

∫ 1

0

d

dt
h
(√

tx+
√

1− tZ,y
)
dt = h(x,y)−Eh(Z,y).

Consequently, fh given by (5) is a solution to (4). To prove (6), we use (11) to get

‖fh‖∞ ≤
∫ 1

0

1

2
√
t
‖∂x1h‖∞ ≤ ‖∂xh‖∞

The bound (7) follows from (9) since

‖∂xfh‖∞ ≤
E|Z|
σ2
‖∂xh‖∞ ≤ σ−1

√
2

π
‖∂xh‖∞.

To prove (8), we differentiate with respect to yj , j = 1, ..., d in (5),

∂yjfh(x,y) = − 1

σ2

∫ 1

0

1

2
√
t(1− t)

E
[
Z∂yjh

(√
tx+

√
1− tZ,y

)]
dt

and

‖∂yjfh‖∞ ≤
E|Z|
σ2
‖∂yjh‖∞

∫ 1

0

1

2
√
t(1− t)

dt =
1

σ

√
π

2
‖∂yjh‖∞.

To finish the proof, we notice that for any other solution gh to (4), one has

∂x

(
e−

x2

2σ2 (fh(x,y)− gh(x,y))

)
= 0

so gh(x,y) = fh(x,y) + e
x2

2σ2 c(y) so gh is bounded if and only if c(y) = 0.

By Proposition 1, if fh is the solution (5) to the Stein’s equation (4), we have

σ2∂xfh(x,y)− xfh(x,y) = h(x,y)−Eh(Z,y)

for any h differentiable with bounded partial derivatives. LetX,Y be random vectors with E|X| <∞.
Let us integrate with respect to θ := P(X,Y) in the above identity. We have∫

Rd+1

h(x,y)dθ(x,y) = Eh(X,Y)
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and ∫
Rd+1

Eh(Z,y)dθ(x,y)

=

∫
Rd+1

(∫
R
h(z,y)dPZ(z)

)
dθ(x,y)

=

∫
Rd

(∫
R
h(z,y)dPZ(z)

)
dPY(y)

=

∫
Rd+1

h(x,y)dPZ ⊗ PY(y) =

∫
Rd+1

h(x,y)dη(x,y),

with
η = PZ ⊗ PY.

Therefore

σ2E∂xfh(X,Y)−EXfh(X,Y) = Eh(X,Y)−Eh(Z ′,Y)

=

∫
Rd+1

h(x,y)dθ(x,y)−
∫
Rd+1

h(x,y)dη(x,y) (12)

where Z ′ has the same law as Z ∼ N(0, σ2) and Z ′ is independent of Y.

2.2 Stein method and Malliavin calculus

Let
A = {h : Rn → R, h is Lipschitz continuous with ‖h‖Lip ≤ 1}

and let F,G be two n-dimensional random vectors such that h(F ), h(G) ∈ L1(Ω) for every h ∈ A.
Then the Wasserstein distance between the probability distributions of F and G is defined by

dW (PF , PG) = sup
h∈A
|Eh(F )−Eh(G)| . (13)

We denoted by ‖h‖Lip the Lipschitz norm of h given by

‖h‖Lip = sup
x,y∈Rn,x 6=y

|h(x)− h(y)|
‖x− y‖Rn

,

with ‖ · ‖Rn the Euclidean norm in Rn. The operators D,L, δ below are defined with respect to an
isonormal process (W (h), h ∈ H), see the Appendix. By 〈·, ·〉 we denote the scalar product in the
Hilbert space H.

We use the ideas of the Stein method for normal approximation (see [7]) to prove the following
result.

Theorem 1. Let X be a centered random variable in D1,2 and let Y = (Y1, ..., Yd) be such that
Yj ∈ D1,2 for all j = 1, ..., d. Let θ = P(X,Y) and η = PZ ⊗ PY, where Z ∼ N(0, σ2). Then

dW (θ, η) ≤ C

E
∣∣σ2 − 〈D(−L)−1X,DX〉

∣∣+

d∑
j=1

E
∣∣〈D(−L)−1X,DYj〉

∣∣ . (14)
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Proof: Let h : Rd+1 → R be continuously differentiable wth bounded derivatives and let fh be
the corresponding solution to the Stein’s equation (4). By using the well-known formula X =
δD(−L)−1X in (12), we obtain, by integrating by parts∫

Rd+1

h(x,y)dθ(x,y)−
∫
Rd+1

h(x,y)dη(x,y)

= σ2E∂xfh(X,Y)−EδD(−L)−1Xfh(X,Y)

= σ2E∂xfh(X,Y)−E〈D(−L)−1X,Dfh(X,Y)〉
= E∂xfh(X,Y)

(
σ2 − 〈D(−L)−1X,DX〉

)
−E

d∑
j=1

∂xjfh(X,Y)〈D(−L)−1X,DYj〉.

Hence, by using inequalities (7) and (8) in Proposition 1,∣∣∣∣∫
Rd+1

h(x,y)dθ(x,y)−
∫
Rd+1

h(x,y)dη(x,y)

∣∣∣∣
≤ C

E
∣∣σ2 − 〈D(−L)−1X,DX〉

∣∣+
d∑
j=1

E
∣∣〈D(−L)−1X,DYj〉

∣∣ . (15)

To finish the proof, we borrow again an argument from [14] (proof of Lemma 9 in this reference) to
approximate a Lipschitz function by continuously differentiable functions with bounded derivatives.
Indeed, if h ∈ A and ε > 0, then consider

hε(x, y1..., yd) = Eh
(
x+
√
εN, y1 +

√
εN1, ..., yd +

√
εNd

)
,

where N,N1, ..., Nd are independent standard normal random variables. Then hε is differentiable
and it safisfies

‖hε − h‖∞ →ε→0 0, ‖∂xhε‖∞ ≤ ‖hε‖Lip ≤ ‖h‖Lip ≤ 1

and
max
j=1,...,d

‖∂yjhε‖∞ ≤ ‖hε‖Lip ≤ ‖h‖Lip ≤ 1.

Therefore, by (15),∣∣∣∣∫
Rd+1

h(x,y)dθ(x,y)−
∫
Rd+1

h(x,y)dη(x,y)

∣∣∣∣
≤ 2‖hε − h‖∞ +

∣∣∣∣∫
Rd+1

hε(x,y)dθ(x,y)−
∫
Rd+1

hε(x,y)dη(x,y)

∣∣∣∣
≤ 2‖hε − h‖∞ + C

E
∣∣σ2 − 〈D(−L)−1X,DX〉

∣∣+
d∑
j=1

E
∣∣〈D(−L)−1X,DYj〉

∣∣
and we conclude by letting ε→ 0.
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The corollary below is used to deal with random vectors with components in Wiener chaos.

Corollary 1. With the notation from Theorem 1, if X,Y1..., Yd ∈ D1,4, then

dW (θ, η) ≤ C

(E
∣∣σ2 − 〈D(−L)−1X,DX〉

∣∣2) 1
2

+
d∑
j=1

(
E
∣∣〈D(−L)−1X,DYj〉

∣∣2) 1
2

 . (16)

Proof: The proof follows from Theorem 1, by using Cauchy-Schwarz’s inequality in the right-hand
side of (14) and by noticing that 〈D(−L)−1X,DYj〉 belongs to L2(Ω) when X,Yj ∈ D1,4, for j =
1, 2, ..., d.

Remark 1. As a particular case of relation (14) in Theorem 1, it follows that if X1 ∼ N(0, σ2)
and 〈DX1, DX2〉 = 0 almost surely, then X1 is independent of X2. In particular, this means that, if
X1 = I1(h) and X2 =

∑
n≥0 In(gn) (with h ∈ H, gn ∈ H�n for every n ≥ 1), then h⊗1 gn = 0 almost

everywhere on H⊗n−1 implies the independence of X1 and X2. This is related to the independence
criterion for multiple stochastic integrals in [22], which states that two random variables Ip(f) and
Iq(q) (with f ∈ H�p, g ∈ H�q) are independent if and only if f ⊗1 g vanishes almost everywhere on
H⊗p+q−2.

3 Asymptotic independence on Wiener chaos

The variant of the Stein’s method presented in Section 2 lead to some strong consequences when it is
applied to sequences of multiple stochastic integrals. Here we describe and discuss our main findings
in the case of the Wiener chaos. The proofs will be detailed in the next section.

3.1 Preliminary tools

Let us start with some auxiliary results that will be used several times in the sequel. Recall that
H is a real and separable Hilbert space and W = (W (h), h ∈ H) is an isonormal process on the
probability space (Ω,G, P ), where G is the sigma-algebra generated by W . The operators D,L and
the multiple stochastic integral Ip, p ≥ 1 are all with respect to W .

This our first auxiliary result. The contraction of two kernels has been defined in the appendix
(see (86)).

Lemma 3. Let f1, f3 ∈ H�p and f2, f4 ∈ H�q with p, q ≥ 1. Then, for every r = 0, ..., p ∧ q,

〈f1 ⊗r f2, f3 ⊗r f4〉H⊗p+q−2r = 〈f1 ⊗p−r f3, f2 ⊗q−r f4〉H⊗2r .

Proof: This is e.g. Lemma 4.4 in [20].

The following well-known result allows to express the L2-norm of 〈D(−L)−1X,DY 〉 when X
and Y are multiple stochastic integrals.
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Lemma 4. Let X = Ip(f) and Y = Iq(g) with p, q ≥ 1 and f ∈ H�p, g ∈ H�q. Then

E〈D(−L)−1X,DY 〉2H = (E(XY ))21p=q +

p∧q∑
r=1

c(r, p.q)‖f⊗̃rg‖2H⊗p+q−2r ,

where c(r, p, q) are strictly positive combinatorial contants for r = 1, ..., (p ∧ q)− 1 and

c(p ∧ q, p, q) =

{
0, if p = q

> 0, if p 6= q.

Proof: See e.g. [7], Lemma 6.2.1.

We will also need the celebrated Fourth Moment Theorem proven in [12]. See also [11] for point
4. below.

Theorem 2. ([12] and [7]) Fix an integer n ≥ 1. Consider a sequence (Fk = In(fk), k ≥ 1) of
square integrable random variables in the nth Wiener chaos. Assume that

lim
k→∞

E[F 2
k ] = lim

k→∞
n!‖fk‖2H�n = 1. (17)

Then, the following statements are equivalent.

1. The sequence of random variables (Fk = In(fk), k ≥ 1) converges to the standard normal law
in distribution as k →∞.

2. limk→∞E[F 4
k ] = 3.

3. limk→∞ ‖fk ⊗l fk‖H⊗2(n−l) = 0 for l = 1, 2, . . . , n− 1.

4. ‖DFk‖2H converges to n in L2(Ω) as k →∞.

3.2 Main result

In this paragraph, we state our main findings and we discuss some consequences. The main result
of this work states as follows. The notation dW below stands for the Wasserstein distance, see (13).

Theorem 3. Let us consider the integer numbers p ≥ 2, d ≥ 1. Let (Xk, k ≥ 1) be a sequence of
random variables such that for every k ≥ 1, Xk = Ip(fk) with fk ∈ H�p. Assume that

Xk →
(d)
k→∞ Z ∼ N(0, σ2). (18)

Let (Yk, k ≥ 1) = ((Y1,k, ..., Yd,k), k ≥ 1) be a sequence of random vectors such that, for every j =
1, ..., d, the random variable Yj,k belongs to D1,2, and it admits the chaos expansion

Yj,k =

∞∑
n=0

In(g
(j)
n,k) with g

(j)
n,k ∈ H

�n

11



and

sup
k≥1

∞∑
n=M+1

n!‖gn,k‖2H⊗n →M→∞ 0. (19)

Suppose that there exists a random vector U in Rd such that

Yk →
(d)
k→∞ U. (20)

Then, if
EXkYj,k →k→∞ 0 for every j = 1, ..., d (21)

we have
(Xk,Yk)→

(d)
k→∞ (Z ′,U),

where Z ′ ∼ N(0, σ2) and Z ′ is independent by the random vector U. Moreover, for every k ≥ 1,

dW
(
P(Xk,Yk), PZ′ ⊗ PU

)
(22)

≤ C

E
∣∣σ2 − 〈D(−L)−1Xk, DXk〉

∣∣+

d∑
j=1

E
∣∣〈D(−L)−1Xk, DYj,k〉H

∣∣+ dW (Yk,U).

Let us make some comment around Theorem 3.

• Condition (19) is automatically verified when Xj,k belongs to a finite sum of Wiener chaoses
or when Yj,k = Yj for every k ≥ 1 (this is stated in Corollary 2). On the other hand, this case
(when the components of Yk are in a finite sum of Wiener chaoses) will be proven before the
main result, as a step of the proof of Theorem 3.

• The assumption (19) also appears in the paper [4], in the context of the normal approximation
of Wiener space (see also Theorem 6.3.1 in [7]).

• The quantitative bound (22) is a direct consequence of the results in Section 2. It will be
actually used inside the proof of the main result (Theorem 3).

• The uncorrelation condition (20) is obviously crucial for the joint convergence of (Xk,Yk) in
Theorem 3. Another interesting question is what happens if we assume, instead of (21), that

EXkYj,k →k→∞ cj ,

with cj 6= 0 for j = 1, ..., d. Can we deduce the joint convergence of (Xk,Yk) to a random vector
with marginals Z and U? In the case when U follows a Gaussian distribution, the answer is
given by the main result in [13]. In order to give a complete answer, we need to know how to
characterize the law of the vector (Z,U) when Z ∼ N(0, σ2) is not independent of U and the
law of U is not Gaussian.

Let us state the following corollary of the above theorem.

12



Corollary 2. Consider the sequence (Xk, k ≥ 1) as in Theorem 3 and Y = (Y1, ..., Yd) be a random
vector in Rd. Assume that for every j = 1, ..., d, Yj ∈ D1,2 . Also assume

EXkYj →k→∞ 0. (23)

Then (40) holds true and for k ≥ 1,

dW
(
P(Xk,Y ), PZ′ ⊗ PY

)
(24)

≤ C

E
∣∣σ2 − 〈D(−L)−1Xk, DXk〉

∣∣+
d∑
j=1

E
∣∣〈D(−L)−1Xk, DYj〉H

∣∣ .
Proof: It is an immediate consequence of Theorem 3, since (19) is obviously satisfied.

Remark 2. Corollary 2 actually says that any sequence in the pth Wiener chaos with p ≥ 2 is
asymptotically independent of any (regular enough) d-dimensional random vector in L2(Ω,G, P ) (with
components in D1,2) if the uncorrelation assumption (23) is satisfied.

Let us give a possible explanation of this phenomenon. Since (Xk, k ≥ 1) satisfies (18), it follows
from Theorem 2 that, for r = 1, ..., p− 1,

‖fk ⊗r fk‖H⊗2p−2r →k→∞ 0.

Let h ∈ H. Then, by Lemma 3 and Cauchy-Schwarz’ inequality,

‖fk ⊗1 h‖H⊗p−1 = 〈fk ⊗1 h, fk ⊗1 h〉H⊗p−1

= 〈fk ⊗p−1 fk, h⊗ h〉H⊗2 ≤ ‖fk ⊗p−1 fk‖H⊗2‖h‖2H →k→∞ 0.

This intuitively means, taking into account the independence criterion of two multiple integrals proven
in [22], that Xk = Ip(fk) and W (h) = I1(h) are asymptotically independent for any h ∈ H. Then
Xk is asymptotically independent by any functional of W and by density by any random variable in
L2(Ω,G, P ) (recall that G is the sigma-algebra generated by W ).

4 Proof of the main result

The proof of the main result will be done into several steps. We start with an (intriguing) technical
lemma (Lemma 5 below) which plays a crucial role in our proofs. Then we prove the result in the
case when the components of Yk belong each of them to a Wiener chaos of fixed order, we continue
with the case when these components are in a finite sum of Wiener chaos and finally we conclude
the proof of Theorem 3. Our arguments use intensively the auxiliary tools recalled in Section 3.1,
the Lemma 5 and the Stein-Malliavin bounds (14), (16) obtained in Section 2.

4.1 A key lemma

As mentioned, the below lemma is a central point in our approach.
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Lemma 5. Let p ≥ 2 and q ≥ 1 be two integer numbers. Let (Xk, k ≥ 1) be that such for every
k ≥ 1, Xk = Ip(fk) with fk ∈ H�p. Assume

Xk →
(d)
k→∞ Z ∼ N(0, σ2). (25)

Then, for every g ∈ H�q,

‖fk ⊗r g‖Hp+q−2r →k→∞ 0 for every

{
r = 1, ..., p ∧ q if p 6= q

r = 1, ..., (p ∧ q)− 1 if p = q.

Proof: Without loss of generality, we can assume that H = L2(T,B, ν), where ν is a sigma-finite
measure without atoms.

Let p > q. Then the conclusion follows easily from Lemma 3 and point 3. in the Fourth Moment
Theorem (Theorem 2). Indeed, for every 1 ≤ r ≤ q < p,

‖fk ⊗r g‖2H⊗p+q−2r = 〈fk ⊗r g, fk ⊗r g〉H⊗p+q−2r = 〈fk ⊗p−r fk, g ⊗q−r g〉H⊗2r

≤ ‖fk ⊗p−r fk‖H⊗2r‖g ⊗q−r g‖H⊗2r (26)

and ‖fk⊗p−k fk‖H2r →k→∞ 0 by Theorem 2 since 1 ≤ p− r ≤ p− 1. We employ the same argument
holds when p = q and 1 ≤ r ≤ p− 1.

Assume now p < q. If 1 ≤ r ≤ p− 1, then the above argument still holds, due to the inequality

‖fk ⊗r g‖2H⊗p+q−2r ≤ ‖fk ⊗p−r fk‖H⊗2r‖g ⊗q−r g‖H⊗2r

and of the fact that 1 ≤ p− r ≤ p− 1.
It remains to prove that, for 2 ≤ p < q,

‖fk ⊗p g‖L2(T q−p) →k→∞ 0. (27)

To prove (27), we will proceed into two steps.

Step 1. We show that for every h1, ..., hq ∈ H = L2(T ), we have

‖fk ⊗p
(
h1⊗̃.....⊗̃hq

)
‖L2(T q−p) →k→∞ 0.

We have

h1⊗̃.....⊗̃hq =
1

q!

∑
σ∈Sq

hσ(1) ⊗ ...⊗ hσ(q),

14



where Sq is the set of permutations of {1, ..., q}. Then, via the definition of the contraction (86),(
fk ⊗p

(
h1⊗̃.....⊗̃hq

))
(t1, ..., tq−p)

=
1

q!

∑
σ∈Sq

∫
T p
fk(u1, ..., up)

(
hσ(1) ⊗ ...⊗ hσ(q)

)
(u1, ..., up, t1, ..., tq−p)du1...dup

=
1

q!

∑
σ∈Sq

(
hσ(p+1) ⊗ ...⊗ hσ(q−p)

)
(t1, ..., tq−p)

×
∫
T p
fk(u1, ..., up)

(
hσ(1) ⊗ ...⊗ hσ(p)

)
(u1, ..., up)du1...dup

=
1

q!

∑
σ∈Sq

(
hσ(p+1) ⊗ ...⊗ hσ(q−p)

)
(t1, ..., tq−p)

×
∫
T p−1

(∫
T
fk(u1, ..., up)hσ(1)(u1)du1

)(
hσ(2) ⊗ ...⊗ hσ(p)

)
(u2, ..., up)du2...dup

=
1

q!

∑
σ∈Sq

(
hσ(p+1) ⊗ ...⊗ hσ(q−p)

)
(t1, ..., tq−p)

×
∫
T p−1

(fk ⊗1 hσ(1))(u2, ..., up)
(
hσ(2) ⊗ ...⊗ hσ(p)

)
(u2, ..., up)du2...dup

=
1

q!

∑
σ∈Sq

(
hσ(p+1) ⊗ ...⊗ hσ(q−p)

)
(t1, ..., tq−p)〈fk ⊗1 hσ(1), hσ(2) ⊗ ...⊗ hσ(p)〉L2(T p−1)

Therefore,

‖fk ⊗p
(
h1⊗̃.....⊗̃hq

)
‖L2(T q−p)

≤ 1

q!

∑
σ∈Sq

‖hσ(p+1)‖L2(T )....‖hσ(q)‖L2(T )

∣∣〈fk ⊗1 hσ(1), hσ(2) ⊗ ...⊗ hσ(p)〉L2(T p−1)

∣∣
≤ 1

q!

∑
σ∈Sq

‖hσ(p+1)‖L2(T )....‖hσ(q)‖L2(T )‖fk ⊗1 hσ(1)‖L2(T p−1)‖hσ(2) ⊗ ...⊗ hσ(p)‖L2(T p−1)

≤ 1

q!

∑
σ∈Sq

‖hσ(1)‖L2(T )....‖hσ(q)‖L2(T )

√
‖fk ⊗p−1 ⊗fk‖L2(T 2),

where we used Lemma 3 and Cauchy-Schwarz’s inequality. We obtained

‖fk ⊗p
(
h1⊗̃.....⊗̃hq

)
‖L2(T q−p) ≤

 q∏
j=1

‖hj‖L2(T )

√‖fk ⊗p−1 ⊗fk‖L2(T 2),

and this goes to zero as k →∞ by point 3. in Theorem 2.

Step 2. We prove the claim (27) for g ∈ L2
S(T q) (the set of symmetric functions in L2(T q)).

Consider the sequence (gM ,M ≥ 1) given by

gM =
M∑

j1,...,jq=1

〈g, hj1 ⊗ ....hjq〉L2(T q)hj1 ⊗ ....⊗ hjq =
M∑

j1,...,jq=1

〈g, hj1 ⊗ ....hjq〉L2(T q)hj1⊗̃....⊗̃hjq
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where (hi, i ≥ 1) is an orthonormal basis of H = L2(T ). Then gM are symmetric functions and
‖gM − g‖L2(T q) →M→∞ 0. We write

fk ⊗p g = fk ⊗p gM + fk ⊗p g − fk ⊗p gM

and
‖fk ⊗p g‖L2(T q−p) ≤ ‖fk ⊗p gM‖L2(T q−p) + ‖fk ⊗p g − fk ⊗p gM‖L2(T q−p). (28)

Now, for every M ≥ 1,

‖fk ⊗p g − fk ⊗p gM‖L2(T q−p) = ‖fk ⊗p (g − gM )‖L2(T q−p)

≤ ‖fk‖L2(T p)‖g − gM‖L2(T q) ≤ C‖g − gM‖L2(T q). (29)

We used the fact that, by (25), q!‖fk‖2L2(T p) →k→∞ σ2 so the sequence (fk, k ≥ 1) is bounded in

L2(T p).
Let ε > 0. By (29), there exists M0 ≥ 1 such that for any M ≥M0

‖fk ⊗p g − fk ⊗p gM‖L2(T q−p) ≤
ε

2
. (30)

Take M ≥M0. Then

fk ⊗p gM =
M∑

j1,...,jq=1

〈g, hj1 ⊗ ....hjq〉L2(T q)

(
fk ⊗p (hj1⊗̃....⊗̃hjq)

)
.

By Step 1,

‖fk ⊗p gM‖L2(T q−p) →k→∞ 0,

so for k large enough,

‖fk ⊗p gM‖L2(T q−p) ≤
ε

2
. (31)

By plugging (30) and (31) into (28), we get the claim (27).

4.2 The proof of the main result when the components of Yk belongs to a Wiener
chaos

Let us make a first step to prove the main result, by dealing with the case when the random vector
Yk from the statement of Theorem 3 has components that belong each of them in a Wiener chaos of
fixed (but possibly different) order.

Proposition 2. Let p ≥ 2 and let q1, ..., .qd ≥ 1 be integer numbers. Assume that (Xk, k ≥ 1) is
such that Xk = Ip(fk), fk ∈ H�p and (18) holds true. Let (Yk, k ≥ 1) = ((Y1,k, ..., Yd,k), k ≥ 1) be a
sequence of random vectors such that for every k ≥ 1, j = 1, ..., d,

Yj,k = Iqj (gj,k) with gj,k ∈ H�qj .

Suppose (20) and (21). Then

(Xk,Yk)→
(d)
k→∞ (Z ′,U), (32)

where Z ′ ∼ N(0, σ2) and Z ′ is independent by U. Moreover, we have the estimate (22).
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Proof: We first notice that (22) is a direct consequence of (16) of the triangle’s inequality. Indeed,
for every k ≥ 1,

dW
(
P(Xk,Yk), PZ′ ⊗ PU

)
≤ dW

(
P(Xk,Yk), PZ′ ⊗ PYk

)
+ dW (PZ′ ⊗ PYk , PZ′ ⊗ PU)

≤ dW
(
P(Xk,Yk), PZ′ ⊗ PYk

)
+ dW (PYk , PU) ,

and then we use (16). For the rest of the proof, we will again proceed into several steps.

Step 1. We prove that for every j = 1, ..., d,

E〈D(−L)−1Xk, DYj,k〉2 →k→∞ 0. (33)

By Lemma 4, we have, for every k ≥ 1 and j = 1, ..., d,

E〈D(−L)−1Xk, DYj,k〉2 = (EXkYj,k)
21p=qj +

p∧qj∑
r=1

c(r, p, qj)‖fk⊗̃rgj,k‖2H⊗p+qj−2r , (34)

where c(r, p, qj) are as in Lemma 4. In particular, recall that c(p∧ qj , p, qj) = 0 if p 6= qj . By Lemma
5,

‖fk⊗̃rgj,k‖2H⊗p+qj−2r ≤ ‖fk ⊗r gj,k‖2H⊗p+qj−2r →k→∞ 0 (35)

for every r = 1, ..., p ∧ qj (if p 6= qj) and r = 1, ..., (p ∧ qj)− 1 (if p = qj). The relation (35) and the
assumption (21) imply the conclusion (33) of this step.

Step 2. Let us use the notation

θk = P(Xk,Yk), ηk = PZ ⊗ PYk , η = PZ ⊗ PU. (36)

In this step, we prove that
dW (θk, ηk)→k→∞ 0. (37)

We know from (16) that

dW (θk, ηk) ≤ C

(E
(
〈D(−L)−1Xk, DXk〉 − σ2

)2) 1
2

+

d∑
j=1

(
E〈D(−L)−1Xk, DYj,k〉2

) 1
2

 (38)

The assumption (18) and the Fourth Moment Theorem implies that (see Section 5 in [7]),

E
(
〈D(−L)−1Xk, DXk〉 − σ2

)2 →k→∞ 0.

This fact, together with Step 1, implies (37).

Step 3: We deduce the convergence (32). Let f : Rd+1 → R be a continuous and bounded function.
By using the triangle’s inequality, we have∣∣∣∣∫

Rd+1

f(x)dθk(x)−
∫
Rd+1

f(x)dη(x)

∣∣∣∣
≤
∣∣∣∣∫

Rd+1

f(x)dθk(x)−
∫
Rd+1

f(x)dηk(x)

∣∣∣∣+

∣∣∣∣∫
Rd+1

f(x)dηk(x)−
∫
Rd+1

f(x)dη(x)

∣∣∣∣ .
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The first summand in the right-hand side converges to zero as k → ∞ by Step 2. The second
summand in the right-hand side also goes to zero as k tends to infinity due to the assumption (20).
Then, the conclusion is obtained.

Remark 3. It is possible to write a quantitative bound for dW (θk, η) in terms of the norms of the
contractions of the kernels fk and gj,k (with the notation from Proposition 2). Indeed, assume d = 1
and q1 = q. Then, by using (22), Lemma 4 and the inequality (26), we can write

dW (θk, η) ≤ C

(EXkYk)
21p=q +

p−1∑
r=1

‖fk ⊗r fk‖2H⊗2p−2r +

(p∧q)−1∑
r=1

‖fk ⊗p−r fk‖H⊗2r

+‖fk ⊗q fk‖H⊗p−q1p>q + ‖fk ⊗p gk‖2Hq−p1p<q.
] 1
2 .

Taking into account point 3. in Theorem 2,we can also write, for k large enough,

dW (θk, η) ≤ C

[
〈fk, gk〉2H⊗p1p=q +

p−1∑
r=1

‖fk ⊗r fk‖H⊗2p−2r + ‖fk ⊗p gk‖2Hq−p1p<q

] 1
2

. (39)

The above bound may be not optimal in some cases (see Remark 5 in Section 5.3).

4.3 The components of Yk belong to a finite sum of Wiener chaoses

We make a further step to get the main result by extending the result in Proposition 2.

Proposition 3. Assume that the sequence (Xk, k ≥ 1) is as in Proposition 2 and let Yk = (Y1,k, ..., Yd,k)
be such that for every j = 1, ..., d and for every k ≥ 1,

Yj,k =

N0∑
n=0

In(g
(j)
n,k),

with N0 ≥ 1, g
(j)
n,k ∈ H

�n for n ≥ 0, k ≥ 1 and = 1, ..., d. Assume (20) and (21). Then

(Xk,Yk)→
(d)
k→∞ (Z ′,U) (40)

where Z ∼ N(0, σ2) and Z ′,U are independent. Moreover, the estimate (22) holds true.

Proof: Recall the notation (36). Again, the Stein-Malliavin bound (22) follows directly from (16).
By using this estimate (16),

dW (θk, ηk) ≤ C

E
∣∣σ2 − 〈D(−L)−1Xk, DXk〉H

∣∣+
d∑
j=1

E
∣∣〈D(−L)−1Xk, DYj,k〉H

∣∣ .
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We also have, for every j = 1, ..., d and k ≥ 1,

E
∣∣〈D(−L)−1, Xk, DYj,k〉H

∣∣ = E

∣∣∣∣∣〈D(−L)−1Xk,

N0∑
n=0

DIn(g
(j)
n,k)〉H

∣∣∣∣∣
≤

N0∑
n=0

E
∣∣∣〈D(−L)−1Xk, DIn(g

(j)
n,k)〉H

∣∣∣ ≤ N0∑
n=0

(
E
∣∣∣〈D(−L)−1Xk, DIn(g

(j)
n,k)〉H

∣∣∣2) 1
2

We notice that (21) and the isometry of multiple stochastic integrals (83) implies that

EXkIn(g
(j)
n,k)→k→∞ 0, (41)

for every j = 1, ..., d and for every n = 0, ..., N0. We use Lemma 4 to express the quantity

E
∣∣∣〈D(−L)−1Xk, DIn(g

(j)
n,k)〉H

∣∣∣2, and then by using (41) and Lemma 5, we deduce that

E
∣∣∣〈D(−L)−1Xk, DIn(g

(j)
n,k)〉H

∣∣∣2 →k→∞ 0,

for every j = 1, ..., d and n− 0, 1, ...N0. Thus

E
∣∣〈D(−L)−1, Xk, DYj,k〉H

∣∣→k→∞ 0,

for every j = 1, ..., d and this implies

dW (θk, ηk)→k→∞ 0.

To deduce (40), we proceed as in Step 3 of the proof of Proposition 2.

4.4 Proof of the main result (Theorem 3)

Let ε > 0. For M ≥ 1, let us define,

YM
j,k =

M∑
n=0

In(g
(j)
n,k),

and consider the random vector in Rd

YMk = (YM
1,k, ..., Y

M
d,k), k ≥ 1. (42)

Clearly, for every k ≥ 1,
E‖YMk − Yk‖2Rd →M→∞ 0.

Recall that by ‖ · ‖Rd and 〈·, ·〉Rd we denote the Euclidean norm and the Euclidean scalar product in
Rd. By (21) and the orthogonality of multiple stochastic integrals of different orders (83), for every
j = 1, ..., d and for every M ≥ 1,

EXkY
M
j,k →k→∞ 0. (43)
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Now, for any λ1 ∈ R and λ ∈ Rd,∣∣∣Eeiλ1Xk+i〈λ,Yk〉Rd −Eeiλ1Z
′
Eei〈λ,U〉Rd

∣∣∣
≤

∣∣∣Eeiλ1Xk+i〈λ,Yk〉Rd −Eeiλ1Xk+i〈λ,YMk 〉Rd
∣∣∣+
∣∣∣Eeiλ1Xk+i〈λ,YMk 〉Rd −Eeiλ1Z

′
Eei〈λ,Y

M
k 〉Rd

∣∣∣
+
∣∣∣Eeiλ1Z′Eei〈λ,YMk 〉Rd −Eeiλ1Z

′
Eei〈λ,U〉Rd

∣∣∣
= aM,k + bM,k + cM,k. (44)

Let us estimate separately the three summands from above.

Estimation of aM,k. By the mean value theorem,

aM,k ≤
∣∣∣Eei〈λ,Yk〉Rd −Eei〈λ,Y

M
k 〉Rd

∣∣∣ ≤ E‖YM − Y‖Rd

≤

√√√√ d∑
j=1

E
(
YM
j,k − Yj,k

)2
=

√√√√ d∑
j=1

∞∑
n=M+1

n!‖g(j)
n,k‖2H⊗n

≤

√√√√ d∑
j=1

sup
k≥1

∞∑
n=M+1

n!‖g(j)
n,k‖2H⊗n (45)

and the last quantity goes to zero as M →∞ due to (19). So, for M ≥M1 large, aM,k ≤ ε.

Estimation of bM,k. Basically, the convergence of this term follows from Proposition 3, since the
components of YMk belong to a finite sum of Wiener chaoses. For M ≥M1, we have

dW

(
P(Xk,YMk ), PZ′ ⊗ PYMk

)
≤ C

E
∣∣σ2 − 〈D(−L)−1Xk, DXk〉H

∣∣+

d∑
j=1

E
∣∣σ2 − 〈D(−L)−1Xk, DY

M
j,k 〉H

∣∣
Using (43), as in Proposition 3, the both summands in the right-hand above converge to zero as
k →∞. So, for k large, bM,k ≤ ε.

Estimation of cM,k. First notice that

cM,k ≤
∣∣∣Eei〈λ,YMk 〉Rd −Eei〈λ,U〉Rd

∣∣∣
Let ε > 0. We show that for M,k large enough,∣∣∣Eei〈λ,YMk 〉Rd −Eei〈λ,U〉Rd

∣∣∣ ≤ ε. (46)

We have∣∣∣Eei〈λ,YMk 〉Rd −Eei〈λ,U〉Rd
∣∣∣ ≤ ∣∣∣Eei〈λ,YMk 〉Rd −Eei〈λ,Yk〉Rd

∣∣∣+
∣∣∣Eei〈λ,Yk〉Rd −Eei〈λ,U〉Rd

∣∣∣
≤ CE‖YMk − Yk‖Rd +

∣∣∣Eei〈λ,Yk〉Rd −Eei〈λ,U〉Rd
∣∣∣ . (47)
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We use the estimate (45)

E‖YMk − Yk‖Rd ≤

√√√√ d∑
j=1

sup
k≥1

∞∑
n=M+1

n!‖g(j)
n,k‖2H⊗n

and the last quantity goes to zero as M →∞ due to (19). By using this inequality and (20) in (47),
we get (46). Therefore, for k,M large, cM,k ≤ ε.

Consequently, the left-hand side of (44) goes to zero as k →∞.

5 Applications

We illustrate our results by four examples. In the first example, we deduce from Proposition 2 the
joint convergence of the Hermite variations of d + 1 correlated fractional Brownian motions. The
second example constitutes an application of Theorem 3, by considering a random variable with
infinite chaos expansion. In the third example, we treat a two -dimensional sequence in Wiener
chaos, one component being asymptotically Gaussian and the second component satisfying a non-
central limit theorem. Such estimates are new in the literature and they cannot be obtained via the
standard Stein method. Finally, in the last example, to evaluate the dependence structure between
the solution a stochastic differential equation and the random noise.

5.1 Hermite variations of correlated fractional Brownian motions

Let (Wt, t ≥ 0) be a Wiener process and for H ∈ (0, 1), t ≥ 0 consider the kernel

ft,H(s) = d(H)

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
, s ∈ R.

where d(H) is a normalizing constsnt that ensures that
∫
R ft,H(s)2ds = t2H . LetH0, H1, ...,Hd ∈ (0, 1)

and define, for i = 0, 1, ..., d,

BHi
t =

∫
R
ft,Hi(s)dWs, t ≥ 0. (48)

Then , for i = 0, 1, ..., d,
(
BHi , t ≥ 0

)
are d+ 1 (correlated) fractional Brownian motions with Hurst

parameters Hi. We write, for any integer number k ≥ 0,

BHi
k+1 −B

Hi
k = I1(Lk,Hi), i = 0, 1, ..., d,

where Iq stands for the multiple stochastic integral of order q ≥ 1 with respect to the Wiener process
W and for k ≥ 0,

Lk,Hi = fk+1,Hi − fk,Hi . (49)

For N ≥ 1 integer, we set

XN =
1√
N

N−1∑
k=0

Ip

(
L⊗pk,H0

)
= Ip(fN ) (50)

21



and for j = 1, ..., d,

YN,j = N qj(1−Hj)−1
N−1∑
k=0

Iq

(
L
⊗qj
k,Hj

)
= Iqj (gN,j). (51)

We used the notation

fN =
1√
N

N−1∑
k=0

L⊗pk,H0
and gN,j = N qj(1−Hj)−1

N−1∑
k=0

L
⊗qj
k,Hj

(52)

From the classical Breuer -Major theorem (see [1]) we know the limit behavior in distribution of the
sequence (50) while the Non-Central limit theorem (see e.g. [19]) gives the limit behavior of (51).
More precisely, we have the following.

Theorem 4. Consider the sequences (XN , N ≥ 1) and (YN,j , N ≥ 1) given by (50), (51), respectively.
Then

1. If H0 ∈
(

0, 1− 1
p

)
,

XN →(d)
N→∞ N(0, σ2

p,H0
).

2. If Hj ∈
(

1− 1
2qj
, 1
)

for j = 1, ..., d,

YN,j →(d)
N→∞ cqj ,HjR

γj
1 ,

where R
γj
1 is a Hermite random variable with Hurst parameter γj = 1 + q(H − 1). The explicit

expression of the constants σp,H0 , cqj ,Hj > 0 can be found in e.g. [1], [19].

Recall that the Hermite random variable has a non-Gaussian law (it actually lives in qth Wiener
chaos) and it represents the value at time t = 1 of a Hermite process. For more details on Hermite
processes, see e.g. [21].

Let
YN = (YN,1, . . . , YN,d), N ≥ 1.

The purpose is to show the joint convergence of the two-dimensional random sequence ((XN ,YN ), N ≥
1). Let us recall some facts. For every integers k, l ≥ 1 and for i, j = 0, 1, ..., d (see [5]),

E(BHi
k+1 −B

Hi
k )(B

Hj
l+1 −B

Hj
l ) = 〈Lk,Hi , Ll,Hj 〉L2(R) = D(Hi, Hj)ρHi+Hj

2

(k − l),

where D(Hi, Hj) is a constant depending on Hi, Hj and for v ∈ Z,

ρH(v) =
1

2

(
|v + 1|2H + |v − 1| − 2|v|2H

)
. (53)

For v sufficiently large, one has
|ρH(v)| ≤ CHv2H−2 (54)

We have the following result.
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Proposition 4. Let p ≥ 1, q1, ...., qd ≥ 2 be two integer numbers and assume that for j = 1, ..., d,

0 < H1 < 1− 1

2p
and 1− 1

2q
< Hj < 1. (55)

Consider the sequences (XN , N ≥ 1) and (YN , N ≥ 1) given by (50) and (51), respectively. Then

(XN ,YN )→(d)
N→∞ (Z, cqj ,HjR

γj
1 , j = 1, ..., d),

where Z ∼ N(0, σ2
p,H0

) and R
γj
1 stands for a Hermite random variable (with Hurst index γj) inde-

pendent of Z. The constants σp,H0 and cqj ,Hj are those from Theorem 4.

Proof: First, we notice that, as N →∞,

YN →(d) (cq1,H1R
γ1
1 , ..., cqd,HdR

γd
1 ). (56)

The above claim can be argued in the following way: for every c > 0, we have the scaling property(
BH1
ct , ..., B

Hd
ct , t ≥ 0

)
≡(d)

(
cH1BH1

t , ..., cHdBHd
t , t ≥ 0

)
,

where ” ≡(d) ” means the equivalence of finite dimensional distributions. This is a consequence of
(48) and of the scaling property of the Wiener process W . Then, for all N ≥ 1, we have the equality
in law

(YN,1, ..., YN,d) =(d) (Y ′N,1, ..., Y
′
N,d)

where, for every j = 1, ..., d,

Y ′N,j = qj !N
qj−1

N−1∑
k=0

Hqj

(
B
Hj
k+1
N

−BHj
k
N

)
with Hq the Hermite polynomial of degree q. On the other hand, for every j = 1, ..., d, the sequence
(Y ′N,j , N ≥ 1) converges in L2(Ω), as N →∞, to cqj ,HjR

γj
1 (see e.g. [7]). This implies (56).

In order to apply Proposition 2, we just need to check (21). Obviouly, this holds for p 6= q, since
in this situation EXNYN,j = 0 for all N ≥ 1 and for all j = 1, ..., d. We calculate EXNYN,j for p = q.
We have, by the isometry formula (83),

EXNYN,j = p!Np(1−Hj)− 3
2

N−1∑
k,l=0

〈Lk,H0 , Ll,Hj 〉
p
L2(R)

= p!D(H0, Hj)
pNp(1−Hj)− 3

2

N−1∑
k,l=0

ρH0+Hj
2

(k − l)p,

and for N large enough, by (54),

|EXNYN,j | ≤ c(H0, Hj , p)N
p(1−Hj)− 3

2

(
1 +

N∑
k=1

(N − k)k(H0+Hj−2)p

)

≤ c(H0, Hj , p)N
p(1−Hj)− 3

2

(
1 +N

N∑
k=1

k(H0+Hj−2)p

)
.
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Assume (H0 +Hj − 2)p < −1. In this case, the series
∑

k≥1 k
(H0+Hj−2)p converges and we get

|EXNYN,j | ≤ c(H0, Hj , p)N
p(1−Hj)− 1

2 →N→∞ 0

since Hj > 1− 1
2p .

Assume (H0 +Hj − 2)p > −1. Then the sequence
∑N

k=1 k
(H0+Hj−2)p behaves as N (H0+Hj−2)p+1

for N large and thus

|EXNYN,j | ≤ c(H0, Hj , p)N
p(1−Hj)− 3

2

(
1 +N (H0+Hj−2)p+1

)
= c(H0, Hj , p)

(
Np(1−Hj)− 3

2 +N−p(1−H0)+ 1
2

)
→N→∞ 0,

since H0 < 1− 1
2p and Hj > 1− 1

2p .

If (H0 +Hj − 2)p = −1, then
∑N

k=1 k
(H0+Hj−2)p behaves as log(N) and

|EXNYN,j | ≤ c(H0, Hj , p)N
p(1−Hj)− 1

2 log(N)→N→∞ 0.

We obtained

|EXNYN,j | ≤ c(H0, Hj , p)


Np(1−Hj)− 1

2 if (H0 +Hj − 2)p < −1

Np(1−Hj)− 1
2 log(N), if (H0 +Hj − 2)p = −1

Np(1−Hj)− 3
2 +N−p(1−H0)+ 1

2 if (H0 +Hj − 2)p > −1.

In particular EXNYN,j →N→∞ 0 and (21) holds. The conclusion follows by Proposition 2.

Remark 4. 1. A quantitative bound in Proposition 4 can be obtained via (22) or (39).

2. Let the above notation prevail. It is also possible to apply Proposition 4 to the estimation of the

Hurst parameter (H0, H1, ...,Hd) from the discrete observations

(
B
Hj
i
N

, i = 0, 1, ..., N, j = 0, 1, ..., d

)
.

Denote, for j = 0, 1, ..., d,

SN,j =
1

N

N−1∑
i=0

(
B
Hj
i+1
N

−BHj
i
N

)2

.

Then

ĤN,j = −
log(SN,j)

2 log(N)
, j = 0, 1, ..., d

are consitent estimators for the Hurst index Hj and (see e.g. Section 5.5 in [21])

2
√
N(ĤN,0 −H0) = XN +RN,0

and for j = 1, ..., d,
2N2−2Hj (ĤN,j −Hj) = YN,j +RN,j
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where RN,j , j = 01, ..., d converge almost surely to zero as N →∞. From Proposition 4, we get
the joint convergence in law, as N →∞, of(

2
√
N(ĤN,0 −H0), 2N2−2Hj (ĤN,j −Hj)

)
to (

Z, c2,HjR
2Hj−1
1 , j = 1, ..., d

)
,

Z ∼ N(0, σ2
p,H0

) and Z is independent of R
2Hj−1
1 , j = 1, ..., d.

5.2 Infinite chaos expansion

Let (W (h), h ∈ H) be an isonormal process and let (hi, i ≥ 1) be a family of elements of H such that
for every i, j ≥ 1

〈hi, hj〉H = ρH(i− j),
where ρH is the auto-correlation function of the fractional noise given by (53). Consider the sequence
(VN , N ≥ 1) given by

VN =
1√
N

N∑
k=1

Ip(h
⊗p
k ). (57)

and let

Y = eW (h1) =
√
e
∑
n≥0

1

n!
In(h⊗n1 ). (58)

Obviously (VN , N ≥ 1) has the same finite-dimensional distribution as (50) (when H = H0). Assume

0 < H < 1− 1

2p
. (59)

By Theorem 4, if (59) holds true, then (VN , N ≥ 1) converges in law, as N →∞, to Z ∼ N(0, σ2
p,H).

Moreover, we have the following estimate for the Wasserstein distance (see [6]): if N is large,

dW (VN , Z) ≤ C


n−

1
2 , if H ∈ (0, 1

2 ]

nH−1, if H ∈ [1
2 ,

2p−3
2p−2)

npH−p+
1
2 , if H ∈ [2p−3

2p−2 ,
2p−1

2p ).

(60)

We check the joint convergence in law of the couple (XN , Y ) when N →∞ and we evaluate the
Wasserstein distance associated to it.

Proposition 5. Let VN , Y be given by (57), (58), respectively. Then

(VN , Y )→(d) (Z, Y )

where Z ∼ N(0, σ2
p,H) is independent of Y . Moreover, for N large

dW (P(VN ,Y ), PZ ⊗ PY ) ≤ C


n−

1
2 , if H ∈ (0, 1

2 ]

nH−1, if H ∈ [1
2 ,

3
4)

nH−1 + npH−p+
1
2 , if H ∈ [3

4 ,
2p−1

2p ).

(61)
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Proof: In order to get the joint convergence of ((VN , Y ), N ≥ 1), we need to check (23). We have

E(VNY ) =
√
e

1√
N

N∑
k=1

EIp(h
⊗p
k )Y =

√
e

1√
N

N∑
k=1

EIp(h
⊗p
k )

1

p!
Ip(h

⊗p
1 )

=
√
e

1√
N

N∑
k=1

〈hk, h1〉p =
√
e

1√
N

N∑
k=1

ρH(k − 1)p.

By isolating the term with k = 1, we have

E(VNY ) =
√
e

1√
N

1 +
∑
k≥2

(k − 1)(2H−2)p

 ≤ C 1√
N
,

since the series
∑

k≥1 k
(2H−2)p is convergent due to (59). Then, by Theorem 3,

(VN , Y )→(d)
N→∞ (Z, Y ), (62)

where Z ∼ N(0, σ2
p,H) and Z, Y are independent random variables.

Let us evaluate the rate of convergence under the Wasserstein distance for (62). We compute
the quantity E〈D(−L)−1VN , DY 〉2H . We have

D(−L)−1VN =
1√
N

N∑
k=1

Ip−1(h⊗p−1
k )hk, DY = Y h1

and

〈D(−L)−1VN , DY 〉H =
1√
N

N∑
k=1

Ip−1(h⊗p−1
k )Y 〈hk, h1〉H .

Hence,

E〈D(−L)−1VN , DY 〉2H =
1

N

N∑
k,l=1

Ip−1(h⊗p−1
k )Ip−1(h⊗p−1

l )Y 2〈hk, h1〉H〈hl, h1〉H

=
1

N

N∑
k,l=1

p−1∑
r=0

r!(Crp−1)2EI2p−2r−2

(
h⊗p−1
k ⊗r h⊗p−1

l

)
Y 2〈hk, h1〉H〈hl, h1〉H ,

where we applied the product formula (85). Since

Y 2 = e2W (h1) = e
∑
n≥0

2n

n!
In(h⊗n1 ),

we have, for r = 0, ..., p− 1,

EI2p−2r−2

(
h⊗p−1
k ⊗r h⊗p−1

l

)
Y 2

= e
22p−2r−2

(2p− 2r − 2)!
EI2p−2r−2

(
h⊗p−1
k ⊗r h⊗p−1

l

)
I2p−2r−2(h⊗2r−2r−2

1 )

= e22p−2r−2〈(h⊗p−1
k ⊗̃rh⊗p−1

l , h⊗2p−2r−2
1 〉H⊗2p−2r−2

= e22p−2r−2〈hk, hl〉rH〈hk, h1〉p−r−1
H 〈hl, h1〉p−r−1

H .
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Consequently,

E〈D(−L)−1VN , DY 〉2H = e

p−1∑
r=0

r!(Crp−1)222p−2r−2T (r, p,N)

with

T (r, p,N) =
1

N

N∑
k,l=1

〈hk, h1〉p−rH 〈hk, h1〉p−rH 〈hl, h1〉p−rH

=
1

N

N∑
k,l=1

ρH(k − l)rρH(k − 1)p−rρH(l − 1)p−r. (63)

We now evaluate T (r, p,N) for r = 0, 1, ..., p− 1. We write

T (r, p,N) =
1

N

N∑
k=1

ρH(k − 1)2(p−r) +
1

N

N∑
k,l=1;k 6=l

ρH(k − l)rρH(k − 1)p−rρH(l − 1)p−r

:= T1(r, p,N) + T2(r, p,N).

Let us first treat the term T1(r, p,N) with r = 0, 1, .., p− 1. One has

T1(r, p,N) =
1

N

1 +
∑
k≥2

ρH(k − 1)2(p−r)

 ≤ C 1

N

1 +
∑
k≥2

(k − 1)(2H−2)(2p−2r)


≤ C

1

N

1 +
∑
k≥1

k2H−2

 ≤ C 1

N

(
1 +N2H−1

)
≤ C

(
N−1 +N2H−2

)
.

For T2(r, p,N), we can write

T2(r, p,N) = 2
1

N

N∑
k,l=1;k>l

ρH(k − l)rρH(k − 1)p−rρH(l − 1)p−r

≤ C
1

N

 N∑
k=2

ρH(k − l)p +
∑
k>l≥2

(k − l)(2H−2)r(k − 1)(2H−2)(p−r)(l − 1)(2H−2)(p−r)


By (59),

∑N
k=2 ρH(k − l)p <∞ and so

T2(0, p,N) ≤ C 1

N

1 +

∑
k≥2

(k − 1)(2H−2)p

2 ≤ C 1

N
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and for r = 1, ..., p− 1, since (k − 1)(2H−2)(p−r) ≤ (k − l)(2H−2)(p−r),

T2(r, p,N) ≤ C
1

N

1 +
∑
k>l≥2

(k − l)(2H−2)p(l − 1)(2H−2)(p−r)


≤ C

1

N

1 +
N∑
l=2

(l − 1)2H−2
∑
k≥1

k(2H−2)p


≤ C

1

N

(
1 +N2H−1

)
≤ C(N−1 +N2H−2).

From the above computations, we deduce that for N sufficiently large,

E〈D(−L)−1VN , DY 〉2H ≤ C(N−1 +N2H−2). (64)

By combining (60) and (64), we get (61).

5.3 Quantitative bounds in a central-noncentral limit theorem

Our approach allows to give qualitative bounds for the multidimensional sequences of multiple
stochastic integral when only one of these sequences converges to a normal distribution. Here we
illustrate the method by treating a two -dimensional sequence in Wiener chaos, one component
being asymptotically Gaussian and the second component satisfying a non-central limit theorem.
Such estimates are new in the literature and they cannot be obtained via the standard Stein method.
Let (BH

t , t ≥ 0) be a fractional Brownian motion with Hurst index H ∈ (0, 1). For N ≥ 1, define

VN = q!
1√
N

N−1∑
k=0

Hq

(
BH
k+1 −BH

k

)
, (65)

where Hq is the Hermite polynomial of degree q. Then, the Breuer-Major theorem (see [1] or Theorem

4) states that, if H ∈
(

0, 1− 1
2q

)
the sequence (VN , N ≥ 1) converges to a Gaussian random variable

Z ∼ N(0, σ2
q,H), where the variance σ2

q,H is explicily known.
On the other hand, the sequence (UN , N ≥ 1) given by

UN = 2N1−2H
N−1∑
k=0

H2

(
BH
k+1 −BH

k

)
, N ≥ 1, (66)

converges in distribution, for H ∈
(

3
4 , 1
)
, to c2,HR

(2H−1) where R(2H−1) is a Rosenblatt random
variable with Hurst parameter 2H − 1 and again the constant c2,H > 0 is known.

Moreover, the random sequence (VN , UN ) converges in law, as N → ∞, to (Z, c2,HR
(2H−1)),

with Z independent of R(2H−1). This can be obtained from the main findings in [8] or [9] but it also
follows from our Theorem 3. The purpose is to find the rate of convergence, under the Wasserstein
distance, for this two-dimensional limit theorem.

We have the following result.
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Proposition 6. Let VN , UN be given by (65, (66), respectively. Then Assume

H ∈
(

3

4
, 1− 1

2q

)
⇒ q ≥ 3. (67)

Then
(VN , UN )→(d)

N→∞ (Z, c2,HR
(2H−1))

where Z ∼ N(0, σ2
q,H) and Z is independent from the Rosenblatt random variable R(2H−1). Moreover

dW

(
(VN , UN ), (Z, c2,HR

(2H−1))
)
≤ cq,H

N
H−1 +N

3
2
−2H for H ∈

(
3
4 , 1−

1
2(q−1)

)
N (H−1)q+ 1

2 +N
3
2
−2H for

(
1− 1

2(q−1) , 1−
1
2q

)
.

(68)

Proof: By Theorem 3, we have

dW

(
P(VN ,UN ), PZ ⊗ Pc2,HR(2H−1)

)
≤ C

[(
E
(
σ2 − 〈DVN , D(−L)−1VN 〉

)2) 1
2

+ dW (PUN , Pc2,HR(2H−1)) +

√
E (〈DVN , DUN 〉)2

]
.

We know the rate of convergence to their limits for each of the sequences (VN , N ≥ 1) and
(UN , N ≥ 1). If one assumes (67), then (see Theorem 4.1 in [6])

(
E
(
σ2 − 〈DVN , D(−L)−1VN 〉

)2) 1
2 ≤ CH,q

N
H−1 if H ∈

(
3
4 ,

2q−3
2q−2

]
N qH−q+ 1

2 if H ∈
[

2q−3
2q−2 ,

2q−1
2q

)
.

(69)

Moreover, for any H satisfying (67) (see [2] or [7], relation (7.4.13))

dW (UN , c2,HR
(2H−1)) ≤ CHN

3
2
−2H . (70)

In particular, if q = 3, it follows from (69) and (70) that

dW (VN , Z) + dW (UN , c2,HR
(2H−1)) ≤ CH

(
N

3
2
−2H +N3H− 5

2

)
≤ CH

{
N

3
2
−2H if H ∈

(
3
4 ,

4
5

)
N3H− 5

2 if H ∈
[

4
5 ,

5
6

) (71)

Let us estimate the quantity
√

E (〈DVN , DUN 〉)2. Denote by H the canonical Hilbert space asso-
ciated to the fractional Brownian motion, defined as the closure of the set of step functions on the
positive real line with respect to the scalar product

〈1[0,t], 1[0,s]〉H = EBH
t B

H
s =

1

2
(t2H + s2H − |t− s|2H).
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We can write, if Iq is the multiple stochastic integral with respect to the isonormal process generated
by BH ,

VN = Iq(fN ) with fN =
1√
N

N∑
k=1

h⊗qk

and

UN = I2(gN ) with gN = N1−2H
N∑
l=1

h⊗2
l ,

where hk = 1[k−1,k) for k = 1, ..., N . In particular ‖hk‖H = 1 and

〈hk, hl〉H = ρH(k − l) (72)

with ρH from (53). Thus

〈DVN , DUN 〉 = 2qN
1
2
−2H

N∑
k,l=1

Iq−1(h
⊗(q−1)
k I1(hl)〈hk, hl〉

= 2qN
1
2
−2H

N∑
k,l=1

[
Iq(h

⊗(q−1)
k ⊗ hl) + (q − 1)Iq−2(h

⊗(q−1)
k ⊗1 hl)

]
〈hk, hl〉

= 2qN
1
2
−2H

N∑
k,l=1

[
Iq(h

⊗(q−1)
k ⊗ hl) + (q − 1)Iq−2(h

⊗(q−2)
k )〈hk, hl〉

]
〈hk, hl〉,

where we applied the product formula (85). Consequently,

E〈DVN , DUN 〉2

≤ cqN
1−4H

 N∑
i,j,k,l=1

〈h⊗(q−1)
i ⊗̃hj , h⊗(q−1)

k ⊗̃hl〉〈hi, hj〉〈hk, hl〉+ 〈hi, hk〉q−2〈hi, hj〉2〈hk, hl〉2


≤ cqN
1−4H

 N∑
i,j,k,l=1

〈hi, hk〉q−1〈hi, hj〉〈hk, hl〉〈hj , hl〉+
N∑

i,j,k,l=1

〈hi, hk〉q−2〈hi, hj〉〈hk, hl〉〈hi, hl〉〈hj , hk〉

+
N∑

i,j,k,l=1

〈hi, hk〉q−2〈hi, hj〉2〈hk, hl〉2
 =: a1,N + a2,N + a3,N .

We used Lemma 4.5 in [21] in order to expres the scalar product 〈h⊗(q−1)
i ⊗̃hj , h⊗(q−1)

k ⊗̃hl〉. Using
the inequality

〈hi, hj〉〈hk, hl〉〈hi, hl〉〈hj , hk〉 ≤
1

2

(
〈hi, hj〉2〈hk, hl〉2 + 〈hi, hl〉2〈hk, hj〉2

)
,
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we get a2,N ≤ a3,N so we have to estimate a1,N and a3,N . Now, by (72),

a3,N = cqN
1−4H

N∑
i,j,k,l=1

ρH(i− k)q−2ρH(i− j)2ρH(k − l)2

≤ cqN
1−4H

N∑
i,k=1

ρH(i− k)q−2

(
N∑

a=−N
ρH(a)2

)2

.

By using the bound
∑N

a=−N ρH(a)2 ≤ cHN4H−3 we obtain

a3,N ≤ cq,HN
4H−5

N∑
i,k=1

ρH(i− k)q−2 ≤ cq,HN4H−4
∑
k≥1

k(2H−2)(q−2)

≤ cq,HN
4H−4


1, if H < 1− 1

2(q−2)

log(N) if H = 1− 1
2(q−2)

N (2H−2)(q−2)+1 if H ∈
(

1− 1
2(q−2) , 1−

1
2q

)
.

For q = 3, we have for H ∈
(

3
4 ,

5
6

)
,

a3,N ≤ cHN6H−5 (73)

Let us deal with

a1,N = cq,HN
1−4H

N∑
i,j,k,l=1

ρH(i− k)q−1ρH(i− j)ρH(k − l)ρH(j − l).

This summand is the most complicated. Similar quantities (but not exactly the same!) have been
treated in e.g. [6], proof of Theorem 4.1. We decompose the sum over (i, j, k, l) ∈ {1, ..., N}4 upon
the following cases:

1. (i = j = k = l),

2. ((i = j = k, l 6= i), (i = j = l, k 6= i), (i = k = l, j 6= i), (j = k = l, i 6= j)),

3. ((i = j, k = l, k 6= i), (i = k, j = l, j 6= i), (i = l, j = k, j 6= i)),

4.

((i = j, k 6= i, k 6= l, l 6= i), (i = k, j 6= i, j 6= l, k 6= l), (i = l, k 6= i, k 6= j, j 6= i),

(j = k, k 6= i, k 6= l, l 6= i), (j = l, k 6= i, k 6= l, j 6= i), (k = l, k 6= i, k 6= j, j 6= i)) .

5. i, j, k, l are all different.

We denote by a
(j)
1,N , j = 1, 2, 3, 4, 5 the sum of all the terms from the groups 1.-5. defined above. The

first of these terms can be easily estimated since

a
(1)
1,N = cq,HN

1−4H
N∑
i=1

ρH(0)q+2 = cq,HN
2−4H . (74)
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For, the first sum from point 2.

cq,HN
1−4H

N∑
i,l=1

ρH(i− l)2 ≤ cq,HN2−4H
N∑
i=1

i4H−4 ≤ cq,HN2−4HN4H−3 = cq,HN
−1

while the second from point 2.

cq,HN
1−4H

N∑
i,k=1

ρH(i− k)q ≤ cq,HN2−4H
∑
k∈Z

ρH(k)q ≤ cq,HN2−4H .

So, by symmetry,

a
(2)
2,N ≤ cq,H(N−1 +N2−4H) ≤ cq,HN−1. (75)

The sums from group 3. are similar to the those from group 2. and we get

a
(3)
1,N ≤ cq,HN

−1. (76)

Let us with the summands corresponding to point 4. The first one in this set reads

cq,HN
1−4H

∑
i 6=k 6=l 6=i

ρH(i− k)q−1ρH(k − l)ρH(i− l)

≤ cqN2−4H
N∑

a,b=−N
|ρH |(a− b)q−1|ρH |(a)|ρH |(b) ≤ cqN2−4H

N∑
a,b=−N

|ρH |(a− b)q−1|ρH |(a)2

≤ cq,HN2−4H
N∑

a=−N
|a|4H−4

2N∑
b=−2N

|b|(2H−2)(q−1).

It follows that this term is less than

cq,H


N−1 if H < 1− 1

2(q−1)

N−1 logN if H = 1− 1
2(q−1)

N (2H−2)(q−1)+2 if H ∈
(

1− 1
2(q−1) , 1−

1
2q

)
.

Regarding the second summant in 4., we can bound as follows

cq,HN
1−4H

∑
i 6=j 6=l 6=i

ρH(i− j)ρH(i− l)ρH(j − l)

≤ cq,HN1−4HN3N6H−6 1

N3

∑
i 6=j 6=l 6=i

(
|i− j|
N

)2H−2( |i− l|
N

)2H−2( |j − l|
N

)2H−2

= cq,HN
2H−2 1

N3

∑
i 6=j 6=l 6=i

(
|i− j|
N

)2H−2( |i− l|
N

)2H−2( |j − l|
N

)2H−2

≤ cq,HN2H−2,
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since the quantity 1
N3

∑
i 6=j 6=l 6=i

(
|i−j|
N

)2H−2 ( |i−l|
N

)2H−2 ( |j−l|
N

)2H−2
is a Riemann sum that converges

to
∫

[0,1]3 |x− y|
2H−2|y− z|2H−2|z− x|2H−2dxdydz <∞. We have similar bounds for the other terms

and we get

a
(4)
1,N ≤ cq,HN

2H−2. (77)

Notice that the estimation of the dominant term, the second in this group is sharp.
For the only summand in group 5., we separate its analysis uopon all the possible orders:

i > j > k > l, i > j > l > k, ....... The first summand is treated as follows

cqN
1−4H

∑
i>j>k>l

ρH(i− k)q−1ρH(i− j)ρH(k − l)ρH(j − l)

≤ cq,HN
1−4H

∑
i>j>k>l

|i− k|2H−2)(q−1)|i− j|2H−2|k − l|2H−2|j − l|2H−2

≤ cq,HN
1−4H

∑
i>j>k>l

|i− k|(2H−2)(q−1)|i− j|2H−2|k − l|4H−4

≤ cq,HN
1−4H

∑
i>j>k

|i− k|(2H−2)(q−1)|i− j|2H−2
N∑

l=−N
|l|4H−4

≤ cq,HN
−2

∑
i>j>k

|i− k|(2H−2)(q−1)|i− j|2H−2

≤ cq,HN
−2
∑
i>k

|i− k|(2H−2)(q−1)
N∑

j=−N
|j|2H−2 ≤ cq,HN2H−3

∑
i>k

|i− k|(2H−2)(q−1)

≤ cq,HN
2H−2

N∑
k=1

k(2H−2)(q−1).

With analogous estimates for the other cases of point 5., we obtain

a
(5)
1,N ≤ cq,H


N2H−2 if H < 1− 1

2(q−1)

N2H−2 logN if = 1− 1
2(q−1)

N (2H−2)q+1 if H ∈
(

1− 1
2(q−1) , 1−

1
2q

)
.

(78)

So, by (74), (75), (76), (77) and (78)

a1,N ≤ cq,H

N
2H−2 if H ∈

(
3
4 , 1−

1
2(q−1)

)
N (2H−2)q+1 if H ∈

(
1− 1

2(q−1) , 1−
1
2q

)
.

Thus

E〈DVN , DUN 〉2 ≤ cq,H

N
2H−2 if H ∈

(
3
4 , 1−

1
2(q−1)

)
N (2H−2)q+1 if H ∈

(
1− 1

2(q−1) , 1−
1
2q

)
,

, (79)
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the bound on the first branch being immaterial for q = 3, 4. If q = 3, then

E〈DVN , DUN 〉2 ≤ cHN6H−5. (80)

We then obtain (68).

Remark 5. 1. For q = 3, we have from (71), (73) and (80),

dW

(
(VN , UN ), (Z, c2,HR

(2H−1))
)
≤ CH

{
N

3
2
−2H if H ∈

(
3
4 ,

4
5

)
N3H− 5

2 if H ∈
[

4
5 ,

5
6

)
.

(81)

2. It follows from the above calculation that the quantity
(
E〈DVN , DUN 〉2

) 1
2 , which somehow

measures the correlation between VN and UN has the same size, for N large, as dW (VN , Z)
(compare (69) and (79)).

3. A quantitative bound for the above limit theorem can be also obtained by using the estimate
(39) in Remark 3. Notice that (39)gives

E〈DVN , DUN 〉2 ≤ CHE (‖fN ⊗1 fN‖+ ‖fN ⊗2 fN‖) .

By using the calculations in the proof of Theorem 4.1 in [6] and since EGN ≤ CH (with CH > 0
not depending on N), we get

E〈DVN , DUN 〉2 ≤ CH
(
N−

1
2 +NH−1 +N1−q(1−H)

)
,

which is in general less good than (68). For instance, if q = 3, we have

E〈DVN , DUN 〉2 ≤ CH
(
N−

1
2 +NH−1 +N3H−2

)
,

and leads, for H ∈
(

3
4 ,

5
6

)
, to

dW

(
(VN , UN ), (Z, c2,HR

(2H−1))
)
≤ CHN

3H
2
−1,

which clearly is less optimal than (81).

5.4 The evolution of the solution to a semilinear stochastic equation

The theory developed in Section 2 can also be applied to quantify the evolution of a stochastic
system defined by a stochastic differential equation. We present here a very simple example (a more
complex situation, in the KPZ context, has been treated in [14]). Let λ ∈ R and consider the
stochastic equation

Xλ
t = X0 + λ

∫ t

0
b(Xλ

s )ds+Wt, t ≥ 0 (82)
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where (Wt, t ≥ 0) is a Wiener process. We assume that the drift b : R → R is differentiable and
satisfies |b′(x)| ≤ M for every x ∈ R. Then (82) admits a unique solution which is Malliavin
differentiable and (see e.g. Exercice 2.2.1 in [10]) for a < t,

DaX
λ
t = e

∫ t
a b
′(Xλ

s )ds.

The solution to (82) is a Gaussian process for λ = 0 and for λ 6= 0, its law is non-Gaussian if b is
nonlinear. Theorem 1 allows to quantify the dependence structure between the components of the
vector (Xλ

t , X
0
t ) at each time t > 0. Indeed, by Theorem 1,

dW

(
P(Xλ

t ,X
0
t ), PXλ

t
⊗ PX0

t

)
≤ C

∫ t

0
DaX

λ
t da

≤ C
∫ t

0
e
∫ t
a b
′(Xλ

s )dsda ≤ C
∫ t

0
eλM(t−λ) =

C

Mλ
(eMλt − 1) := g(λ).

The function g provides a quantitative estimate for the dependence between Xλ and X0 for any λ,
at any time. This function converges to a constant when λ→ 0 and to infinity as λ→∞. When λ
tends to −∞, g(λ) converges to zero, i.e. the drift forces the solution to (82) to be independent of
the noise at each time.

6 Appendix

In this appendix, we presents the main tools of the Malliavin calculus and the definition of Wasserstein
distance.

6.1 Wiener-Chaos and Malliavin derivatives

Here we describe the elements from stochastic analysis that we will need in the paper. Consider H
a real separable Hilbert space and (W (h), h ∈ H) an isonormal Gaussian process on a probability
space (Ω,A, P ), which is a centered Gaussian family of random variables such that E [W (ϕ)W (ψ)] =
〈ϕ,ψ〉H . Denote by In the multiple stochastic integral with respect to B (see [10]). This mapping
In is actually an isometry between the Hilbert space H�n(symmetric tensor product) equipped with
the scaled norm 1√

n!
‖ · ‖H⊗n and the Wiener chaos of order n which is defined as the closed linear

span of the random variables Hn(W (h)) where h ∈ H, ‖h‖H = 1 and Hn is the Hermite polynomial
of degree n ∈ N

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as follows: for m,n positive integers,

E (In(f)Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (83)

It also holds that
In(f) = In

(
f̃
)
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where f̃ denotes the symmetrization of f defined by the formula

f̃(x1, . . . , xn) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable with respect to the σ-
algebra generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F =

∞∑
n=0

In(fn) (84)

where fn ∈ H�n are (uniquely determined) symmetric functions and I0(f0) = E [F ].

Let L be the Ornstein-Uhlenbeck operator

LF = −
∑
n≥0

nIn(fn)

if F is given by (84) and it is such that
∑∞

n=1 n
2n!‖fn‖2H⊗n <∞.

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space Dα,p as the closure of the set
of polynomial random variables with respect to the norm

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω)

where I represents the identity. We denote by D the Malliavin derivative operator that acts on
smooth functions of the form F = g(W (h1), . . . ,W (hn)) (g is a smooth function with compact
support and hi ∈ H)

DF =
n∑
i=1

∂g

∂xi
(W (h1), . . . ,W (hn))hi.

The operator D is continuous from Dα,p into Dα−1,p (H) . The adjoint of D is the divergence integral,
denoted by δ. It acts from Dα−1,p (H) onto Dα,p.

We will intensively use the product formula for multiple integrals. It is well-known that for
f ∈ H�n and g ∈ H�m

In(f)Im(g) =
n∧m∑
r=0

r!

(
n
r

)(
m
r

)
Im+n−2r(f ⊗r g) (85)

where f ⊗r g means the r-contraction of f and g (see e.g. Section 1.1.2 in [10]). This contraction is
defined, when H = L2(T,B, ν) (where ν is a sigma-finite measure without atoms)

(f ⊗r g)(t1, ..., tn+m−2r) =

∫
T r
f(u1, ..., ur, t1, ..., tn−r)g(u1, ..., ur, tn−r+1, ..., tn+m−2r)du1....dur,

(86)
for r = 1, ..., n ∧m and f ⊗0 g = f ⊗ g, the tensor product. It holds that f ⊗r g ∈ H⊗n+m−2r =
L2(Tn+m−2r). In general, the contraction f ⊗r g is not symmetric and we denote by f⊗̃rg its
symmetrization.
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