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Abstract

We consider a diatomic molecule driven by a linearly polarized laser pulse with a polarization

axis rotating with a constant acceleration. This setup is referred to as optical centrifuge, and it

is known to lead to high-angular momenta for the molecule (superrotor states) and, possibly, to

dissociation. Here we elucidate the dynamical mechanisms behind the creation of superrotor states

and their dissociation. We unravel the role of the various parameters of the laser field in these

processes by considering reduced Hamiltonian models encapsulating the different phases in the

creation of superrotor states, possibly leading to dissociation.

INTRODUCTION

The interaction between matter and laser light has played a major role in probing matter

at unprecedented temporal and spatial scales, providing more complex dynamical processes

than anticipated. For example, when an atom is subjected to an intense laser field, the

complex interplay between the electron-core Coulomb force and the force exerted by the

electric field leads to single to multiple electron ionizations (see, e.g., Refs. [1, 2] and ref-

erences therein), evidencing the pivotal role of electron-electron interaction in strong-field

processes. At the same time, the identification of the dynamical processes resulting from

these interactions has opened up a broad and multi-disciplinary research field to the manip-

ulation of matter by fine tuning the parameters of the laser. For instance, when a molecule

is subjected to an optical wave, the interaction between the electric field of the wave and the

induced dipole moment of the molecule, makes it possible to control its rotation (see, e.g.,

Refs. [3, 4]) and its spatial orientation or alignment (see, e.g., Refs. [5–10]). In particular,

molecular alignment is of great importance in chemical reactions since the initial relative ori-

entation between reactants has, in many situations, a great impact on the reaction rate [11].

Another example of the manipulation of matter using lasers is the optical centrifuge

for molecules. This technique was proposed in Ref. [12] to control and bring molecules to

extreme rotational states. In a nutshell, an optical centrifuge consists of an infrared linearly

polarized laser pulse, whose polarization axis rotates with constant angular acceleration.
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Because a molecule in the presence of that field will tend to align along the polarization

axis of the laser, the molecule will be forced to follow the laser rotation as well. Therefore,

molecules in an optical centrifuge can be excited to such very high rotational levels that

they eventually dissociate [13–16]. Ultimately, the ability of the optical centrifuges to create

those so-called superrotor states, has been widely used in a large number of experiments

in, for example, molecular spectroscopy [17–19], molecular dynamics [20–28] or to study

molecular magnetic properties [29–31].

The interaction in an optical centrifuge for molecules is of nonlinear nature. To a large

extent, this interaction is characterized by the presence of a Coriolis term in the Hamiltonian

that appears explicitly when the problem is formulated in a reference frame rotating with the

polarization axis of the laser used in the centrifuge. Parameters of the laser such as the laser

pulse profile, the angular acceleration of the polarization axis of the laser and the strength

of its electric field are involved in the dynamical processes and can be used to control the

amount and type of superrotor states. In order to differentiate the role played by each of

these parameters in the creation of the molecular superrotors, several investigations have

considered a classical mechanical treatment [12, 15, 16]. In these investigations, different

theoretical approaches are proposed, all of them revealing the essential role the Coriolis term

plays in the high-angular acceleration of molecules in an optical centrifuge.

Here the main goal of our article is unravel the role of each parameter of the laser in the

building up of superrotor states. We also would like to understand why some superrotor

states end up dissociating and some others do not. By using nonlinear dynamics, we are able

to precisely identify the dynamical mechanisms responsible for the creation and dissociation

of these superrotor states. By identifying and analyzing reduced Hamiltonian models we are

able to assess the role each parameter of the laser plays in these processes. More precisely,

following a similar scheme to the one we used in Refs. [32, 33], we study the classical dynamics

of a diatomic molecule in an optical centrifuge. As a model example, we take the Cl2 molecule

which has been used in Refs. [12, 15]. Besides the kinetic terms and the potential energy

between the Cl atoms, the rovibrational Hamiltonian of the system includes the interaction

between the molecular polarizability and the laser pulse. The resulting Hamiltonian model

for the dynamics of the molecule in an optical centrifuge has 3 + 1/2 degrees of freedom

(i.e., the 3 degrees of freedom of the molecule plus the explicit time dependence of the laser

field). It should be noted that the explicit time dependence is twofold: On the one hand, we
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have the polarization axis of the laser rotating with constant angular acceleration. On the

other hand, we have an additional time dependence coming from the laser pulse envelope,

which consists of a ramp-up, a plateau and a ramp-down. None of these two explicit time

dependencies are periodic.

The questions we address here are: Why do some molecular states lead to superrotors and

some even nearby states do not? Why do some superrotor states end up dissociating and

some others do not? What are the roles of the laser parameters in the nonlinear dynamics

of molecular superrotors?

In Sec. I, we explicit the model we use for the interaction between the laser pulse and

the Cl2 molecule. In particular, we briefly review the method to average the dynamics

over one laser period. We also construct the polarizabilities of the molecule, a crucial

ingredient in the model. In Sec. II, we detail the computation of dissociation probabilities

and highlight some puzzling characteristics when the amplitude of the laser field is varied.

We conclude this section with a list of questions regarding the dynamical mechanisms behind

these probability curves. In Sec. III, we analyze two reduced Hamiltonian models to fully

characterize these dynamical mechanisms: one model to characterize the mechanisms for

the creation of superrotor states, the other one for the possible dissociation of these states.

I. OPTICAL CENTRIFUGE FOR DIATOMIC MOLECULES: THE HAMILTO-

NIAN MODEL

A. The interaction Hamiltonian

Under Born-Oppenheimer approximation, we consider a diatomic molecule in the presence

of a strong linearly polarized laser field E(t) of amplitude F0, frequency ω and pulse profile

f(t). If the polarization axis of the laser is slowly rotating in the xy-plane, the electric field

E(t) writes as [12]

E(t) = F0f(t)[x̂ cos Φ(t) + ŷ sin Φ(t)] cosωt, (1)

where Φ(t) is the instantaneous polarization angle of the laser. We consider the situation

where the polarization axis rotates with constant angular acceleration β, so that Φ(t) =
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βt2/2. Hereafter, we assume that the laser pulse profile f(t) is a sine ramp-up function

f(t) =



sin
(
πt
2tu

)
if 0 ≤ t < tu,

1 if tu ≤ t ≤ tu + tp,

sin
(
π(tu+tp+td−t)

2td

)
if tu + tp < t ≤ tu + tp + td,

0 otherwise,

where tu is the duration of the ramp-up of the laser field, tp the duration of its plateau and

td the duration of the ramp-down. This sine ramp-up envelope has been previously used

in Refs. [32, 34], and it is used to mimic experimental laser pulses with a rather smooth

ramp-up and ramp-down [35]. With the electric field (1) we irradiate a diatomic molecule.

In Cartesian coordinates (x, y, z), the dynamics resulting from the interaction between the

laser field and the diatomic molecule is governed by the Hamiltonian

H =
p2
x + p2

y + p2
z

2µ
+ ε(r)− d(r) · E(t) + E(t) · α(x, y, z)E(t), (2)

where r is the interatomic distance r = (x2 + y2 + z2)1/2 and α is the polarizability matrix

of the diatomic molecule. Here µ is the reduced mass of the diatomic molecule and ε(r) is

its potential energy curve.

If the frequency ω of the laser is much larger than the rotational frequencies of the

diatomic molecule (typically, ω is in the infrared regime), Hamiltonian (2) can be averaged

over one laser period (e.g., using a canonical Lie transform). The averaged Hamiltonian

becomes

H =
p2
x + p2

y + p2
z

2µ
+ ε(r) + VL(x, y, z, t), (3)

where the interaction potential VL of the molecule with the laser is given by

VL(x, y, z, t) = −1

4
F 2

0 f(t)2[∆α(r) cos2 θl + α⊥(r)].

In the above expression ∆α(r) = α‖(r)−α⊥(r), with α‖(r) and α⊥(r) being the parallel and

perpendicular components of the polarizability, and θl is the angle between the molecular

axis and the electric field E(t).

When the problem is formulated in a reference frame (x′, y′, z′) rotating with the frequency

Ω(t) = Φ̇(t) = βt of the polarization axis (by applying a canonical change of coordinates),

the time dependence is reduced to Ω(t) and to the pulse profile f(t), in such way that
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Hamiltonian (3) becomes

H′ =
p′2x + p′2y + p′2z

2µ
− Ω(t)(x′p′y − y′p′x) + ε(r)− F 2

0

4
f(t)2[∆α(r) cos2 θl + α⊥(r)]. (4)

In this rotating frame, the x′-axis marks the direction of the polarization vector of the

electric field, and the angle θl satisfies cos θl = x′/r. After dropping primes on coordinates

and momenta for simplification, Hamiltonian (4) reads

H =
p2
x + p2

y + p2
z

2µ
− Ω(t)(xpy − ypx) + ε(r)− F 2

0

4
f(t)2

[
∆α(r)

x2

r2
+ α⊥(r)

]
. (5)

It is convenient to formulate Hamiltonian (5) in spherical (canonical) coordinates (r, θ, φ, pr, pθ, pφ)

where θ ∈ [0, π] and φ ∈ [−π, π[. In this coordinate system, Hamiltonian (5) read as

H =
1

2µ

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+ ε(r)− Ω(t)pφ −

F 2
0

4
f(t)2[∆α(r) sin2 θ cos2 φ+ α⊥(r)].

We notice that the manifold defined by θ = π/2 and pθ = 0 is invariant under the dynamics.

In this manifold, the system reduces to the following Hamiltonian system in the canonical

coordinates (r, φ, pr, pφ),

H2D =
1

2µ

(
p2
r +

p2
φ

r2

)
+ ε(r)− Ω(t)pφ −

F 2
0

4
f(t)2[∆α(r) cos2 φ+ α⊥(r)]. (6)

In the manifold defined by θ = π/2 and pθ = 0, the molecular motion takes place in the xy-

plane, so that pφ is the total angular momentum of the molecule. For the sake of simplicity,

we reduce our study to that manifold θ = π/2 and pθ = 0.

B. A case study: The chlorine molecule

In order to study the dynamics arising from Hamiltonian (6), we consider the chlorine

molecule Cl2 (µ ≈ 32548.53 a.u.) as a model example.

1. Potential energy curve

The electronic potential energy curve ε(r) for the chlorine molecule is modeled by means

of a Morse potential

ε(r) = De [1− exp(−γ(r − re))]
2 −De,

where re ≈ 3.7560 a.u. is the equilibrium distance, De ≈ 0.0915 a.u. is the potential well

depth, and γ ≈ 1.0755 a.u. is the width parameter [36].
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2. Parallel and perpendicular polarizabilities

We follow Refs. [37, 38] to construct analytic functions for α‖(r) and α⊥(r). In the range

of small r, the Cl2-polarizability functions in atomic units are given by polynomials of the

form

αSR
‖ (r) = 42.13 + 15.40(r − re) + 5.40(r − re)

2 − 5.25(r − re)
3, (7a)

αSR
⊥ (r) = 25.29 + 2.87(r − re)− 0.09(r − re)

2 − 0.42(r − re)
3, (7b)

where r and re are also in atomic units. On the other side, the asymptotic behavior of the

polarizabilities is well described by the Silberstein expressions [39, 40]:

αLR
‖ (r) =

αCl2 + 4α2
Cl/r

3

1− 4α2
Cl/r

6
, (8a)

αLR
⊥ (r) =

αCl2 − 2α2
Cl/r

3

1− α2
Cl/r

6
, (8b)

where αCl ≈ 15.5421 a.u. is the atomic polarizability of the Cl atom and αCl2 = 2αCl. In

the middle internuclear distances, we find α‖,⊥ joining the polarizability functions for small

and large r [given by Eqs. (7a)-(7b) and (8a)-(8b), respectively]. As joining functions we

use two polynomials of degree five,

αMR
‖ (r) =

5∑
k=0

akr
k,

αMR
⊥ (r) =

5∑
k=0

bkr
k.

The ak and bk coefficients are found imposing continuity conditions up to the second deriva-

tives [38]. The joining points were taken at r1 = 5 a.u. and r2 = 10 a.u. for α‖(r), and

at r1 = 3 a.u. and r2 = 6 a.u. for α⊥(r). The values of the corresponding coefficients are

given in Table I. In Fig. 1, the potential energy curve ε(r) and the fitted curves α‖,⊥(r) are

displayed.

II. SUPERROTOR STATES AND DISSOCIATION PROBABILITY

The laser interaction in Hamiltonian (6) is expected to drive the Cl2 molecule so that the

molecule acquires very high angular momentum states, and may eventually dissociate. In
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TABLE I. Values (in atomic units) of the parameters for the medium-range behavior of the

polarizability curves α‖,⊥(r).

a0 = −1599.0948 a1 = 1064.7017 a2 = −262.7959 a3 = 31.2872 a4 = −1.8165 a5 = 0.0414

b0 = 68.2895 b1 = −56.3914 b2 = 25.5238 b3 = −5.3392 b4 = 0.5409 b5 = −0.0216

FIG. 1. Electronic potential energy curve ε(r) (left panel), and parallel α‖(r) and perpendicular

α⊥(r) components of the molecular polarizability (right panel) of the Cl2 molecule. The values are

in atomic units.

this way, it is natural to compute the dissociation probability as a function of the different

pulse parameters, in particular, the electric field strength F0 and the duration of the ramp-up

tu, the plateau tp, and the ramp-down td. In order to understand the shape of the dissociation

probability as function of the laser parameters, a method is to investigate the phase-space

structures associated with Hamiltonian (6), since the shape of the probability curves are

nothing but an average of the underlying dynamics (i.e., the phase space structures), which

is largely controlled by the various pulse parameters. Because the additional half degree of

freedom arising from the explicit time dependence in Hamiltonian (6) prevents the convenient

exploitation of Poincaré sections, we do not have general-purpose tools to uncover easily

the global phase-space structure of Hamiltonian (6). Therefore, we first analyze sample

trajectories, trying to understand from that study the role of the various parameters of the
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laser pulse in shaping the dissociation probability curves. From an inspection of individual

trajectories, we then formulate some hypotheses in the various steps of the dissociation

process, and build reduce models associated with each step in this process.

A. Computation of the dissociation probability

We compute numerically the dissociation probability P (F0) as a function of the laser

amplitude F0 and for different values of tu, tp and td. As an initial sample, we consider a

large ensemble of Cl2 molecules, whose dynamics is governed by the field-free Hamiltonian

H0 =
1

2µ

(
p2
r +

p2
φ

r2

)
+ ε(r). (9)

Considering that initially the energy of the molecules is close to its ground state, Hamiltonian

(9) can be replaced by its (quantum) harmonic approximation given

E0 = H0 ≈ −De + ωe

(
n+

1

2

)
+ J(J + 1)Be, n = 0, 1, 2, ..., J = 1, 2, ..., (10)

where ωe = 2.5502 × 10−3 a.u. and Be = 1.1098 × 10−6 a.u.. Once the values of n and

J are fixed, all the initial conditions (r(0), pr(0), φ(0), pφ(0) =
√
J(J + 1)) of the molecules

correspond to the same energy E0. The values of r(0) are randomly chosen in the interval

r(0) ∈ [rm, rM ], where rm and rM are the minimum and the maximum values of r allowing

the condition

E0 =
p2
φ

2µr2
+ ε(r),

to be satisfied. For each value of r(0), the initial value value of pr(0) is given by Hamilto-

nian (9). Finally, the values for φ(0) are randomly chosen in the interval [0, 2π). Then, by

the numerical integration of the equations of motion associated with Hamiltonian (6), we

propagate the ensemble of trajectories for the duration of the pulse. Typically, we consider

ensembles of the size of 40000 trajectories. For the numerical integration of the trajectories

we use the fourth order symplectic integrator BM64 of Ref. [41] with a time step of 0.01 a.u..

The numerical codes (in Python) are available at https://github.com/cchandre/OCDM.

In order to characterize accurately the trajectories which dissociate or not, we consider

the dissociation criterion obtained from Hamiltonian (6) after the end of the laser pulse

which is equivalent to considering

H =
p2
r

2µ
+

p2
φ

2µr2
+ ε(r).

9
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Its dynamics is equivalent to the one of a one-dimensional particle in an effective potential

Veff(r) =
p2
φ

2µr2
+ ε(r),

parameterized by pφ which we assume to be positive in this section without loss of generality.

The effective potential is depicted in Fig. 2 for different values of pφ. We notice the presence

of a local minimum and a local maximum for small values of pφ. These minima and maxima

correspond to stable and unstable equilibria, respectively. For a critical value of pφ = p∗φ

(p∗φ ≈ 394.85 a.u.), there is a saddle-node bifurcation and there is no local minima for larger

values of pφ.

For pφ > p∗φ, all trajectories dissociate since there are no local extrema. For pφ ≤ p∗φ,

trajectories have the possibility to remain bounded, provided the value of r is smaller than

the location of the local maximum and that its energy is smaller than the height of the

potential barrier.

If initially some trajectories are in the vicinity of the minimum of the potential well around

r ≈ re and pφ is changed adiabatically, r(t) experiences larger and larger oscillations around

a position r∗(pφ) which increases from r = re to r = r∗(p∗φ) ≈ 4.87 a.u. provided that pφ < p∗φ

(see thin black line in Fig. 2). For larger values of pφ, all the trajectories dissociate. In short,

the dissociation criterion is the following one: If the final angular momentum pφ at the end

of the pulse has a modulus larger than p∗φ ≈ 394.85 a.u., dissociation takes place since for

|pφ| > p∗φ, molecular bond is not possible; there is dissociation. When |pφ| ≤ p∗φ, molecular

bond is possible provided the final radial distance r is small enough [smaller than the location

of the local energy barrier of the effective potential Veff(r)] and the energy is smaller than

the local maximum of the effective potential. Otherwise, the molecule dissociates.

We consider laser pulses with electric amplitude F0 between 10−2 and 3×10−2 a.u., which

corresponds to a laser fields with maximum intensity 3 × 1013 W/cm2. First, it is worth

noticing that for a pulse duration of 45 ps or less, the dissociation probability is zero for all

F0. In Fig. 3 the dissociation probability P (F0) for the same ensemble of initial conditions

with energy in the ground state n = 0 and with the initial rotational state J = 30 is

represented as a function of the amplitude of the electric field F0 for β = 3× 10−10 a.u. and

for four pulses with equal tu = td = 5 ps, and with tp =40, 50, 60 and 120 ps, respectively.

In the cases depicted in Fig. 3, the dissociation probability is zero below F0 ≈ 0.013 a.u.

and increases sharply from 0 to 1 in the interval 0.013 . F0 . 0.03 (in atomic units), in a
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FIG. 2. Effective potential Veff(r) for five different values of pφ. The thin continuous line indicates

the location r∗(pφ) and energy of the local minimum of the effective potential. The thin dashed

line represents the location and energy of its local maximum.

non monotonic way with some rather large sawtooth oscillations. Interestingly, we find that

P (F0) takes equal values for all durations of the plateau tp larger than 50 ps.

B. Individual trajectories

In order to analyze the dissociation probability curves P (F0), we first look at sample

trajectories. In Fig. 4, some sample trajectories are displayed for a laser pulse with F0 =

0.015, β = 3 × 10−10 a.u., tu = td = 5 ps and tp = 40 ps. We focus on the time evolution

of r(t) and pφ(t) of typical trajectories. From Fig. 4(a), we observe that, during most of the

duration of the pulse, the radial distance r(t) remains almost constant for all trajectories,

and by the end of the pulse, some of the trajectories begin to dissociate [i.e., r(t) sharply

increases, red curves in Fig. 4(a)]. We clearly notice three main types of trajectories, and

this observation is also made for other values of the parameters. We associate different

colors with these three types of trajectories: The red trajectories are the ones which end
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FIG. 3. Dissociation probability P (F0) computed from Hamiltonian (6) for β = 3 × 10−10 a.u.

and for an ensemble of initial conditions with energy given by Eq. (10) for n = 0 and J = 30. The

parameters of the pulse are tu = td = 5 ps and tp =40, 50, 60 and 120 ps. The black curve is the

probability of type-L trajectories (see Sec. II B).

up dissociating, while the black and blue remain bounded. From Fig. 4(b), roughly after

the ramp-up, we notice two qualitatively different types of trajectories: the ones which

experience a linear increase in angular momentum pφ (referred to as type L), and the ones

which do not (referred to as type C). The type-C trajectories are clearly not dissociating since

at the end of the pulse, the radial distance r(t) remains bounded. The type-C trajectories are

displayed in black in Fig. 4. Interestingly, we observe that, although all type-L trajectories

experience a linear increase of their angular momentum during the pulse, not all the type-L

trajectories eventually dissociate (only the red trajectories in Fig. 4 do). We remark that,

regardless of their dissociation fate, all type-L trajectories end up acquiring a very large

angular momentum –in a rather narrow range of values–, displaying in all cases a so-called

superrotor behavior. We remark that we have checked that all dissociating trajectories are
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FIG. 4. Typical trajectories of Hamiltonian (6) for F0 = 0.015 a.u. and β = 3 × 10−10 a.u. The

upper panel displays r(t), and the lower panel pφ(t) for 20 trajectories. The parameters of the

pulse are tu = td = 5 ps and tp = 40 ps. The blue and black trajectories remain bounded at the

end of the pulse, whereas the red ones are dissociating. The vertical line represents the end of the

plateau of the laser pulse.

of type L.

It is also interesting to plot particular type-L and type-C trajectories in a Cartesian

rotating frame (x, y) as an alternative view of the dynamics. We find that the type-C

trajectory depicted in Fig. 5(a) shows a rotational behavior indicating that the field is not

able to align type-C trajectories. However, the type-L trajectories in Figs. 5(b)-(c) show

that, after a short transient, the molecule is mostly moving in the neighborhood of the x axis,

which indicates a high molecular alignment along the field direction. Furthermore, whether

or not they dissociate, that alignment is gained by all type-L orbits. In Fig. 3, we plot the

occurrence probability of type-L trajectories as a function of the amplitude F0 for tu = td = 5

13



-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

y 
(a

.u
.)

x (a.u.)
-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

y 
(a

.u
.)

x (a.u.)
-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

y 
(a

.u
.)

x (a.u.)

(a) (b) (c)

FIG. 5. Typical trajectories of Hamiltonian (6) for F0 = 0.015 a.u. and β = 3 × 10−10 a.u. (a)

Trajectory of type C; (b) non-dissociating trajectory of type L; (c) dissociating trajectory of type

L. The parameters of the pulse are tu = td = 5 ps and tp = 40 ps.

ps and tp = 40 ps. We notice that this probability increases sharply and smoothly at around

F0 ≈ 0.01 a.u. and then saturates at around F0 ≈ 0.03 a.u.. In particular, this probability

does not display any sawtooth oscillations like the ones of the dissociation probability curves.

In addition, the probability curves always remain below the occurrence probability of the

type-L trajectories (which is expected since all dissociating trajectories are found to be of

type L). We notice that since the angular momentum increases early in the laser pulse,

the distinction between type-L and type-C is made also early in the pulse, and hence this

curve is the same for an increasing duration of the plateau. In Fig. 3, for large values of

F0 and as the length of the plateau is increased, the dissociation probability gets closer to

the type-L occurrence probability. However, for intermediate values of F0, the dissociation

probabilities do not change significantly when the duration of the plateau increases beyond

50 ps. In other words, regardless of the value of F0 between 0.01 a.u. and 0.017 a.u., there

remains some non-dissociating type-L trajectories.

If the field strength F0 is large enough (larger than 0.017 a.u.) and the plateau is suffi-

ciently long (longer than 50 ps), all the type-L trajectories will eventually dissociate, and the

probability curve is smooth. Otherwise, some of the type-L trajectories, although experienc-

ing a linear increase in their angular momentum, will never dissociate, and the dissociation

probability curve exhibits sawtooth oscillations.

At this stage, we rule out one possible scenario: From Fig. 4, we see that the dissociation

or not of the type-L trajectories is happening during the ramp-down. It is tempting to
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FIG. 6. Typical trajectories of Hamiltonian (6) for F0 = 0.015 a.u. and β = 3 × 10−10 a.u. The

upper panel displays r(t), and the lower panel pφ(t) for 20 trajectories. The parameters of the

pulse are tu = td = 5 ps and tp = 60 ps. The blue and black trajectories remain bounded at the

end of the pulse, whereas the red ones are dissociating. The vertical line represents the end of the

plateau of the laser pulse.

attribute the dissociation fate to the ramp-down. However, the ramp-down is not responsible

for this. We compute typical trajectories for a length of the plateau tp = 60 ps in Fig. 6.

For a larger pulse duration, we see that there are still three types of trajectories and that

the dissociation occurs at about the same time between 45 and 50 ps, so no longer during

the ramp-down.

All these observations on typical trajectories raise two main questions: What causes the

linear growth of the angular momentum for some but not for all trajectories? What causes a

type-L trajectory to dissociate or not? In order to address these questions, we investigate the
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nonlinear dynamics of the superrotors using reduced models. This investigation will allow

us to better understand the role of the various parameters of the laser in the superrotor

dynamics.

III. NONLINEAR DYNAMICS OF SUPERROTORS AND DISSOCIATION

A. The angular Hamiltonian model for the superrotors

First, we focus on the dynamical mechanism which discriminates type-L from type-C

trajectories. For type-C trajectories, we notice that the distance r remains close to the

minimum of the potential energy surface located at re ≈ 3.7560 a.u.. After the ramp-up,

type-L trajectories experience a linear growth of their angular momentum. However, during

this phase of linear growth, the distance r between the two atoms do not vary significantly,

and remains also close to the minimum of the potential energy surface, i.e., r ≈ re.

At least during the initial phase of the pulse, a good approximation is obtained by freezing

the radial degree of freedom. Hamiltonian (6) reduces to the following angular Hamiltonian

H2D,red =
p2
φ

2µr2
− Ω(t)pφ −

F 2
0

4
∆α(r) cos2 φ, (11)

with one and a half degrees of freedom since r is constant. In order to analyze its dynamics,

we perform the following time-dependent canonical change of coordinates:

φ̃ = φ, (12a)

p̃φ = pφ − µr2Ω(t) = pφ − µr2βt. (12b)

In this way, the explicit time dependence is removed from Hamiltonian (11), and the Hamil-

tonian becomes

H̃2D,red =
p̃2
φ

2µr2
− F 2

0

4
∆α(r) cos2 φ̃+ µr2Ω̇(t)φ̃. (13)

Hamiltonian H̃2D,red is time independent since Ω̇(t) = β, and, therefore, it is integrable since

it only has one degree of freedom. Consequently, Hamiltonian (11) is also integrable since

the following quantity is a conserved quantity

C(φ, pφ, t) =
(pφ − µr2βt)2

2µr2
− F 2

0

4
∆α(r) cos2 φ+ µr2βφ.
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In order to analyze the dynamics of Hamiltonian (13), we use a dimensionless version of

Hamiltonian (11). Indeed, we define dimensionless time and momentum as τ = t
√
β and

p = p̃φ/µr
2
√
β, respectively, so that Hamiltonian (13) becomes

H(x, p) =
p2

2
+ x− η−1 cos2 x, (14)

where η = 4µr2β/(F 2
0 ∆α(r)), and the energy is measured in units of µr2β. Here x is able to

take any value, not just values between −π and π. The change of variables from the rescaled

variables to the original ones is given by

pφ = µr2
√
βp+ µr2βt, (15a)

φ = x, (15b)

with an adimensional evolution parameter τ = t
√
β for Hamiltonian (14).

This very simple one-degree-of-freedom Hamiltonian controls whether or not the molecule

will experience a molecular superrotor state, i.e., when pφ will experience a linear increase in

time. The condition to have the possibility of a significant increase of the angular momentum

is controlled by a single parameter, namely η = 4µr2β/(F 2
0 ∆α(r)). For r = re, the values

of η as a function of F0 are represented in Fig. 7(a). From Fig. 7(b), where the values of

η as a function of r for F0 = 0.01 a.u. and F0 = 0.03 a.u. are displayed, we infer that η

changes only slightly for varying r in the neighborhood of r = re. The equations of motion

associated with Hamiltonian (14) are

ẋ = p, (16a)

ṗ = −1− η−1 sin 2x. (16b)

From the equations of motion (16a)-(16b), we deduce that, for all η ≤ 1 there is an infinite

number of equilibrium points given by p∗ = 0 and x∗ such that

sin 2x∗ = −η. (17)

More explicitly, the equilibria (17) are located at xs(k) = −(sin−1 η)/2±kπ for the stable ones

and xu(k) = (sin−1 η)/2±(k+1/2)π for the unstable ones, with k ∈ Z. For a constant radial

distance r, the equilibria (17) exist if the amplitude of the electric field is sufficiently large,

i.e., F 2
0 ≥ 4µr2β/∆α(r). In particular, for r = re, those equilibria exist when F0 & 0.0057

a.u. The stable fixed points are linked to what is referred to as the “quiet” trajectory in
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FIG. 7. (a) Values of η = 4µr2β/(F 2
0 ∆α(r)) as a function of F0 at the equilibrium distance

r = re. (b) Values of η as a function of r for F0 = 0.01 a.u. and F0 = 0.03 a.u. For both panels:

β = 3× 10−10 a.u..

Ref. [12]. This quiet trajectory in the original coordinates will experience a linear increase

of its momentum pφ. However, we note that this quiet trajectory or more precisely these

quiet trajectories are not located at φ = 0 but slightly shifted by a quantity −(sin−1 η)/2.

In other terms, the molecule is not strictly aligned with the field as its angular momentum

linearly increases. As expected, the stronger the amplitude of the field is, the more aligned

the molecule will be (since η tends to zero in this case). The explicit expression for these

quiet trajectories is:

pφ(t) = µr2βt,

φ(t) = −1

2
sin−1

(
4µr2β

F 2
0 ∆α(r)

)
± kπ.

The phase diagram of Hamiltonian (14) shown in Figs. 8 and 9 displays a series of potential

wells where the values of p remain bounded as time increases. The center of these wells

correspond to the quiet trajectory. In the neighborhood of this center, the motion is har-
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FIG. 8. Value of the momentum p at t = 60 ps as a function of the initial conditions (x, p) at

the beginning of the plateau for the Hamiltonian (14) for F0 = 0.013 a.u., β = 3× 10−10 a.u. and

r = re. The red markers indicate some of the location of the stable (◦) and unstable (×) fixed

points.

monic with a frequency of (1 − η2)/(2η). As η is small, this frequency is approximately

1/(2η) which means that, as the amplitude of the electric field increases, the frequency of

the motion around the polarization axis is increasing (and it increases as F 2
0 ). This is the

frequency of oscillations as observed in Figs. 4 and 10.

The size of these potential wells depends on η. By looking at the isoenergetic curve

corresponding to one of the unstable equilibria, we can prove that the extent in momentum

of these wells is given by

∆p = 2
√

2

[
(1− η2)1/2

η
− sin−1

(
(1− η2)1/2

)]1/2

.

As η increases (or equivalently as F0 decreases), the size of these wells decreases since ∆p

is a monotonically decreasing function of η. At η = 1, there is a saddle-node bifurcation,

and the extent ∆p vanishes as (2(1 − η))3/2/3 as η approaches 1. As η goes to zero, the

extent ∆p diverges as 2
√

2/η. It should be noted that ∆p is the extent of the range of

values acquired by the type-L trajectories, and hence, related to the resolution in angular

momentum of these superrotor states. For the parameters of Figs. 4 and 6 (where η ≈ 0.14),

the extent of angular momentum is approximately ∆pφ ≈ 57 a.u.. In order to increase
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FIG. 9. Phase space portrait of Hamiltonian (14) for F0 = 0.013 a.u., β = 3 × 10−10 a.u. and

r = re.

FIG. 10. Sample trajectories for Hamiltonian (13) for F0 = 0.013 a.u., β = 3 × 10−10 a.u. and

r = re. The blue curve is for (x, p) = (xs(0), 2.8), the red curve for (x, p) = (xs(0), 2.7), and the

black curve for (x, p) = (xs(0), 0).

the angular-momentum resolution, i.e., decrease ∆p, the parameter η = 4µr2β/(F 2
0 ∆α(r))

needs to be increased closer to 1, e.g., through the increase of β.

As we observe in Figs. 8 and 9, the phase space of Hamiltonian (14) is made of regions

of bounded and unbounded motions. The bounded (vibrational) phase orbits take place
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around the stable fixed points, while the unbounded (rotational) orbits take place between

two consecutive separatrices. Indeed, if a given initial state (x, p) corresponds to one of

the vibrational phase trajectories around a stable fixed point, the change of variables (15a)

clearly suggests that pφ will increase linearly with time, such that the molecule will acquire

a super-rotor state and, possible, will eventually dissociate. Conversely, if the initial state

corresponds to a rotational phase trajectory, we have that, due to the increase of p in time,

the dynamics will be eventually dominated by the last term in Hamiltonian (14). Therefore,

for sufficiently large values of time, from the equation of motion (16b) we have that

p ≈ −τ + cte = −
√
βt+ cte.

Therefore, from Eqs. (15a)-(12b) we readily obtain that pφ will remain approximately con-

stant in time, such that dissociation is not possible.

The phase-space picture of the angular model provides a very good description of the

mechanism by which the molecule may or may not acquire a superrotor state, i.e., why there

is a clear distinction between type-L and type-C trajectories early in the pulse. Indeed, it

appear that the fate of a trajectory is largely sealed at the beginning of the plateau: If the

initial condition (φ, pφ) of a given trajectory corresponds to a state inside one of the potential

wells, then that trajectory is type L because its angular momentum will increase linearly

up to very large values. Otherwise, if the initial condition (φ, pφ) corresponds to a state

outside one of the potential wells, that trajectory is type C because the angular momentum

of the molecule will remain roughly constant, and it does not dissociate (see also Ref. [12]).

However, the angular model does not provide evidence explaining why some type-L orbits

dissociate and others do not.

At the end of the pulse, Fig. 11 displays the probability distribution function (PDF) of

values of pφ for type-L trajectories (see also Fig. 2 of Ref. [12]). We notice that there is a clear

separation of dissociating versus non-dissociating trajectories; the dissociating trajectories

have larger angular momenta at the end of the pulse as expected. We could argue that this

is due to the length of the plateau during which the angular momentum is increasing; this

could explain that some trajectories do not have enough time to reach a critical value for

dissociation. However by increasing the duration of the plateau these trajectories remain

non-dissociating, ruling out this possible explanation (see Fig. 6).
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FIG. 11. Probability Distribution Function (PDF) of the values of pφ for type-L trajectories.

The blue part of the histogram corresponds to non-dissociating trajectories; the red one to the

dissociating trajectories. The parameters are β = 3× 10−10 a.u. and F0 = 0.013 a.u. The plateau

has a duration of 160 ps. These PDFs have been computed with a sample of 106 trajectories. For

this sample, there are 482278 type-L non-dissociating trajectories and 169731 type-L dissociating

ones.

B. The zero-velocity surface for the dissociation

As explained in Sec. III A, the angular model provides a good description of how superro-

tor type-L states are created. However, this model fails to described why some of the type-L

trajectories dissociate and some do not. To address the dissociation mechanism, we first go

back to Fig. 4(b) [see also Fig. 6(b)], where the time evolution of the angular momentum

pφ is displayed. In particular, we observed that type-L orbits achieve large values of pφ

and, interestingly, these angular momenta remain almost constant for t & 50 ps. We also

observe in Figs. 4(b) and 6(b) that, in all cases, the pφ values of type-L orbits which end up

dissociating are larger than the pφ values of those type-L trajectories which remain bounded.

This fact is clearly depicted in the histogram of pφ in Fig. 11.

The constant pφ values attained for t & 50 ps indicate that the angular model of Sec. III A
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is no longer valid, such that the radial dynamics has to be taken into account. However,

the constant pφ values also indicate that, for t & 50 ps, the φ angle would roughly behave

as a cyclic variable, such that the influence of the electric field on the dynamics would be

negligible. Under this assumption, for t & 50 ps the dynamics will be governed by the

following Hamiltonian

H2D ≈
1

2µ

(
p2
r +

p2
φ

r2

)
+ ε(r)− Ω(t)pφ. (18)

In other words, for t & 50 ps, the dynamics is mainly dominated by the centrifugal force ex-

erted by laser field. According to Eq. (18), for t & 50 ps the value of the angular momentum

of any type-L trajectory remains almost constant. Therefore, if at t ≈ 50 ps the angular

momentum of a given type-L orbit is larger than the critical value p∗φ ≈ 394.85 a.u., such

orbit will dissociate. Conversely, if at t ≈ 50 ps its angular momentum is smaller than p∗φ,

the molecule will stay bounded since, regardless of the length of the pulse, the pφ value of the

corresponding trajectory will remain constant and therefore, below the critical value p∗φ. To

further check the assumption that from roughly t & 50 ps the dynamics is fairly described

by Hamiltonian (18), we use the zero-velocity surface associated with Hamiltonian (6). The

potential associated with the zero-velocity surface is defined as

U(r, φ, t) = H2D−
1

2
µ (ẋ2+ ẏ2) = −1

2
µ Ω(t)2 r2+ε(r)−F

2
0

4
f(t)2[∆α(r) cos2 φ+α⊥(r)]. (19)

As it well known, the equilibrium points of the Hamiltonian flow are the critical points of the

effective potential U(r, φ, t). For a given value of the field F0, we plot stroboscopically the

effective potential U(r, φ, t) at different times. For example, in Fig. 12 a typical stroboscopic

evolution of the contour maps of U(r, φ, t) for F0 = 0.015 a.u. and t =25, 35, 45 and 55

ps is shown. The pulse parameters are tu = td = 5 ps and tp = 50 ps. At t = 25 ps we

observe in Fig. 12(a) that U(r, φ, t) has two equivalent minima at φ = 0, π and r ≈ 3.8230

a.u. The potential wells around these minima are separated by a separatrix passing through

two saddle points located at φ = π/2, 3π/2 and r ≈ 3.8230 a.u.. At the larger value

r ≈ 5.8990 a.u. and at φ = π/2, 3π/2 there are two equivalent maxima separated by a

separatrix passing through two saddle points located at φ = 0, π and r ≈ 5.8990 a.u.. At

t = 35 ps, we observe in Fig. 12(b) that the two maxima approach the minima, remaining

the later almost at the same position. At t = 45 ps, the maxima and the minima regions are

very close each other (see Fig. 12(c)), such that for t ≈ 47 ps, the minima and the saddle
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FIG. 12. Panels (a) to (d): Contour plots of the effective potential (19) (in atomic units).

Panel (e): contour plot of the effective potential of the Hamiltonian (18). The parameters are

β = 3× 10−10 a.u., F0 = 0.015 a.u., tu = td = 5 ps and tp = 55 ps.
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points at φ = 0, π and the maxima and the saddle points at φ = π/2, 3π/2 collide. For

t & 47 ps, the effective potential U(r, φ, t) does not present critical points (see Fig. 12(d)

for t = 55 ps). Because longer times means larger values of the rotating frequency Ω(t),

the time evolution of U(r, φ, t) depicted in Fig. 12 indicates that, for t & 47 ps, most of the

dynamics is governed by the rotating term Ω(t)pφ in Hamiltonian (6). Furthermore, there

are no significant differences between the contour plot in Fig. 12(d), and the contour plot of

the effective potential of Hamiltonian (18) which is simply ε(r)−µΩ(t)2r2/2 (see Fig. 12(e)).

The expression of the approximate time at which the bifurcation occurs is given by

tb =
1

β

 γDe

2µ
(
re + log 2

γ

)
1/2

. (20)

This approximation is obtained by looking at the condition under which ε(r)− µΩ(t)2r2/2

has local extrema since the contribution proportional to F 2
0 in Eq. (19) is small. The time

and location of these extrema are linked by the condition β2t2 = ε′(r)/(µr). By investigating

the behaviour of the function ε′(r)/r, we approximate the location of its maximum at r ≈

re + log 2/γ. Combining these elements, we establish the condition (20). For the chosen

parameters, we have tb ≈ 47.5 ps. For t ≥ tb, there is no longer a minimum of the potential

well U and, therefore, the motion can potentially become unbounded, depending on the

value of its angular momentum at this specific time.

CONCLUSION

In this article, we investigated the mechanisms and the conditions under which a diatomic

molecule in an optical centrifuge acquires superrotor states which can potentially lead to

dissociation. To carry out this study, we considered the chlorine molecule Cl2 as an exam-

ple. In addition to the molecular potential energy curve, our Hamiltonian model includes

accurate radial functions for the parallel and perpendicular components of the molecular

polarizability through which the interaction between the laser field of the optical centrifuge

and the molecule takes place.

The mechanisms and the conditions under which superrotor states are created and po-

tentially lead to dissociation of the molecule have been investigated as functions of the

parameters of the laser, namely, its amplitude, the duration of the laser pulse, and the
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acceleration of the rotation of the polarization axis. The angular degree of freedom is re-

sponsible for the creating of superrotor type-L trajectory. The condition for the existence

of potential type-L states is given by 4µr2
eβ/(F

2
0 ∆α(re)) ≤ 1. Under this condition, stable

equilibria ensure the quasi-alignment of the molecular axis with the polarization axis under

specific initial conditions (inside potential wells), and hence a linear increase of the angular

momentum. The radial degree of freedom is mostly responsible for the dissociation dynam-

ics: The local minima and maxima of the zero-velocity surface ensure that the interatomic

distance r remains bounded until these extrema collide and r is potentially unbounded. We

have estimated this critical time tb to be given by Eq. (20). The analysis of the nonlinear

dynamics provides a way to control the different states at the end of the laser pulse by

adjusting the parameters of the laser field. For instance, in order to suppress dissociation

and have all type-L trajectories bounded, the duration of the pulse has to be shorter than

tb, i.e.,

tu + tp + td ≤ tb.
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