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Abstract— Retrieval of rain from Passive Microwave 
radiometers data has been a challenge ever since the 
launch of the first Defense Meteorological Satellite 
Program in the late 80s. Enormous progress has been 
made since the launch of the Tropical Rainfall 
Measuring Mission (TRMM) in 1997 but until 
recently the data were processed pixel-by-pixel or 
taking a few neighboring pixels into account. Deep 
learning has obtained remarkable improvement in 
the computer vision field, and offers a whole new 
way to tackle the rain retrieval problem. The Global 
Precipitation Measurement (GPM) Core satellite 
carries similarly to TRMM, a passive microwave 
radiometer and a radar that share part of their 
swath. The brightness temperatures measured in the 
37 and 89 GHz channels are used like the RGB 
components of a regular image while rain rate from 
Dual Frequency radar provides the surface rain. A 
U-net is then trained on these data to develop a 
retrieval algorithm: Deep-learning RAIN (DRAIN). 
Using only the brightness temperatures from four 
channels as input and no other a priori information, 
DRAIN is offering similar or slightly better 
performances than GPROF, the GPM official 
algorithm, in most situations. These performances 
are assumed to be due to the fact that DRAIN works 
on an image basis instead of the classical pixel-by-
pixel basis.   

I .  MOTIVATION  

We have developed a rain retrieval algorithm, DRAIN, 
based on the use of deep-learning techniques. The 
architecture and principles driving DRAIN are 
presented in more detail in [1] but, namely, a database 
of co-located rain rates from the Dual frequency 
Precipitation Radar (DPR) and brightness temperatures 
from the Global Precipitation Measurement Microwave 
radiometer (GPM-GMI) were fed into a U-net [2]. This 
type of convolutional network was successfully used to 
de-clutter radar images [3] and thus appeared to be well 
adapted to detect the contours of rain events. 
The main difference between more classical retrieval 
algorithms, either Bayesian-based [4, 5] or machine 
learning-based [6-12], and DRAIN arises from the fact 
that the latter processes the data as images while the 
formers work on a pixel-by-pixel basis. These image-
based approaches are developing fast as shown also in 
[13] and [14] 
 
In the present paper, we will not go into the details of 
DRAIN which have already been presented in [1], but 
we will focus on a more thorough validation of a more 
mature version of the algorithm. The two main 

improvements that must be highlighted between the 
initial version presented in [1] and the current version 
are described hereafter. First, the database was increased 
from about 52,000 images to about 103,000 allowing us 
to build a training database of 70,000 images for training 
and 33,000 images for validation. Data from the whole 
years 2014 to 2018 and a few months from 2020 and 
2021 are used but the whole year 2019 was kept separate 
for the performance assessment (test) and most results 
presented hereafter are computed for that year. This 
large database is meant to dampen the effects of 
seasonal and interannual variability of rain. 
Second, DRAIN retrieves now a set of 99 quantiles 
instead of a simple averaged rain rate as in [1]. These 
quantiles represent the probability that the rain rate is 
below a certain threshold. Hereafter, when unspecified, 
the quantile 50 % (median) is used as the rain proxy. The 
loss function for quantile regression is the one proposed 
in [15]. Retrieving quantile for rain is interesting 
because as shown hereafter, it is possible to infer a 
confidence interval for the results. It would also be 
possible from the retrieved Cumulative Distribution 
Function (CDF) of rain intensity to deduce a Probability 
Density Function (PDF, not presented here). 
 
Section II will give a short presentation of the database 
construction while section III gives some elements 
about the methodology and the associated cost function. 
Section IV offers a detailed validation of DRAIN rain 
rate against DPR and GPROF for the year 2019. Section 
V presents the comparison for the same year with 
Meteo-France five-minute 1x1 km2 rain mosaic. Finally, 
section VI presents the conclusions and perspectives. 
 

I I .  DATABASE  

GMI is a conically-scanning radiometer with channels 
at 10.65, 18.7, 23.8, 36.6, 89.0, 166.0, 183.3+/-3 and 
183+/-7 GHz. All the channels are measured in both 
Horizontal (H) and Vertical (V) polarization except for 
23.8 and the two 183.3 GHz sounding channels (V 
only). In the present study, only the two 36.6 (hereafter 
noted 37 GHz) and 89.0 GHz channels were used. This 
choice was driven by the idea that most conical-
scanning passive microwave radiometers for rain 
retrievals have channels in the 37 and 89 GHz region 
thus making a transposition of DRAIN to other 
platforms potentially easier. These two frequencies 
were selected because they offer a good spatial 
resolution with well-defined horizontal gradients. For 
the GMI, the pixel resolutions are respectively: 15.6x9.4 
km2 for the 37 GHz and 7.2x4.4 km2 for 89 GHz [16-
17] (the GMI product used here is 1C-
R.GPM.GMI.XCAL2016-C, PPS V05A). 



 
Since [1], some tests (not shown) were made to check if 
the addition of the 19 GHz channels would improve the 
performances of DRAIN but the results were 
inconclusive.  
The DPR surface rain product results from the merged 
use of the Ku- (13.4 GHz) and Ka-band (35.5 GHz) 
radars. The DPR measures a three-dimensional 
reflectivity field with vertical resolution of 250 m and a 
horizontal resolution of 5 km. The resulting surface rain 
product offers a swath width of 245 km [18]. 
The DPR and GMI pixels are co-located spatially and 
temporally assuming that the effective one-minute lag 
between the two observations is negligible at the 
considered spatial resolution. To perform the co-
location, the surface rain (precipRateESurface from 
2A.GPM.DPR.V8-20180723, PPS V06A) of the DPR 
pixels falling within 5 km of a GMI pixel center position 
are averaged. On average, three to four DPR pixels fall 
into the 5 km-radius. 
We will hereafter refer to training and validation 
database as the data used to adjust the weights and 
hyperparameters of the network and the test database as 
the one used for generalization and assessment of 
performances.  
Because rain occurrence is naturally low, a scene 
selection is made as follow: images with at least 100 
pixels with rain > 0.1 mm.hr-1 or at least 10 pixels > 100 
mm.hr-1 are used to build the training/validation 
database. Each image is composed of 4 channels: the 37 
and 89 in both H and V polarization while the surface 
rain is used as target. 

I I I .  METHOD  

The general architecture of the U-net used for DRAIN 
is described in [2]. More specifically, the configuration 
used here is made of two convolutional layers as input 
layers.  Then, a contraction path follows, made of four 
downward steps each containing a max pooling and two 
convolution blocks. Each convolution block contains a 
convolution layer, a batch normalization, and a ReLU. 
Next, four expansion steps made of a transpose 
convolution and two convolutional layers increase the 
size of the image back up. In addition, each upward step 
is concatenated with its corresponding downward step 
(skip-connections). Finally, the output layer is a 1x1-
kernel convolutional layer. The initial input layer is a 
4x128x128 subset of GMI orbit with a padding size of 1 
pixel on each side of the image. As stated previously, a 
similar U-net was successfully used for detection and 
restoration of clutter echoes in weather radar raw data 
[3]. 
 

Weights, optimization method (Adam, [18]) and initial 
learning rate (10-4) are set to the default values found in 
literature [19]. The trained U-net has about ~15 million 
parameters to be adjusted through the training phase. 
 
The loss function used here is the classical one used for 
quantile regression (e.g. [15]) where the loss function is 
given by: 
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where ŷ is the prediction, y is the target, qj is the jth 
quantile to be estimated and N the number of pixels. 
Besides the fact that retrieving quantiles gives access to 
more information than the mere retrieved average rain 
rate, the quantile regression is of particular interest here 
because of its demonstrated robustness to outliers. In the 
present study, we chose to retrieve percentiles because 
computation of the rain intensity probability density 
function is easier to compute through simple numerical 
derivation.  
 
The network presented here results in a 460-epoch 
training on the learning and validation bases described 
above. We will use hereafter the median (50th quantile) 
as the retrieved rain rate. 
 
Because the chosen architecture is made of a 16-level of 
filtering, the retrieval image sizes have to be multiple of 
16. For the moment the retrieved images are thus limited 
to 208 pixels per 2960 scans from the original 221 pixels 
and up to 2963 scans (the effective number of scans may 
vary slightly from one granule to the next but remains 
larger than 2960). 
 

IV.  COMPARISON WITH DPR 

Two example cases, excluded from the learning and 
validation dataset, are given on Fig. 2 and 3. The first 
case is super typhoon Nanmadol observed on September 
16th, 2022, while close to its peak intensity over the 
Philippine Sea, South of Japan. The second case is a 
frontal band over France observed on August 18th, 2018. 
The first case is a good illustration of oceanic retrieval 
while the second case is a mixed continental and coastal 
case.  
 



In addition to comparisons with the DPR in the common 
part of the swath, comparisons with the GPROF 
algorithm [4] are also presented 
(2A.GPM.GMI.GPROF2017v1, PPS V05A). GPROF is 
the GPM operational product, based on a per-pixel-
Bayesian approach. It is considered as a reference in the 
GPM community and uses auxiliary data to constrain 
the solutions (2m temperature, TPW, and surface type 
etc…). Its native resolution is close to 11 km according 
to [22] and uses a priori databases that are build using 
different sources depending on the surface type [22]. 
Over ocean, the Combined MS DPR product is used. 
Over land, the DPR-Ku surface precipitation is used for 
most situation except snow covered ground when 
MRMS is used. Finally, additional adjustments, 
described in [22] were performed based on CloudSat 
measurements for drizzle and light rain to overcome the 
DPR sensitivity.   
 
Note that for all the comparisons presented hereafter 
with DPR and GPROF and in part V also, we use the 
50th quantile (median) as our best estimator for DRAIN.  
For both situations, DRAIN and DPR are qualitatively 
very close and resemble GPROF except that the latter 
exhibits a lot of light rain pixels (< 0.2-0.3 mm/hr). The 
DPR algorithm is estimated to have a minimal detection 
threshold near 0.2 mm.hr-1 [20]. Because we perform a 
spatial average over two to four DPR pixels, DRAIN is 
expected to have a theoretical detection threshold 
between 0.03 and 0.1 mm.hr-1 depending on the number 
of averaged pixels. 
 
The most noticeable difference between GPROF and 
DRAIN is particularly visible on Fig. 2 (super typhoon 
Nanmadol) where the GPROF retrieves many more 
rainy pixels with intensities below 0.4 mm/hr than both 
DRAIN and DPR. DRAIN on this aspect is very 
consistent with the DPR as one would expect since 
DRAIN was developed solely from DPR data without 
any other assumptions concerning the brightness 
temperatures – rain intensities relationship. The reasons 
behind this light rain enhancement in GPROF is 
described in [20]. This light rain difference is more 
likely to be visible over ocean where, in addition to the 
higher frequency channels, GPROF uses 10 and 19 GHz 
channels which are directly linked to liquid water 
emission.  
 
The second comparison is made at global level over the 
whole year 2019. A few granules with bad TBs at either 
37 or 89 GHz are excluded. A mask is used to check 
systematic differences between land and ocean. Unlike 
for GPROF, this mask is not used as an input in DRAIN 
but only once the retrieval is performed to assess the 

performances over the two different surface types. This 
mask is the python “regionmask” package which is 
based on Natural Earth, a free vector and raster map data 
(naturalearthdata.com). 
 

 
Figure 2: surface rain for super Typhoon Nanmadol (16W) on 16th 
September 2022 at 08:00 UTC.  DPR at DRAIN resolution (top left), 
DRAIN (top right) and GPROF (Bottom left). 

 

 
Figure 3: same as Fig. 2 but for a frontal rain band over France on 
18th of August 2018. 

Table 1 and 2 give respectively the contingency table for 
OCEAN (approximately 530 million pixels) and LAND 
(approximately 218 million pixels). DRAIN is well-
balanced between False Alarm (FA) and Bad Detection 
(BD) occurrence although the False Alarm has a high 



RMSE of 10.77 mm/hr (17.36 above ocean and 7.70 
above land). The high probability of FA for GPROF are 
mostly due to the light rain treatment of the latter, as 
mentioned above. On the other hand, these FA have a 
very small RMSE of 0.30 mm/hr because they are made 
of very light rain rates. 
 
OCEAN DRAIN GPROF 
DPR Rain No Rain Rain No Rain 
Rain 6.01 1.97 5.93 2.05 
No Rain 1.23 90.79 13.14 78.88 

Table 1: Contingency in % table for OCEAN pixels on 
the whole dataset of 2019. 
 
LAND DRAIN GPROF 
DPR Rain No Rain Rain No Rain 
Rain 3.49 1.26 3.46 1.29 
No Rain 0.91 94.34 10.44 84.81 

Table 2: same as Table 1 but for LAND pixels. 
 
 
 OCEAN LAND 
 POD FAR POD FAR 
DRAIN 0.75 0.17 0.74 0.21 
GPROF 0.74 0.69 0.72 0.75 

Table 3: Probability of Detection (POD) and False 
Alarm Ratio (FAR) over land and ocean for DRAIN and 
GPROF, when comparing with DPR in the common part 
of the swath. 
 
 DRAIN GPROF 
 Bias RMSE Bias RMSE 
LAND 0.31 2.67 -0.24 3.39 
OCEAN 0.26 2.98 0.08 3.18 
TOTAL 0.27 2.92 0.01 3.22 

Table 4: The numbers are computed on the respective 
true positive with a threshold of 10-4 mm/hr. Bias, in 
mm/hr are respectively DPR-DRAIN and DPR-
GPROF. 
 
In the case of BD for both DRAIN and GPROF, DPR 
average rain estimates are 0.33 mm/hr and 0.50 mm/hr 
respectively showing that they are consistently light rain 
situations. 
 
Table 3 shows the Probability Of Detection (POD) and 
the False Alarm Ratio (FAR) which are often used to 
assess the performances of rain retrieval algorithms 
[21]. Perfect POD is 1 while perfect FAR is 0. Both 
algorithms offer similar PODs with a small advantage 
for DRAIN, especially over land. The low score of 
GPROF’s FAR is logically due to the light rain over-
detection with respect to DPR as mentioned above. 

 
Table 4 shows the bias and Root Mean Square Error 
(RMSE) for the two algorithms, compared to DPR for 
their respective true positive only. A 10-4 mm/hr 
threshold is applied to make sure that no random 
numerical noise will contaminate the results. GPROF is 
always better in terms of bias but DRAIN is better in 
terms of RMSE. This is supported by Fig 4 that shows 
the corresponding scatter plots for rain intensities 
between 0 and 100 mm/hr. DRAIN has been trained 
with the DPR so, once again it is expected that its 
performances with respect to the latter will be optimal. 
 

 
Figure 4: scatter plot of DRAIN (top row) and GPROF (bottom row) 
against DPR for OCEAN pixels (left hand side column) LAND pixels 
(right hand side column) for the whole of 2019. Colors show the 
density of point from red (densest) to blue (least dense) with a 
lognormal scale. The red dashed line on each of the graph is the x=y 
line. 

A substantial spread is however observed which is 
expected due to the potential parallax effects between 
the GMI TBs and the DPR surface rain which cannot be 
totally compensated. Over both land and ocean, 
systematic underestimation starts appearing at about 20 
mm/hr and increases as the DPR rain rate increases. 
Over ocean, GPROF shows similar features, slightly 
exacerbated for DPR rain rates above 25 mm/hr. Over 
land, comparison is made difficult by the fact that the 
GPROF rain rate is made of the DPR estimates 
complemented by NOAA’s Multi-Radar/Multi-Sensor 
system (MRMS) [22]. 
 
Fig. 5 shows the histograms of DRAIN, GPROF and 
DPR for the light rain rates, emphasizing the higher 
probability of rain below 0.25 mm/hr proposed by 



GPROF when compared to the two other estimators. 
This is true for land and even more for ocean. It is to be 
once again mentioned that these light rain rates have 
been enhanced in GPROF’s a priori database, based on 
Cloudsat statistics [21] to compensate in particular for 
the Ku-DPR detection threshold (~12 dBZ). 
 

  
Figure 5: pdf of rain intensity for DPR, GPROF and DRAIN for the 
year 2019, focusing on the light rain between 0 and 2 mm.hr-1 with 
0.1 mm.hr-1 bins. 

Rain interval mm/hr 50% 90% 
0 to 0.1 73.96 97.03 
0.1 to 1. 56.36 93.93 
1 to 10 46.49 87.01 
10 and above 33.65 75.47 
All 53.96 91.78 

Table 5: retrieved confidence intervals as a function of 
rain intensities. 
 

 
Figure 6: 2-D histogram of the retrieved rain vs. initial (DPR) rain, 
color indicates density of points with similar scale as Fig. 4. Blue-
shaded area is the 90 % confidence interval and brow-shaded area 
is the 50 % confidence interval. 

Since percentiles are retrieved by the network, among 
other applications, it is possible to define confidence 
intervals for the retrieved rain intensity. The rain rate, 
RRj, given for the jth percentile means that the a-priori 
probability that the DPR rain rate is between 0 and RRj 
is j%. In Table 5 the 50% and 90% confidence interval 
are verified against the DPR surface rain. For the true 
positive, pixels for which the DPR rain rates falls in 
between percentiles 25 and 75% and 5 and 95% are 
counted.  It can be seen that overall, the confidence 

interval is indeed reliable but does actually depends on 
the rain interval under consideration. Up to about 10 
mm/hr, the confidence interval is robust but above this, 
the systematic underestimation of the retrieved rain rate 
degrades the results. 
 

 

 
Figure7: 1°x1° averaged difference between top: DPR -DRAIN and 
bottom DPR - GPROF. The differences are performed at pixel level 

and then averaged over all the orbits of 2019. 

Figure 6 is a zoom for rain rates between 0 and 50 mm/hr 
of DRAIN vs DPR. The scatter plot is not differentiating 
land and ocean. On top of the scatter plot is the 90 % 
confidence (shade of blue) and the 50 % confidence 
(shade of brown). These confidences are computed 
using the 5th and 95th retrieved percentiles and the 25th 
and 75th retrieved percentiles respectively. It can be seen 
that, as stated from Table 5, up to 12-15 mm/hr, the 
confidence interval is reliable. It then slowly degrades 
and after 20 mm/hr, it is just an indicator but cannot be 
considered as accurate. One can also see that as for 
GPROF and most retrieval methods, DRAIN cannot 
overcome the rain underestimation starting in the 20 
mm/hr region even if it is mitigated to some extent. 
 
Figure 7 shows these differences between GPROF, 
DRAIN and DPR on a 1°x1° global map. The three 
estimators are first averaged on 1-degree squares, 
keeping only the pixels above 10-3 mm/hr.  



 
DRAIN offers a very consistent bias overall. No 
difference is noticeable between land and ocean or 
artifact over coastal area which is always very difficult 
to handle for such retrieval methods. However, the bias 
appears to be mostly positive (underestimation) while a 
more balanced distribution of positive and negative 
values was expected. This might be due to the choice of 
the median quantile as the rain estimator, which is 
somewhat arbitrary.  
 
A slight latitude dependence of the error can be 
observed as the error seems smaller above 50° N and 
below 50° S over ocean and slightly larger in the ITCZ. 
Errors appear to be also larger above mountainous areas 
like the Tibetan plateau, the Rocky Mountains and 
somewhat the Andes. 
GPROF’s error range is very similar to DRAIN’s but 
with a marked difference between land and ocean which 
was already mentioned. A slight dependence to the 
latitude can also be observed but less marked than 
DRAIN. 
 

V.  RESULTS ON MÉTÉO-FRANCE MOSAIC  

An assessment of the performances was also conducted 
using Météo-France five-minute mosaic product which 
is a good reference for mid-latitude QPE. The used 
product is described in [23] and comes as a 1536x1536 
pixels grid of 1 km resolution every 5 minutes over the 
whole of year 2019. Co-location in time was performed 
by matching the closest mosaic in time with the mid-
time of GMI overpass (the GMI overpass lasts about 3 
minutes). The accumulation over 5 minutes is converted 
in mm.hr-1 by simple multiplication by a factor 12. A 
quality flag is associated with the Météo-France product 
ranging from 0 (unreliable) to 100 % (very reliable). 
After visual comparison on a series of cases, it appeared 
that a threshold of 80 % reliability should be applied in 
order to eliminate spurious rain estimates particularly in 
the mountainous areas. 
 
The mosaic data are then co-located and averaged at the 
DRAIN resolution and pixels position. Between January 
1st 2019 and December 31st 2019, 1565 overpasses are 
kept, with the condition that more than 50 DRAIN 
pixels fall into the mosaic domain: 8° West to 12° East 
and 39° North to 54° North. 
 
First, a pixel-by-pixel performance is evaluated for the 
three rain estimators: DRAIN, DPR and GPROF. 
Contingency table and F1-scores are computed and 
presented Table 6, 7 and 8 respectively. The total 
number of pixels taken into account differs for each 

estimator because of the swath difference. The three 
estimators show performances that are close with a few 
differences. GPROF shows a better POD than both 
DRAIN and DPR but its FAR is degraded by the excess 
of light rain detected. On the other hand, DPR and 
DRAIN miss some of the rain which degrades their 
respective POD but their precision remains high.  
 
 
 

Ref.\DRAIN Rain No Rain POD 
Rain 4.85 % 9.81 % 0.33 
No Rain 0.36 % 84.98 % FAR 
Precision 0.93  0.07 
F1-score 0.49   

Table 6:  Contingency table and F1-score for DRAIN 
with Météo-France mosaic as a reference. The total 
number of co-located pixels is 6645997. 
 

Ref.\DPR Rain No Rain POD 
Rain 5.59 % 8.53 % 0.40 
No Rain 0.44 % 84.44 % FAR 
Precision 0.93  0.07 
F1-score 0.56   

Table 7: same as Table 4 but for DPR. The total number 
of co-located pixels is 1434964.    
              

Ref.\GPROF Rain No Rain POD 
Rain 7.38 % 7.26 % 0.50 
No Rain 4.49 % 80.88 % FAR 
Precision 0.62  0.38 
F1-score 0.56   

Table 8:    same as Table 4 but for GPROF. The total 
number of co-located pixels is 5611805.                   
 
The DRAIN, DPR and GPROF data are also averaged 
on 0.2°x0.2° grid to minimize the possible impact of 
localization errors between the ground and satellite-
based estimates. Figure 8 shows the scatter plot for each 
of the estimators against the Météo-France mosaic. Only 
the grid-boxes where the mosaic >= 0 mm.hr-1 are 
accounted for. For each scatter plot, the associated linear 
regression (blue-dotted line) is shown. For DRAIN the 
corresponding R2=0.29 while it is 0.10 for DPR and 0.20 
for GPROF. Below 1 mm/hr, all estimators are mostly 
centered on the x=y line and then the points spread out 
with a general underestimation. DPR appears more 
spread than both DRAIN and GPROF but the data 
sample is about four times smaller and the narrow swath 
might induce more important edges artifacts. GPROF 
appears to show a slight underestimation (~0.1 mm/hr) 
around 0.6-0.7 mm/hr, in the densest part of the scatter 



plot. Globally however, GPROF and DRAIN appear to 
offer similar performances. 
 

 
Figure 8: Scatter plot of DRAIN (top left), DPR (top right) and 
GPROF (bottom left) vs Météo-France mosaic over all the 
overpasses of 2019. In each graph, red-dashed line is the x=y line, 
blue-dotted line is the linear regression and the color are 
proportional to the density of points according to the colorbar.  

Figure 9 shows the maps of the biases Mosaic-DRAIN 
and Mosaic-GPROF, in mm.hr-1, for 2019. Except for a 
few grid-boxes, the difference remains between -2 and 
+2 mm.hr-1. The general pattern and amplitude of the 
difference are similar between the two estimators.  
 
In the mountainous area of the Alps and somewhat on 
the Mediterranean shores, the errors are almost identical 
on a surprising number of boxes which might show a 
problem with the Météo-France estimate. It is noticeable 
though, that GPROF has a very clear artifact of 
overestimating the land part of the coastal regions. This 
is likely due to the difference between the land and the 
ocean version of GPROF. Most of DRAIN error 
structure appears to be much more random and better 
balanced, yet there is continuity from one box to the 
next, showing that the errors are not pure noise. This 
spatial continuity of the errors is also true for GPROF. 
 
Figure 10 shows the dependance with time of the Mean 
Average Error for the three estimators. Environmental 
conditions change depending on the season and this is 
eventually even more pronounced over land with 
possible snow cover on the ground. All three estimators 
follow more or less the same patterns with an increase 
in the errors during winter. The DPR should be 

 
Figure 9: Bias between Météo-France mosaic and DRAIN on top 
and GPROF on bottom. The difference is computed over 0.2°x0.2° 
boxes over the whole year 2019. 

 
 

 
Figure 10: Mean Average Error between the DRAIN, GPROF and 

DPR as a function of time over 2019. 

considered with some care because its coverage is 
substantially lower than both DRAIN and GPROF 
inducing some possible representativeness artifacts. 
 



VI.  CONCLUSIONS  

 
From a set of 103,000 images of co-located data 
between GMI brightness temperatures and DPR surface 
rain, a U-net was trained to retrieve the latter over the 
whole swath of the radiometer. To minimize the impact 
of surface emissivity, work with the highest spatial 
resolution possible and at the same time remaining 
easily transposable to other instruments, only 37 and 89 
GHz horizontal and vertical polarization brightness 
temperatures are used as an input. The strength of U-
nets is their ability to process brightness temperature 
scenes as an image, as opposed to most existing 
algorithms that proceed pixel by pixel. 
Evaluation of the developed algorithm is performed two 
ways. First, a comparison with the DPR surface rain 
itself on a set of images that was not in the training 
database (whole of 2019) is presented. DRAIN shows a 
good agreement in terms of structure and intensities 
which ensures the good quality of the generalization. 
When compared on the same dataset, DRAIN is 
generally on par with GPROF or slightly better. This is 
most noticeable over land where GPROF does not use 
only the DPR rain rate in its database. 
Second, a comparison is performed with Météo-France 
1 km2-resolution mosaic over the same period as a fully 
independent dataset. The trends are similar. DRAIN 
performances are close to GPROF if not slightly better. 
The most noticeable difference is observed in the coastal 
regions where GPROF tends to overestimate the rain 
intensities when compared to the mosaic.  
These four channels used here are present on most 
passive microwave radiometers of the GPM 
constellation which will facilitate transposition of the 
developed U-net to other available sensors of the 
constellation as proposed in [24].  
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