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Abstract

Adaptation to future sea-level rise is based on projections of continuously improving climate models. These
projections are accompanied by inherent uncertainties, including those due to internal climate variability
(ICV). The ICV arises from complex and unpredictable interactions within and between climate-system
components, rendering its impact irreducible. Although neglecting this uncertainty can lead to an
underestimation of future sea-level rise, its estimation and impacts have not been fully explored. Combining
the Community Earth System Model version 1 Large Ensemble experiments with power-law statistics, we
show that, by 2100, if the ICV uncertainty reaches its upper limit, new sea-level-rise hotspots would appear
in Southeast Asian megacities (Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila), in
western tropical Pacific Islands and the Western Indian Ocean. The better the ICV uncertainty is taken into
account and correctly estimated, the more effective adaptation strategies can be elaborated with confidence

and actions to follow.
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Distinguishing the human activity signature in past and ongoing sea-level changes is a challenging topic of

intense studies'™

. A major obstacle for reliable detection of the anthropogenic signals originates from
substantial contribution of natural fluctuations to the sea-level changes. These fluctuations mirror the

complex climate-system dynamics, commonly called internal climate variability (ICV). The ICV is



generated by chaotic interactions within and between the atmosphere, hydrosphere, cryosphere, biosphere
and the solid-Earth processes occurring over an extremely wide range of time and space scales’®. These
interactions can manifest as cycles, instabilities or irregular oscillations of the climate system®!’. One
example of well-known manifestation of the internal variability in the climate system is the El Nifo/
Southern Oscillation®. The practical importance of the ICV is rooted in its chaotic nature, leading to an

irreducible uncertainty in the sea-level projections'!!~17.

A commonly used approach for estimating the ICV uncertainty in future sea-level changes is based on
large ensembles (LEs) of global climate models (GCMs)!>!%!%19 An LE is a set of numerical simulations
conducted with the same GCM and forcing scenario but with slightly different initial conditions®’. The
spread among the ensemble members mimics the chaotic and unpredictable nature of climate and
characterizes the ICV intensity, while the changes due to external forcing are usually represented by the
average of the LE realizations®?!. By using a 40-member Community Climate System Model version 3 LE,
Hu and Deser'? have reported that the ICV contribution to the mean sea-level changes between 2041-2060
and 1980-1999 varies regionally by a factor of two among the LE members, while the global mean sea-level
rise (SLR) remains almost unaffected by the ICV. Substantial impact of the ICV on the regional mean sea
level was also confirmed by analysis of the multimodel ensemble spread (for example, Coupled Model
Intercomparison Project Phases 5/6 (CMIP5/6)'%!72>-2%) However, the multimodel ensemble spread arises

14,17,22,23,25,26

from both ICV and specific parameterizations in the modelling process . Thus, the uncertainty

estimated from the multimodel ensemble is rather a measure of consensus within the multimodel ensemble,

which is important but distinct from evaluations of the ICV uncertainty in LEs'%!%27-27,

There exists also an alternative for evaluating the ICV contribution that is based on the specific temporal
behaviour of sea-level fluctuations. It has been widely recognized that the sea-level fluctuations are
organized over an extremely broad range of periods, in such way that their power spectral density, S, closely

follows a power-law spectrum (f, frequency) defined by an exponent S (ref. *°):
S~f7 (1)

The power-law character of sea-level fluctuations described by equation (1) is a manifestation of the
complex ICV structure®!. Analysis of the 100-yr-long sea-level records shows that the scaling exponent 3 is
site dependent and varies: 0<p<2!3227 The scaling with >0 corresponds to persistent sea-level
fluctuations with long-term correlations (long-term memory), while f = 0 indicates a signal indistinguishable

from a random process with no memory (white noise). A particular feature of the long-term memory



processes (£ > 0) is that they can generate long-term trend-like spontaneous deviations that can considerably
mask the trend induced by external forcing. Concerning the GCMs, it is a long-standing question whether

1.32-36 " Extensive

they can reproduce the power-law behaviour detected in observed sea-level records
comparison of 36 CMIP5 GCMs with observations*® showed that a majority of GCMs overestimate the
power-law character of observed sea-level variations. The best performance was obtained by Community
Earth System Model version 1 (CESM1), which reproduced the observed sea-level scaling in three-quarters

of the sea-level records analysed.

A logical follow-up is to assess the CESMI-LE ability to reproduce the ICV uncertainty in sea-level
projections and to constrain uncertainties in the future mean sea-level changes. These should not be confused
with the changes in the mean sea level driven by the external forcing. However, in long-term correlated
records, the ICV contribution may look like a trend indistinguishable from an externally generated trend. By
consequence, the coastal population can suffer from the ‘apparent’ sea-level trend-like changes generated
by the ICV in a similar way as from the externally driven changes because it is the rate of SLR that matters
for coastal defences and not only the origin of sea-level drivers. This point is essential for developing
effective strategies and design responses for coastal communities facing SLR in a warming world. To guide
our investigations, we (1) explore the regional variations in the power-law exponent of sea-level fluctuations;
(2) compare the ICV uncertainty estimated from CESM1-LE spread with that derived from the power-law
statistics; (3) evaluate, in selected global coastal cities, the maximum expected ICV contribution to sea-level

changes by 2100 and (4) discuss the ICV uncertainty impact on coastal flooding.

Scaling behaviour of sea-level fluctuations

The scaling proprieties of sea-level fluctuations can be measured by using the well-established detrended
fluctuation analysis (DFA)*. Compared with other standard tools (for example, Fourier spectrum or Hurst
rescaled-range analysis*’), the DFAn effectively eliminates polynomial trends of order n— 1 in the original
data and permits reliable detection of long-term correlations in nonstationary time series®’. The DFA
analyses scaling properties of the fluctuation function, F(s), which characterizes sea-level fluctuations in the
non-overlapping time windows of size s***!. The DFA provides a single parameter—the scaling exponent o
(also called Hurst exponent)—to quantify the correlation properties of the time series (see Methods for more
details). A power-law relation between F(s) and the segment’s size s indicates the presence of long-term

correlations:

F(s) ~ s* (2)



This exponent is related to the power spectral density exponent f in equation (1) by f=2a—1 (ref. *!).
Different types of temporal behaviour can be identified as uncorrelated signals for & = 0.5 (white noise) and
long-term correlations for a>0.5. We apply scaling analysis to sea-level fluctuations simulated by the
1,800-yr—long CESM1 pre-industrial control run’! (see Methods for CESM1 details; Extended Data Fig. 1),
with the exponent « estimated by DFA3 (ref. ). In the following, we use the term ‘sterodynamic sea level’
for designating a sum of sea-level changes due to thermosteric effect and dynamical ocean adjustment
computed by CESM1 (ref. *). It does not include yet-unmodelled changes in sea level due to land-based ice
or to land movement. The spatial variations of the scaling exponent appear to be not randomly dispersed but
remarkably organized in large-scale patterns, highlighting regional similarities in sea-level temporal
behaviour within large areas (Fig. 1). One can say that, globally, the oceans are characterized by scaling
exponents ranging between 0.5 and 1.0, with the lowest values of 0.5 to 0.6 in the Arctic Ocean region,
specifically in the Bering Sea and in the East Siberian Sea. As a larger scaling exponent means a more
intense energy transfer across the spectrum of sea-level fluctuations (equation (1)), it seems reasonable to
suggest that its enhanced values (o > 1) are associated with the mostly energetic extratropic regions hosting
strong ocean currents such as subpolar gyre regions, the Kuroshio extension in the North Pacific, the North
Atlantic Drift current and the Antarctic Circumpolar Current in the southern oceans. The scaling exponent
patterns in Fig. | are in accordance with the results of previous studies that have investigated the GCM
spatial structure of the sea-level variability**. For example, Monselesan et al.** noticed in the 500 yr pre-
industrial runs of CMIP5 models that, on longer time scales (>5 yr), maximum sea-level variance moves to
the extratropics. It is worth noting that with increasing scaling exponent a (that is, with increasing strength
of the long-term correlations), the range of the ICV uncertainty increases and, thus, so does the uncertainty

about the sea-level change.



Scaling exponent o of sterodynamic sea level
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Fig. 1 | Scaling exponent a of sterodynamic sea-level fluctuations. Estimated from the 1,800 yr
CESM1 pre-industrial control run by DFA3 with windows of size s ranging from 1 to 95 yr. For
uncorrelated data, o = 0.5 (white noise), and for long-term correlated data, o> 0.5.



ICV uncertainty contribution to sea level changes

The estimates of change in climate variables are often based on differences between their averages computed
over several decades'>!**, Here, we estimate the ICV contribution to expected changes in the mean sea
level between 1920 and 2005. A relevant quantity for that, 4, is a product of the sea-level regression line
slope (¢cm yr-1) and the duration. It represents a change of the mean sea level over the considered period*®
(see Methods for details). 4 is widely used in sea-level studies; for example, the global mean sea-level trend
during the twentieth century is ~0.17 cm yr! (ref. *7), which corresponds to a 17 cm increase between the
beginning and the end of the twentieth century. For each of the 40 members in the CESM1-LE historical
simulations, the modelled sea-level change, #i=1...40, is estimated as explained in the preceding. We
measure the spread between the 2i=1...40, by two standard deviations (20, called hereafter ICVcesmi-LE;
Extended Data Fig. 2), giving a direct measure of the ICV contribution to the changes in the mean sea level
expected by 2005 relative to 1920. Furthermore, we employ the statistics of power-law correlated series to
determine the range of spontaneous trend-like sea-level fluctuations in the CESM1 historical run caused by
the ICV. To do this, we use the scaling exponent a previously estimated and, for every a, calculate the
confidence interval within which the spontaneous trend-like fluctuations occur with the 95%
probability*®**% by 2005 relative to 1920 (called hereafter ICVpower-law; see Methods for more details;
Extended Data Fig. 3). This approach generalizes the analysis of sea-level variance by Monselesan et al.**
in the sense that it accounts for the long-term sea-level correlations by modulating the sea-level variance by

464849 Moreover, the power-law statistics provide the bounds

a factor depending on the scaling exponent o
on the uncertainties of the sterodynamic sea-level changes simulated by CESM1 on annual to multi-decadal
timescales. This is an important advance compared with common techniques such as, low-pass filtering
based on smoothing sea-level fluctuations used in IPCC Fifth Assessment Report and Sixth Assessment
Report, which suppresses sea-level variations on timescales longer than a few decades and consequently

underestimate the long-term part of the ICV contribution*’-°,

The comparison of ICVower-law With ICVcesmi-LE (Fig. 2) reveals close relations between the approaches
in general and even a linear correlation between these two metrics in many oceanic regions. Moreover, a
larger dispersion between CESM1-LE members at a given location corresponds systematically to a larger
spread of naturally occurring sea-level trends predicted by the statistics of deviations in the power-law
correlated time series. A closer similarity between spatial patterns of ICV uncertainty in both methods seems
to be associated with the regions of energetic oceanic currents. Note, however, that no universal linear
relationship is obvious in some regions, as in the Pacific inter-tropical or the North Indian Ocean. Notice
that in the North Atlantic and South Indian Ocean, although the ICV uncertainty patterns are coherent

between both metrics, the ICV estimated from the power-law statistics is nearly four to five times greater



than variability of the ensemble estimates. Thus, the power-law statistics seems to predict a larger ICV
contribution in the mean sea-level changes than that derived from the CESM1-LE spread. This probably
points to a yet small sampling size of the LE or to existence of a part of the ICV uncertainty that is not
captured by the specific method of perturbing initial conditions in CESM1-LE. It can also be due to

limitation of the universal scaling hypothesis in equation (1).
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166  Fig. 2 | Geographical distribution of the ICV uncertainty range of sterodynamic sea-level changes by 2005 (relative t
167  power-law statistics (two-sided 95% confidence interval) (a) and 40-member CESM1-LE historical simulation spread (20) (
168  the uncertainty in the mean sea-level changes by 2005 (relative to 1920) predicted by the power-law statistics (ICVpower-law) ¢
169 (ICVcesmi-e). The slope (P <0.001) and R? of the linear regression are given for comparison at the global and regional scals
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ICV uncertainty and future sea-level hotspots

We now investigate the ICV contribution to the projected mean sea-level change by 2100 under a carbon
high-emissions global warming scenario (representative concentration pathway (RCP) 8.5). The ICV power-
law €xceeds the ICVceswmi-LE by a factor of two globally and, particularly, by a factor of six along the coasts
of East Africa, west Australia, Southeast Asia and west United States (Extended Data Fig. 4). In the
perspective of evaluating future coastal flood risks, we focus on upper boundaries of the projected sea-level
range’! and consider the maximum expected ICV contribution obtained from the power-law statistics (an
upper bound of the two-sided 95% confidence interval). The maximum expected ICV contribution ranges,
typically, from 2—17 cm, but there are distinct regions where the value exceeds 25 cm, as in the North
Atlantic, the North Pacific and along the Australian west coast (Fig. 3a). We defined the maximum expected
SLR (Fig. 3c) as the sum of expected forced sea level (Fig. 3b), obtained from the ensemble mean of SLR
from CESMI1-LE, and of the maximum expected ICV contribution obtained from the power-law statistics
(an upper bound of the two-sided 95% confidence interval; Fig. 3a). Defined in this way, the maximum
expected SLR is then an upper-bound scenario, giving important information for coastal planning purposes.
For example (Fig. 4), the maximum sea level at New York by 2100 (relative to 2006) is expected to increase
by 55 cm, in part due to the ICV being ~6 cm (11%) as evaluated from the power-law statistics. Future
sterodynamic sea level is more predictable in some regions than in others (Fig. 4). We show that half of the
considered cities could be seriously threatened by a sea-level increase of over 20%, and up to 50%, due
solely to local amplification of the ICV contribution (Fig. 4 and Extended Data Fig. 5). This could happen,
for example, in Tuvalu (Funafuti), French Polynesia (Rikitea) and along the southwestern coast of New
Guinea (Amamapare), where the expected sea level could increase by ~14 cm due to ICV, versus ~31 cm
induced by expected forced sea level, reaching a height of ~45 cm by 2100 (relative to 2006). In the Indian
Ocean, several megacities, as Mombasa (Kenya), Chennai (India), Kolkata (India) and Ho Chi Minh City
(Vietnam) in the South China Sea, will probably follow a similar route in facing an important expected sea-
level increase of ~37%, due solely to the ICV contribution. Note that the magnitude of the expected sea-
level change is largely uncertain at Fremantle and Darwin, along the western coast of Australia and the
megacity of Manila (Philippines), where the ICV could amplify the externally forced sea level by 91%, 53%
and 58%, respectively (Fig. 4 and Extended Data Fig. 5). If the ICV upper limit is reached, new SLR hotspots
will peak in Southeast Asian megacities with the ICV part in the maximum expected SLR of, at least, ~20%
at Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila, and up to ~30% in the western
tropical Pacific Islands and in the Western Indian Ocean. Obviously, such substantial ICV fluctuation would

place millions of people at significantly larger risk by 2100 than that predicted without considering the ICV.
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Fig. 3 | Sterodynamic SLR by 2100 under RCP 8.5 (relative to 2006). a. Maximum expected ICV contribution (=
95% confidence interval upper bound) obtained from the power-law statistics; b. Externally forced sea level rise from
CESMI1-LE and c. Maximum expected sea level rise, defined as the sum of externally forced sea level and of the
maximum expected ICV contribution obtained from the power-law statistics. The black dots are the locations of the

major ports world-wide (obtained from the World Port index database, https://msi.nga.mil/Publications/WPI ).
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ICV can increase frequency of future extreme sea levels
Small increases in mean sea level can make extreme sea-level events much more frequent®>>. Assuming
the Gumbel distribution to be adequate for characterizing sea-level extremes, the frequency N of exceeding

a given level A is given by”*:

N =exp(h/4) 3)

with 4 a site-dependent scale parameter. As a first estimate, we assume that the Gumbel law scale parameter
remains unchanged in the future. At sea-level stations, where the values of A are available™*, we compute,
using equation (3), the changes in frequencies of extreme sea-level events induced by the SLR with and
without accounting for the ICV contribution (Table 1). By 2100 and under RCP 8.5, at New York, the rare
events are expected to occur 18 times more frequently than in 2006 and even 25 times more often if the
upper limit of ICV uncertainty is reached. There are, however, some regions where this issue becomes much
more critical by 2100. For example, in Manila, with no ICV contribution considered, the rare events are
expected to occur also 18 times more frequently by 2100, as in New York. However, the ICV contribution
can drastically change the future of Manila by increasing the extreme-events frequency by a factor of 96 if
the upper limit of ICV uncertainty is considered (Table 1). An even more striking ICV contribution can be
expected at Darwin, Mombasa, Funafuti, Fremantle and Ho Chi Minh City (Table 1), where the impact of
externally forced SLR can be amplified by the ICV by a factor of seven to nine. For example, the Funafuti
atoll is expected to face, due to externally driven SLR, a 1-in10,000yr event to appear every
10,000/175 =57 yr (Table 1). However, the ICV can decrease this return period to ~6 yr, making 1-in-
10,000 yr events (perhaps never yet observed by the Funafuti population) very likely to occur, on average,

every 6 yr by about 2100.

Sea-level allowance is another useful quantity of interest for the design of coastal defence, quantifying
the increase of defence structures needed to maintain its current flood probability under future SLR¥-77,
The sea-level allowance (4) can be calculated as’°:

0.2
A=h + @B 4)
where 4 is the externally forced SLR by 2100 derived from CESMI-LE, the uncertainty ¢ is the maximum
expected ICV contribution by 2100 from power-law statistics and 4 is the Gumbel scale parameter from (ref.
>%) (as in Equation 3 and Table 1). Note that 4, as a first approximation, excludes effects of wave set-up and

run-up, which may be important in some regions®®. We focus on the second term in Equation 4, which



reflects the additional impact of the ICV contribution on the defence structure increase needed by 2100
under RCP 8.5.

The ICV contribution can reach about one-third of that due to the externally forced SLR at Rikitea,
Wellington and Ho Chi Minh City (Table 1). It can reach half of the externally forced SLR at Darwin,
Mombasa, Manila and Funafuti and be comparable to the externally forced SLR at Fremantle (Table 1).
Therefore, there is enhanced probability of a real danger for all these regions, where the ICV fluctuations
are large enough to increase the externally forced sea level, topping up the frequency of extreme sea-level
events and amplifying the flooding hazard and the human impacts.

Table 1 | Maximum expected ICV contribution impact, by 2100 and under RCP 8.5 (relative to 2006), on the extreme sea-level event
frequencies and the increase of the defence structures needed to maintain the current flood probability under future sea level

City Location (latitude, h(cm) o(cm) A(cm) N,=exp(h/A) N,.. = exp((h + a)/A) Increase (cm) of the defence  Increase of the defence
longitude) structures needed by 2100 structures needed by 2100
due to maximum expected due to maximum expected
ICV contribution (6?/(24)) ICV contribution compared
with h (%)
New York 40.70° N, 49 6 17 18 25 1 2
74.02° W
Manila 14.58° N, 33 19 11.4 18 96 16 48
120.97° E
Rikitea 23.12°S, 28 12 7.5 44 215 9 33
134.97° W
Yangon 16.77° N, 32 8 6.5 148 471 4 13
96.17°E
Darwin 12.47°S, 33 17 8.3 52 427 18 56
130.85° E
Mombasa 4.07°S,39.67°E 39 16 7.7 151 1,251 17 45
Funafuti 8.52°S, 31 13 6 175 1,530 14 45
179.19°E
Fremantle 32.05°S, 27 25 12.6 9 61 24 89
115.75° E
Wellington 41.28°S, 39 11 6.5 403 2,191 9 24
174.78°E
Ho Chi Minh 10.77°N, 35 12 5.9° 377 2,882 12 35
City 106.72°E

2From Vung Tau tide-gauge record located ~60 km from Ho Chi Minh City.

Conclusion

The sea-level projections are accompanied by inherent uncertainties of which a substantial part arises from
complex and unpredictable interactions within and between climate-system components, rendering them
irreducible. Neglecting the uncertainty induced by the ICV inevitably results in underestimation of future
SLR and the associated flooding risks. Along with the spread in the sea-level changes derived from CESM1-
LE, we used a realistic statistical model of large deviations in sea-level fluctuations based on previous

analyses of the observed sea-level records'-**=’

. The power-law model provides a simple and efficient
framework for estimating ICV uncertainty in sea-level projections. The power-law statistics seem to indicate

a wider range of probable sea-level changes generated by the ICV than the spread among CESM1-LE
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members. This effect is pronounced by 2100 and under RCP 8.5 along the coasts of East Africa, west
Australia, insular Southeast Asia and west United States. If the ICV uncertainty upper limit is reached, some
SLR hotspots would be created in Southeast Asian megacities, making a part of at least ~20% in the expected
SLR at Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila and reaching ~30% in the
western tropical Pacific Islands and in Western Indian Ocean. Considering the ICV impacts, significant
changes in frequency of episodic floodings by the end of the century are expected in low-lying areas (<10 m
above sea level) and densely populated regions, such as the Irrawaddy delta (Yangon), the Mekong delta
(Ho Chi Minh City), several megacities (for example, Manila and Mombasa) and on the low-lying islands
in the tropical Pacific, placing millions of people at risk. It is worth noting that the upper limit of
sterodynamic SLR evaluated in this study should not be considered as definitive because we used a single
model, and actual sea-level changes, or sea-level changes from other models, could be of somewhat different
magnitude from the results presented; the spatial pattern could also differ to some degree. Note, as well, that
the ICV can also attenuate regional sea level by 2100, thus masking the external trend due to global warming.
In this scenario, if the ICV should swing back to increasing regional sea level by 2150 or 2200, the regional
SLR will be amplified in surprising and unexpected ways. Moreover, other sources of uncertainties such as
the structural model parameterization and greenhouse gas emission scenarios should be considered together
with the processes not yet included in the climate models such as contributions of freshwater from ice-sheet

melting and their response to ongoing climate changes.
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Methods

Model and experiments

Model. The CESM1 is a global-scale and fully coupled climate model developed at the National Center for
Atmospheric Research and by the US Department of Energy laboratories®. The model is performed with 1°
latitude/longitude resolution for all components and with an enhanced resolution for the ocean component
in the equatorial regions. The CESM1 runs used in this study do not include an active ice-sheet model,
glacial isostatic adjustment and gravitational force changes. As such, it allows us to estimate only the steric
and dynamic sea-level changes, which together account for ~40% of the observed global mean SLR for
recent decades. The net heat gain and loss by the ocean, generating the sea-level fluctuations, is computed
as the vertical integration of the seawater in situ density and summed globally. The thermosteric sea-level
variations added to the dynamic sea-level field obtained from the model simulations provide the regional

SLR.

Experiments. The LE simulations used in this study start from the same twentieth-century all-forcing
simulation branched from the 1850 pre-industrial CESM1 control simulation (Extended Data Fig. 1). A
round-off level perturbation is introduced into the air temperature field on 1 January 1920 from the ensemble
member number 1 (ens001; Extended Data Fig. 1) and is run to 2005 (40 members in total). After 2005, the
simulations follow RCP 8.5 from 2006 to 2100. For details of the experimental design, please see (ref. ?).
The CESM1-LE includes also a 1,800 yr fully coupled pre-industrial control run in which all external forcing
is set to constant at pre-industrial level (1850); for example, CO2 concentration is 284 parts per million by
volume.

All  the  datasets are  freely available on the CESM  webpage:  http:/

www.cesm.ucar.edu/projects/community-projects/LENS/data- sets.html.
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DFA and the scaling exponent (a)

The DFAn is designed to study long-term correlations in time series in the presence of external trends*?. The
DFAun filters out local polynomial trends up to the n order when constructing a fluctuation function F{(s) ~ s,
with s the time-window size and o the scaling exponent. Depending on the value of the scaling exponent a,
different signal characteristics can be identified as uncorrelated signal for o = 0.5 (white noise) and long-
term correlations for o> 0.5 (see (ref. *?) for more details about the DFA).

Here we briefly present the main steps of the DFAn procedure for a record X(i), i=1...L:

- Compute the integration profile Y= i [ =X] j=1...L where
X=i3L
- Determine the number of intervals of equal length i=1 Xi st LsL =15

- Divide Y(i) into L; non-overlapped intervals of equal length s

- Fit on Y(i) for each interval v=1,...,Ls a polynomial of order n, called p", (i)

. . . . _1ys i NG
. Subtract the polynomial for each interval v and estimate the variance: ¢ = ; Zia [Yo (v =Ds+ 0= p} @)

- Repeat this procedure for all timescales s
_ [iyb
. Establish the “fluctuation function’ F*¥ =V & 2= O
- Determine the scaling exponent a given by the slope of the regression line between log (s) and log (F(s)).

In this study, following (refs. *>*”), the scaling exponent a of sterodynamic sea-level fluctuations is
estimated on each grid point of the 1,800 yr monthly CESM1 pre-industrial control run’' by DFA3 with
windows of size s ranging from 1 to 95 yr. By definition, DFA3 removes cubic trends in the profile ¥(7) and
thus quadratic trends in the original series X(7). To limit a bias in the scaling exponent o estimation due to
oscillations*’, at each CESM1 grid point, the sea-level seasonal signal was removed before analysis by
subtracting the mean for each month. The inverted barometric correction is not applied as this correction has

no significant effect on the scaling exponent estimation®°.

Expected sea-level change and ICV uncertainty from CESM1-LE

To evaluate the long-term changes in the mean of sea-level variations at the end of the considered period we
(1) evaluate the slope of the linear trend (cm yr!) of a sea-level time series over 1920-2005 and (2) multiply
this slope by the duration of the sea-level time series, 86 yr (for example, with a slope =0.3 cm yr!, sea-
level increase in 2005 relative to 1920 is 0.3 x 86 =26 cm). The resulting value, “histo;1 . 40, is called the
expected sea-level change (Extended Data Fig. 2). However, we also evaluate the expected mean sea-level

change due to external forcing as the mean “histoi1.. 40, and 2o of the set of 2histos=1.. 40 measures the ICV
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contribution to the mean sea-level changes by 2005 relative to 1920 (called ICVcesmi-Lg; Fig. 2).
Considering the 40-member CESMI1-LE RCP 8.5 over 2006-2100, in the same way, we define
ARCPS;=1....405 as the expected forced sea-level changes, ARCPS8;=1...405 as the expected forced mean sea-
level changes (Fig. 3b) and 20 of the set of 2RCP8;-1....405 as the ICV contribution to the mean sea-level
changes by 2100 relative to 2006 (Extended Data Fig. 4).

Expected sea-level change and ICV uncertainty from power-law statistics

Several studies*®

4849 have established the probability that a regression line drawn through a Gaussian long-
term correlated times series rises up spontaneously to some level 4, corresponding to the difference between
the first and last points of the linear regression line, which are not necessarily the first and the last points of
the time series considered (Extended Data Fig. 3). The non-dimensional increase x is introduced by a ratio
x =4,¢, with o, the standard deviation of the dispersion around the linear regression line (Extended Data Fig.
3). Note that o; is not perturbed by the presence of external trend and represents the natural fluctuations.
(Ref. *®) determined the probability P(x, a, L)dx that in a long-term correlated time series of length L,
characterized by a scaling exponent a, a spontaneous trend occurs with a slope between x and x +dx. The
exceedance probability Wxa.0) = /P&« L)y’ gives a probability that the spontaneous trend has a slope larger
than x. The confidence bounds are then obtained from the exceedance probability W(x, a, L): xo= W—1 ((1
— 0)/2,a,L). Hence, to a confidence level of 95% (Q = 0.95), we estimate the upper and lower limits (£x9s)
of the part of the observed trend that can be fully explained by the natural variability, that is, due to the ICV

46,4849 for more details). Finally, by multiplying +xos by the standard deviation, o,

uncertainty (see (refs.
we estimate the probable ICV contribution to the observed trend, called ICV power-taw (Fig. 2). In this study,
for each CESM1 grid point, the scaling exponent a is obtained from the monthly 1,800 yr CESM1 pre-
industrial control run; L =86 yr (1,032 months), corresponding to the length of the CESM1-LE historical
simulations period 1920-2005 (CESM1-LE RCP 8.5: 95 yr to 2006-2100); 4 and o, are estimated from one
member of CESM1-LE historical simulations over 1920-2005 (over 2006-2100 for CESM1-LE RCP 8.5);
and the confidence level is fixed at O =0.95. Hence, the upper limits of ICVower-1aw are considered as the

maximum expected ICV contribution to sea-level change, by 2100 relative to 2006, obtained from the

power-law statistics (Fig. 3a).

Data availability
All the CESMI1-LE datasets are freely available on the Community Earth System Model webpage:
http://www.cesm.ucar.edu/projects/ community-projects/LENS/data-sets.html. The World Port Index
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database is provided by the National Geospatial-Intelligence Agency and is freely available at
https://msi.nga.mil/Publications/WPI.
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7 Port index database https://msi.nga.mil/Publications/WP) (that is RCP8.5). In red: ICVpower-1aw range (two-
8 sided 95% confidence level)
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