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Abstract 15 

Adaptation to future sea-level rise is based on projections of continuously improving climate models. These 16 

projections are accompanied by inherent uncertainties, including those due to internal climate variability 17 

(ICV). The ICV arises from complex and unpredictable interactions within and between climate-system 18 

components, rendering its impact irreducible. Although neglecting this uncertainty can lead to an 19 

underestimation of future sea-level rise, its estimation and impacts have not been fully explored. Combining 20 

the Community Earth System Model version 1 Large Ensemble experiments with power-law statistics, we 21 

show that, by 2100, if the ICV uncertainty reaches its upper limit, new sea-level-rise hotspots would appear 22 

in Southeast Asian megacities (Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila), in 23 

western tropical Pacific Islands and the Western Indian Ocean. The better the ICV uncertainty is taken into 24 

account and correctly estimated, the more effective adaptation strategies can be elaborated with confidence 25 

and actions to follow. 26 

 27 
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 29 

Distinguishing the human activity signature in past and ongoing sea-level changes is a challenging topic of 30 

intense studies1–6. A major obstacle for reliable detection of the anthropogenic signals originates from 31 

substantial contribution of natural fluctuations to the sea-level changes. These fluctuations mirror the 32 

complex climate-system dynamics, commonly called internal climate variability (ICV). The ICV is 33 
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generated by chaotic interactions within and between the atmosphere, hydrosphere, cryosphere, biosphere 34 

and the solid-Earth processes occurring over an extremely wide range of time and space scales7,8. These 35 

interactions can manifest as cycles, instabilities or irregular oscillations of the climate system9,10. One 36 

example of well-known manifestation of the internal variability in the climate system is the El Niño/ 37 

Southern Oscillation8. The practical importance of the ICV is rooted in its chaotic nature, leading to an 38 

irreducible uncertainty in the sea-level projections1,11–17. 39 

 40 

A commonly used approach for estimating the ICV uncertainty in future sea-level changes is based on 41 

large ensembles (LEs) of global climate models (GCMs)12,13,18,19. An LE is a set of numerical simulations 42 

conducted with the same GCM and forcing scenario but with slightly different initial conditions20. The 43 

spread among the ensemble members mimics the chaotic and unpredictable nature of climate and 44 

characterizes the ICV intensity, while the changes due to external forcing are usually represented by the 45 

average of the LE realizations8,21. By using a 40-member Community Climate System Model version 3 LE, 46 

Hu and Deser13 have reported that the ICV contribution to the mean sea-level changes between 2041–2060 47 

and 1980–1999 varies regionally by a factor of two among the LE members, while the global mean sea-level 48 

rise (SLR) remains almost unaffected by the ICV. Substantial impact of the ICV on the regional mean sea 49 

level was also confirmed by analysis of the multimodel ensemble spread (for example, Coupled Model 50 

Intercomparison Project Phases 5/6 (CMIP5/6)14,17,22–24). However, the multimodel ensemble spread arises 51 

from both ICV and specific parameterizations in the modelling process14,17,22,23,25,26. Thus, the uncertainty 52 

estimated from the multimodel ensemble is rather a measure of consensus within the multimodel ensemble, 53 

which is important but distinct from evaluations of the ICV uncertainty in LEs10,14,27–29. 54 

 55 

There exists also an alternative for evaluating the ICV contribution that is based on the specific temporal 56 

behaviour of sea-level fluctuations. It has been widely recognized that the sea-level fluctuations are 57 

organized over an extremely broad range of periods, in such way that their power spectral density, S, closely 58 

follows a power-law spectrum (f, frequency) defined by an exponent β (ref. 30): 59 

 S ∼ f−β (1) 60 

The power-law character of sea-level fluctuations described by equation (1) is a manifestation of the 61 

complex ICV structure31. Analysis of the 100-yr-long sea-level records shows that the scaling exponent β is 62 

site dependent and varies: 0 < β < 21,32–37. The scaling with β > 0 corresponds to persistent sea-level 63 

fluctuations with long-term correlations (long-term memory), while β = 0 indicates a signal indistinguishable 64 

from a random process with no memory (white noise). A particular feature of the long-term memory 65 
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processes (β > 0) is that they can generate long-term trend-like spontaneous deviations that can considerably 66 

mask the trend induced by external forcing. Concerning the GCMs, it is a long-standing question whether 67 

they can reproduce the power-law behaviour detected in observed sea-level records1,32–36. Extensive 68 

comparison of 36 CMIP5 GCMs with observations38 showed that a majority of GCMs overestimate the 69 

power-law character of observed sea-level variations. The best performance was obtained by Community 70 

Earth System Model version 1 (CESM1), which reproduced the observed sea-level scaling in three-quarters 71 

of the sea-level records analysed. 72 

 73 

A logical follow-up is to assess the CESM1-LE ability to reproduce the ICV uncertainty in sea-level 74 

projections and to constrain uncertainties in the future mean sea-level changes. These should not be confused 75 

with the changes in the mean sea level driven by the external forcing. However, in long-term correlated 76 

records, the ICV contribution may look like a trend indistinguishable from an externally generated trend. By 77 

consequence, the coastal population can suffer from the ‘apparent’ sea-level trend-like changes generated 78 

by the ICV in a similar way as from the externally driven changes because it is the rate of SLR that matters 79 

for coastal defences and not only the origin of sea-level drivers. This point is essential for developing 80 

effective strategies and design responses for coastal communities facing SLR in a warming world. To guide 81 

our investigations, we (1) explore the regional variations in the power-law exponent of sea-level fluctuations; 82 

(2) compare the ICV uncertainty estimated from CESM1-LE spread with that derived from the power-law 83 

statistics; (3) evaluate, in selected global coastal cities, the maximum expected ICV contribution to sea-level 84 

changes by 2100 and (4) discuss the ICV uncertainty impact on coastal flooding. 85 

 86 

Scaling behaviour of sea-level fluctuations 87 

The scaling proprieties of sea-level fluctuations can be measured by using the well-established detrended 88 

fluctuation analysis (DFA)39. Compared with other standard tools (for example, Fourier spectrum or Hurst 89 

rescaled-range analysis40), the DFAn effectively eliminates polynomial trends of order n – 1 in the original 90 

data and permits reliable detection of long-term correlations in nonstationary time series39. The DFA 91 

analyses scaling properties of the fluctuation function, F(s), which characterizes sea-level fluctuations in the 92 

non-overlapping time windows of size s39,41. The DFA provides a single parameter—the scaling exponent α 93 

(also called Hurst exponent)—to quantify the correlation properties of the time series (see Methods for more 94 

details). A power-law relation between F(s) and the segment’s size s indicates the presence of long-term 95 

correlations: 96 

 F(s) ∼ sα (2) 97 
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This exponent is related to the power spectral density exponent β in equation (1) by β = 2α − 1 (ref. 41). 98 

Different types of temporal behaviour can be identified as uncorrelated signals for α = 0.5 (white noise) and 99 

long-term correlations for α > 0.5. We apply scaling analysis to sea-level fluctuations simulated by the 100 

1,800-yr–long CESM1 pre-industrial control run21 (see Methods for CESM1 details; Extended Data Fig. 1), 101 

with the exponent α estimated by DFA3 (ref. 42). In the following, we use the term ‘sterodynamic sea level’ 102 

for designating a sum of sea-level changes due to thermosteric effect and dynamical ocean adjustment 103 

computed by CESM1 (ref. 43). It does not include yet-unmodelled changes in sea level due to land-based ice 104 

or to land movement. The spatial variations of the scaling exponent appear to be not randomly dispersed but 105 

remarkably organized in large-scale patterns, highlighting regional similarities in sea-level temporal 106 

behaviour within large areas (Fig. 1). One can say that, globally, the oceans are characterized by scaling 107 

exponents ranging between 0.5 and 1.0, with the lowest values of 0.5 to 0.6 in the Arctic Ocean region, 108 

specifically in the Bering Sea and in the East Siberian Sea. As a larger scaling exponent means a more 109 

intense energy transfer across the spectrum of sea-level fluctuations (equation (1)), it seems reasonable to 110 

suggest that its enhanced values (α > 1) are associated with the mostly energetic extratropic regions hosting 111 

strong ocean currents such as subpolar gyre regions, the Kuroshio extension in the North Pacific, the North 112 

Atlantic Drift current and the Antarctic Circumpolar Current in the southern oceans. The scaling exponent 113 

patterns in Fig. 1 are in accordance with the results of previous studies that have investigated the GCM 114 

spatial structure of the sea-level variability44. For example, Monselesan et al.44 noticed in the 500 yr pre-115 

industrial runs of CMIP5 models that, on longer time scales (>5 yr), maximum sea-level variance moves to 116 

the extratropics. It is worth noting that with increasing scaling exponent α (that is, with increasing strength 117 

of the long-term correlations), the range of the ICV uncertainty increases and, thus, so does the uncertainty 118 

about the sea-level change. 119 



 

 5 

 120 
 121 

Fig. 1 | Scaling exponent α of sterodynamic sea-level fluctuations. Estimated from the 1,800 yr 122 

CESM1 pre-industrial control run by DFA3 with windows of size  s ranging from 1 to 95 yr. For 123 

uncorrelated data, α = 0.5 (white noise), and for long-term correlated data, α > 0.5. 124 

  125 
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ICV uncertainty contribution to sea level changes 126 

The estimates of change in climate variables are often based on differences between their averages computed 127 

over several decades12,13,45. Here, we estimate the ICV contribution to expected changes in the mean sea 128 

level between 1920 and 2005. A relevant quantity for that, Δ, is a product of the sea-level regression line 129 

slope (cm yr-1) and the duration. It represents a change of the mean sea level over the considered period46 130 

(see Methods for details). Δ is widely used in sea-level studies; for example, the global mean sea-level trend 131 

during the twentieth century is ~0.17 cm yr–1 (ref. 47), which corresponds to a 17 cm increase between the 132 

beginning and the end of the twentieth century. For each of the 40 members in the CESM1-LE historical 133 

simulations, the modelled sea-level change, ∆i=1…40, is estimated as explained in the preceding. We 134 

measure the spread between the ∆i=1…40, by two standard deviations (2σ, called hereafter ICVCESM1-LE; 135 

Extended Data Fig. 2), giving a direct measure of the ICV contribution to the changes in the mean sea level 136 

expected by 2005 relative to 1920. Furthermore, we employ the statistics of power-law correlated series to 137 

determine the range of spontaneous trend-like sea-level fluctuations in the CESM1 historical run caused by 138 

the ICV. To do this, we use the scaling exponent α previously estimated and, for every α, calculate the 139 

confidence interval within which the spontaneous trend-like fluctuations occur with the 95% 140 

probability46,48,49 by 2005 relative to 1920 (called hereafter ICVpower-law; see Methods for more details; 141 

Extended Data Fig. 3). This approach generalizes the analysis of sea-level variance by Monselesan et al.44 142 

in the sense that it accounts for the long-term sea-level correlations by modulating the sea-level variance by 143 

a factor depending on the scaling exponent α46,48,49. Moreover, the power-law statistics provide the bounds 144 

on the uncertainties of the sterodynamic sea-level changes simulated by CESM1 on annual to multi-decadal 145 

timescales. This is an important advance compared with common techniques such as, low-pass filtering 146 

based on smoothing sea-level fluctuations used in IPCC Fifth Assessment Report and Sixth Assessment 147 

Report, which suppresses sea-level variations on timescales longer than a few decades and consequently 148 

underestimate the long-term part of the ICV contribution47,50. 149 

The comparison of ICVpower-law with ICVCESM1-LE (Fig. 2) reveals close relations between the approaches 150 

in general and even a linear correlation between these two metrics in many oceanic regions. Moreover, a 151 

larger dispersion between CESM1-LE members at a given location corresponds systematically to a larger 152 

spread of naturally occurring sea-level trends predicted by the statistics of deviations in the power-law 153 

correlated time series. A closer similarity between spatial patterns of ICV uncertainty in both methods seems 154 

to be associated with the regions of energetic oceanic currents. Note, however, that no universal linear 155 

relationship is obvious in some regions, as in the Pacific inter-tropical or the North Indian Ocean. Notice 156 

that in the North Atlantic and South Indian Ocean, although the ICV uncertainty patterns are coherent 157 

between both metrics, the ICV estimated from the power-law statistics is nearly four to five times greater 158 
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than variability of the ensemble estimates. Thus, the power-law statistics seems to predict a larger ICV 159 

contribution in the mean sea-level changes than that derived from the CESM1-LE spread. This probably 160 

points to a yet small sampling size of the LE or to existence of a part of the ICV uncertainty that is not 161 

captured by the specific method of perturbing initial conditions in CESM1-LE. It can also be due to 162 

limitation of the universal scaling hypothesis in equation (1).163 



 

 

 164 

 165 
Fig. 2 | Geographical distribution of the ICV uncertainty range of sterodynamic sea-level changes by 2005 (relative to 1920). a,b, Estimated from 166 
power-law statistics (two-sided 95% confidence interval) (a) and 40-member CESM1-LE historical simulation spread (2σ) (b). c, Scatter plots comparing 167 
the uncertainty in the mean sea-level changes by 2005 (relative to 1920) predicted by the power-law statistics (ICVpower-law) and by the CESM1-LE spread 168 
(ICVCESM1-LE). The slope (P < 0.001) and R2 of the linear regression are given for comparison at the global and regional scales169 

a. b. 

c. 



 

 

ICV uncertainty and future sea-level hotspots 170 

We now investigate the ICV contribution to the projected mean sea-level change by 2100 under a carbon 171 

high-emissions global warming scenario (representative concentration pathway (RCP) 8.5). The ICVpower-172 

law exceeds the ICVCESM1-LE by a factor of two globally and, particularly, by a factor of six along the coasts 173 

of East Africa, west Australia, Southeast Asia and west United States (Extended Data Fig. 4). In the 174 

perspective of evaluating future coastal flood risks, we focus on upper boundaries of the projected sea-level 175 

range51 and consider the maximum expected ICV contribution obtained from the power-law statistics (an 176 

upper bound of the two-sided 95% confidence interval). The maximum expected ICV contribution ranges, 177 

typically, from 2—17 cm, but there are distinct regions where the value exceeds 25 cm, as in the North 178 

Atlantic, the North Pacific and along the Australian west coast (Fig. 3a). We defined the maximum expected 179 

SLR (Fig. 3c) as the sum of expected forced sea level (Fig. 3b), obtained from the ensemble mean of SLR 180 

from CESM1-LE, and of the maximum expected ICV contribution obtained from the power-law statistics 181 

(an upper bound of the two-sided 95% confidence interval; Fig. 3a). Defined in this way, the maximum 182 

expected SLR is then an upper-bound scenario, giving important information for coastal planning purposes. 183 

For example (Fig. 4), the maximum sea level at New York by 2100 (relative to 2006) is expected to increase 184 

by 55 cm, in part due to the ICV being ~6 cm (11%) as evaluated from the power-law statistics. Future 185 

sterodynamic sea level is more predictable in some regions than in others (Fig. 4). We show that half of the 186 

considered cities could be seriously threatened by a sea-level increase of over 20%, and up to 50%, due 187 

solely to local amplification of the ICV contribution (Fig. 4 and Extended Data Fig. 5). This could happen, 188 

for example, in Tuvalu (Funafuti), French Polynesia (Rikitea) and along the southwestern coast of New 189 

Guinea (Amamapare), where the expected sea level could increase by ~14 cm due to ICV, versus ~31 cm 190 

induced by expected forced sea level, reaching a height of ~45 cm by 2100 (relative to 2006). In the Indian 191 

Ocean, several megacities, as Mombasa (Kenya), Chennai (India), Kolkata (India) and Ho Chi Minh City 192 

(Vietnam) in the South China Sea, will probably follow a similar route in facing an important expected sea-193 

level increase of ~37%, due solely to the ICV contribution. Note that the magnitude of the expected sea-194 

level change is largely uncertain at Fremantle and Darwin, along the western coast of Australia and the 195 

megacity of Manila (Philippines), where the ICV could amplify the externally forced sea level by 91%, 53% 196 

and 58%, respectively (Fig. 4 and Extended Data Fig. 5). If the ICV upper limit is reached, new SLR hotspots 197 

will peak in Southeast Asian megacities with the ICV part in the maximum expected SLR of, at least, ~20% 198 

at Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila, and up to ~30% in the western 199 

tropical Pacific Islands and in the Western Indian Ocean. Obviously, such substantial ICV fluctuation would 200 

place millions of people at significantly larger risk by 2100 than that predicted without considering the ICV. 201 
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 202 

 203 

Fig. 3 | Sterodynamic SLR by 2100 under RCP 8.5 (relative to 2006).  a. Maximum expected ICV contribution (= 204 

95% confidence interval upper bound) obtained from the power-law statistics; b. Externally forced sea level rise from 205 

CESM1-LE and c. Maximum expected sea level rise, defined as the sum of externally forced sea level and of the 206 

maximum expected ICV contribution obtained from the power-law statistics. The black dots are the locations of the 207 

major ports world-wide (obtained from the World Port index database, https://msi.nga.mil/Publications/WPI ). 208 



 

 

 209 

 210 

Fig. 4 | Upper-bound scenario of the expected sterodynamic SLR by 2100 under RCP 8.5 (relative to 2006). The sizes of the circles and the numbers 211 

attached to them represent the maximum expected SLR, defined as the sum of externally forced sea level obtained from the ensemble mean of SLR from 212 

CESM1LE (blue) and the maximum expected ICV contribution obtained from power-law statistics (turquoise) corresponding to the two-sided 95% confidence 213 

interval upper bound. Probability of a larger ICV contribution than that shown by the turquoise part of circles is 2.5%. The selected cities are major ports 214 

worldwide. Population previsions for the megacities by 2100 are given in millions under the Shared Socioeconomic Pathway 2 (Middle of the Road; (ref. 59)). 215 

Basemap from Natural Earth (https://www.naturalearthdata.com).216 



 

 

ICV can increase frequency of future extreme  sea levels 217 

Small increases in mean sea level can make extreme sea-level events much more frequent52,53. Assuming 218 

the Gumbel distribution to be adequate for characterizing sea-level extremes, the frequency N of exceeding 219 

a given level h is given by53: 220 

 N = exp(h/λ) (3) 221 

with λ a site-dependent scale parameter. As a first estimate, we assume that the Gumbel law scale parameter 222 

remains unchanged in the future. At sea-level stations, where the values of λ are available54, we compute, 223 

using equation (3), the changes in frequencies of extreme sea-level events induced by the SLR with and 224 

without accounting for the ICV contribution (Table 1). By 2100 and under RCP 8.5, at New York, the rare 225 

events are expected to occur 18 times more frequently than in 2006 and even 25 times more often if the 226 

upper limit of ICV uncertainty is reached. There are, however, some regions where this issue becomes much 227 

more critical by 2100. For example, in Manila, with no ICV contribution considered, the rare events are 228 

expected to occur also 18 times more frequently by 2100, as in New York. However, the ICV contribution 229 

can drastically change the future of Manila by increasing the extreme-events frequency by a factor of 96 if 230 

the upper limit of ICV uncertainty is considered (Table 1). An even more striking ICV contribution can be 231 

expected at Darwin, Mombasa, Funafuti, Fremantle and Ho Chi Minh City (Table 1), where the impact of 232 

externally forced SLR can be amplified by the ICV by a factor of seven to nine. For example, the Funafuti 233 

atoll is expected to face, due to externally driven SLR, a 1-in10,000 yr event to appear every 234 

10,000/175 ≈ 57 yr (Table 1). However, the ICV can decrease this return period to ~6 yr, making 1-in-235 

10,000 yr events (perhaps never yet observed by the Funafuti population) very likely to occur, on average, 236 

every 6 yr by about 2100. 237 

 238 

Sea-level allowance is another useful quantity of interest for the design of coastal defence, quantifying 239 

the increase of defence structures needed to maintain its current flood probability under future SLR53,55–57. 240 

The sea-level allowance (A) can be calculated as55: 241 

 ! = ℎ	 + &'
()*) (4) 242 

where h is the externally forced SLR by 2100 derived from CESM1-LE, the uncertainty σ is the maximum 243 

expected ICV contribution by 2100 from power-law statistics and λ is the Gumbel scale parameter from (ref. 244 

54) (as in Equation 3 and Table 1). Note that A, as a first approximation, excludes effects of wave set-up and 245 

run-up, which may be important in some regions58. We focus on the second term in Equation 4, which 246 
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reflects the additional impact of the ICV contribution on the defence structure increase needed by 2100 247 

under RCP 8.5. 248 

The ICV contribution can reach about one-third of that due to the externally forced SLR at Rikitea, 249 

Wellington and Ho Chi Minh City (Table 1). It can reach half of the externally forced SLR at Darwin, 250 

Mombasa, Manila and Funafuti and be comparable to the externally forced SLR at Fremantle (Table 1). 251 

Therefore, there is enhanced probability of a real danger for all these regions, where the ICV fluctuations 252 

are large enough to increase the externally forced sea level, topping up the frequency of extreme sea-level 253 

events and amplifying the flooding hazard and the human impacts. 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

Conclusion 271 

The sea-level projections are accompanied by inherent uncertainties of which a substantial part arises from 272 

complex and unpredictable interactions within and between climate-system components, rendering them 273 

irreducible. Neglecting the uncertainty induced by the ICV inevitably results in underestimation of future 274 

SLR and the associated flooding risks. Along with the spread in the sea-level changes derived from CESM1-275 

LE, we used a realistic statistical model of large deviations in sea-level fluctuations based on previous 276 

analyses of the observed sea-level records1,34–37. The power-law model provides a simple and efficient 277 

framework for estimating ICV uncertainty in sea-level projections. The power-law statistics seem to indicate 278 

a wider range of probable sea-level changes generated by the ICV than the spread among CESM1-LE 279 

aFrom Vung Tau tide-gauge record located ~60 km from Ho Chi Minh City. 

 

Table 1 | Maximum expected ICV contribution impact, by 2100 and under RCP 8.5 (relative to 2006), on the extreme sea-level event 
frequencies and the increase of the defence structures needed to maintain the current flood probability under future sea level 
City Location (latitude, 

longitude) 
h (cm) σ (cm) λ (cm) Nh = exp(h/λ) Nh+σ = exp((h + σ)/λ) Increase (cm) of the defence 

structures needed by 2100 
due to maximum expected 
ICV contribution (σ2/(2λ)) 

Increase of the defence 
structures needed by 2100 
due to maximum expected 
ICV contribution compared 
with h (%) 

New York 40.70° N,  
74.02° W 

49 6 17 18 25 1 2 

Manila 14.58° N,  
120.97° E 

33 19 11.4 18 96 16 48 

Rikitea 23.12° S, 
134.97° W 

28 12 7.5 44 215 9 33 

Yangon 16.77° N,  
96.17° E 

32 8 6.5 148 471 4 13 

Darwin 12.47° S, 
130.85° E 

33 17 8.3 52 427 18 56 

Mombasa 4.07° S, 39.67° E 39 16 7.7 151 1,251 17 45 
Funafuti 8.52° S,  

179.19° E 
31 13 6 175 1,530 14 45 

Fremantle 32.05° S,  
115.75° E 

27 25 12.6 9 61 24 89 

Wellington 41.28° S,  
174.78° E 

39 11 6.5 403 2,191 9 24 

Ho Chi Minh 
City 

10.77° N,  
106.72° E 

35 12 5.9a 377 2,882 12 35 
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members. This effect is pronounced by 2100 and under RCP 8.5 along the coasts of East Africa, west 280 

Australia, insular Southeast Asia and west United States. If the ICV uncertainty upper limit is reached, some 281 

SLR hotspots would be created in Southeast Asian megacities, making a part of at least ~20% in the expected 282 

SLR at Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City and Manila and reaching ~30% in the 283 

western tropical Pacific Islands and in Western Indian Ocean. Considering the ICV impacts, significant 284 

changes in frequency of episodic floodings by the end of the century are expected in low-lying areas (<10 m 285 

above sea level) and densely populated regions, such as the Irrawaddy delta (Yangon), the Mekong delta 286 

(Ho Chi Minh City), several megacities (for example, Manila and Mombasa) and on the low-lying islands 287 

in the tropical Pacific, placing millions of people at risk. It is worth noting that the upper limit of 288 

sterodynamic SLR evaluated in this study should not be considered as definitive because we used a single 289 

model, and actual sea-level changes, or sea-level changes from other models, could be of somewhat different 290 

magnitude from the results presented; the spatial pattern could also differ to some degree. Note, as well, that 291 

the ICV can also attenuate regional sea level by 2100, thus masking the external trend due to global warming. 292 

In this scenario, if the ICV should swing back to increasing regional sea level by 2150 or 2200, the regional 293 

SLR will be amplified in surprising and unexpected ways. Moreover, other sources of uncertainties such as 294 

the structural model parameterization and greenhouse gas emission scenarios should be considered together 295 

with the processes not yet included in the climate models such as contributions of freshwater from ice-sheet 296 

melting and their response to ongoing climate changes. 297 

 298 
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Methods 421 

Model and experiments 422 

Model. The CESM1 is a global-scale and fully coupled climate model developed at the National Center for 423 

Atmospheric Research and by the US Department of Energy laboratories60. The model is performed with 1° 424 

latitude/longitude resolution for all components and with an enhanced resolution for the ocean component 425 

in the equatorial regions. The CESM1 runs used in this study do not include an active ice-sheet model, 426 

glacial isostatic adjustment and gravitational force changes. As such, it allows us to estimate only the steric 427 

and dynamic sea-level changes, which together account for ~40% of the observed global mean SLR for 428 

recent decades. The net heat gain and loss by the ocean, generating the sea-level fluctuations, is computed 429 

as the vertical integration of the seawater in situ density and summed globally. The thermosteric sea-level 430 

variations added to the dynamic sea-level field obtained from the model simulations provide the regional 431 

SLR. 432 

Experiments. The LE simulations used in this study start from the same twentieth-century all-forcing 433 

simulation branched from the 1850 pre-industrial CESM1 control simulation (Extended Data Fig. 1). A 434 

round-off level perturbation is introduced into the air temperature field on 1 January 1920 from the ensemble 435 

member number 1 (ens001; Extended Data Fig. 1) and is run to 2005 (40 members in total). After 2005, the 436 

simulations follow RCP 8.5 from 2006 to 2100. For details of the experimental design, please see (ref. 2). 437 

The CESM1-LE includes also a 1,800 yr fully coupled pre-industrial control run in which all external forcing 438 

is set to constant at pre-industrial level (1850); for example, CO2 concentration is 284 parts per million by 439 

volume. 440 

All the datasets are freely available on the CESM webpage: http:// 441 

www.cesm.ucar.edu/projects/community-projects/LENS/data- sets.html. 442 
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DFA and the scaling exponent (α) 443 

The DFAn is designed to study long-term correlations in time series in the presence of external trends42. The 444 

DFAn filters out local polynomial trends up to the n order when constructing a fluctuation function F(s) ∼ sα, 445 

with s the time-window size and α the scaling exponent. Depending on the value of the scaling exponent α, 446 

different signal characteristics can be identified as uncorrelated signal for α = 0.5 (white noise) and long-447 

term correlations for α > 0.5 (see (ref. 42) for more details about the DFA). 448 

Here we briefly present the main steps of the DFAn procedure for a record X(i), i = 1…L: 449 

• Compute the integration profile Y , i = 1…L where  450 

L 451 

• Determine the number of intervals of equal length i=1 Xi s: Ls L ⌋ = ⌊ s 452 

• Divide Y(i) into Ls non-overlapped intervals of equal length s 453 

• Fit on Y(i) for each interval v = 1,…,Ls a polynomial of order n, called pnv (i) 454 

• Subtract the polynomial for each interval v and estimate the variance: F  455 

• Repeat this procedure for all timescales s 456 

• Establish the ‘fluctuation function’ F  457 

• Determine the scaling exponent α given by the slope of the regression line between log (s) and log (F(s)). 458 

In this study, following (refs. 42,49), the scaling exponent α of sterodynamic sea-level fluctuations is 459 

estimated on each grid point of the 1,800 yr monthly CESM1 pre-industrial control run21 by DFA3 with 460 

windows of size s ranging from 1 to 95 yr. By definition, DFA3 removes cubic trends in the profile Y(i) and 461 

thus quadratic trends in the original series X(i). To limit a bias in the scaling exponent α estimation due to 462 

oscillations42, at each CESM1 grid point, the sea-level seasonal signal was removed before analysis by 463 

subtracting the mean for each month. The inverted barometric correction is not applied as this correction has 464 

no significant effect on the scaling exponent estimation36. 465 

Expected sea-level change and ICV uncertainty from CESM1-LE 466 

To evaluate the long-term changes in the mean of sea-level variations at the end of the considered period we 467 

(1) evaluate the slope of the linear trend (cm yr–1) of a sea-level time series over 1920–2005 and (2) multiply 468 

this slope by the duration of the sea-level time series, 86 yr (for example, with a slope = 0.3 cm yr–1, sea-469 

level increase in 2005 relative to 1920 is 0.3 × 86 = 26 cm). The resulting value, ∆histoi=1…40, is called the 470 

expected sea-level change (Extended Data Fig. 2). However, we also evaluate the expected mean sea-level 471 

change due to external forcing as the mean ∆histoi=1…40, and 2σ of the set of ∆histoi=1…40 measures the ICV 472 
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contribution to the mean sea-level changes by 2005 relative to 1920 (called ICVCESM1–LE; Fig. 2). 473 

Considering the 40-member CESM1-LE RCP 8.5 over 2006–2100, in the same way, we define 474 

∆RCP8i=1….405 as the expected forced sea-level changes, ∆RCP8i=1….405 as the expected forced mean sea-475 

level changes (Fig. 3b) and 2σ of the set of ∆RCP8i=1….405 as the ICV contribution to the mean sea-level 476 

changes by 2100 relative to 2006 (Extended Data Fig. 4). 477 

 478 

Expected sea-level change and ICV uncertainty from power-law statistics 479 

Several studies46,48,49 have established the probability that a regression line drawn through a Gaussian long-480 

term correlated times series rises up spontaneously to some level Δ, corresponding to the difference between 481 

the first and last points of the linear regression line, which are not necessarily the first and the last points of 482 

the time series considered (Extended Data Fig. 3). The non-dimensional increase x is introduced by a ratio 483 

x = ∆σt, with σt the standard deviation of the dispersion around the linear regression line (Extended Data Fig. 484 

3). Note that σt is not perturbed by the presence of external trend and represents the natural fluctuations. 485 

(Ref. 48) determined the probability P(x, α, L)dx that in a long-term correlated time series of length L, 486 

characterized by a scaling exponent α, a spontaneous trend occurs with a slope between x and x + dx. The 487 

exceedance probability W dx′ gives a probability that the spontaneous trend has a slope larger 488 

than x. The confidence bounds are then obtained from the exceedance probability W(x, α, L): xQ = W−1 ((1 489 

− Q)/2,α,L). Hence, to a confidence level of 95% (Q = 0.95), we estimate the upper and lower limits (±/95) 490 

of the part of the observed trend that can be fully explained by the natural variability, that is, due to the ICV 491 

uncertainty (see (refs. 46,48,49) for more details). Finally, by multiplying ±/95 by the standard deviation, σt, 492 

we estimate the probable ICV contribution to the observed trend, called ICVpower-law (Fig. 2). In this study, 493 

for each CESM1 grid point, the scaling exponent α is obtained from the monthly 1,800 yr CESM1 pre-494 

industrial control run; L = 86 yr (1,032 months), corresponding to the length of the CESM1-LE historical 495 

simulations period 1920–2005 (CESM1-LE RCP 8.5: 95 yr to 2006–2100); Δ and σt are estimated from one 496 

member of CESM1-LE historical simulations over 1920–2005 (over 2006–2100 for CESM1-LE RCP 8.5); 497 

and the confidence level is fixed at Q = 0.95. Hence, the upper limits of ICVpower-law are considered as the 498 

maximum expected ICV contribution to sea-level change, by 2100 relative to 2006, obtained from the 499 

power-law statistics (Fig. 3a). 500 

 501 

Data availability 502 

All the CESM1-LE datasets are freely available on the Community Earth System Model webpage: 503 

http://www.cesm.ucar.edu/projects/ community-projects/LENS/data-sets.html. The World Port Index 504 
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database is provided by the National Geospatial-Intelligence Agency and is freely available at 505 

https://msi.nga.mil/Publications/WPI. 506 
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 526 

Extended Data Fig. 1 | CESM1 Large Ensemble. The CESM1 Large Ensemble data sets. 527 

 528 

 529 

 530 

Extended Data Fig. 2 | The sea level changes simulated by CESM1-LE. The 40 gray lines are the sea 531 

level changes simulated at one grid point by the 40-members of the CESM1-LE historical simulations over 532 

1920-2005. The expected sea level change is measured by ∆, ∆1 and 23456789:;6 which are computed as 533 

described in the text. 534 
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 535 

  536 

Extended Data Fig. 3 | Visualization of the considered quantities Δ and σt. These quantities are obtained 537 

from one member of CESM1-LE historical simulation, at a given grid point, over 1920–2005. 538 

 539 

 540 

 541 

Extended Data Fig. 4 | Comparison of the ICV contributions. Ratio of ICV contribution to the expected 542 

sea level changes between ICVpower−law obtained  from the power-law statistics (two-sided 95% confidence 543 

level) and ICVCESM1−LE provided by the spread (2σ) between the Δi=1…40 from the 40-members 544 

CESM1-LE under RCP8.5 by 2100 relative 2006.  545 
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 570 

 571 

 572 

Extended Data Fig. 5 | Expected externally forced sea level rise by 2100 of  obtained from the power-573 

law statistics. In orange: ICVCESM1−LE from the spread major ports world-wide. Expected externally 574 

forced sea level rise (cm, in blue)  (2σ) between 40-members CESM1-LE. The sites are major ports 575 

world-wide (the by 2100 relative to 2006 under a carbon high-emissions global warming scenario World 576 
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Port index database https://msi.nga.mil/Publications/WP) (that is RCP8.5). In red: ICVpower−law range (two-577 

sided 95% confidence level)  578 


