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Abstract

Rapidly generating accurate extremes from an ob-
servational dataset is crucial when seeking to es-
timate risks associated with the occurrence of fu-
ture extremes which could be larger than those al-
ready observed. Many applications ranging from
the occurrence of natural disasters to financial
crashes are involved. This paper details a varia-
tional auto-encoder (VAE) approach for sampling
multivariate extremes. The proposed architecture
is based on the extreme value theory (EVT) and
more particularly on the notion of multivariate
functions with regular variations. Experiments
conducted on synthetic datasets as well as on a
dataset of discharge measurements along Danube
river network illustrate the relevance of our ap-
proach.

1. Introduction
Simulating samples from an unknown distribution is a task
that various studies have successfully tackled recently in
the machine learning (ML) community. This has led to
the emergence of generative algorithms, such as generative
adversarial networks (GAN) (Goodfellow et al., 2020) or
VAEs (Kingma & Welling, 2013; Rezende et al., 2014). ML
tasks focus on average behaviors rather than rare events and
these methods were not tailored to generate extremes and
extrapolate upon the largest value of the training dataset.
This is a major drawback when dealing with extremes since
accurately sampling extremes provides reference examples
for assessing risk in worst-case scenarios. This corresponds
to the two-dimensional problem sketched in Figure 1 to
which we propose to provide a solution. We seek to consis-
tently generate samples in an extreme region (black square)
from observations (blue dots) none of which belong to the
extreme region. In this context, the EVT characterizes the
probabilistic structure of extreme events and provides a

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. How to sample from observations (blue dots) in extreme
regions (black square) to estimate probability of rare events?

theoretically-sound statistical framework to analyze them.
Heavy-tail analysis (Resnick, 2007), in its broadest sense, is
a branch of EVT that studies phenomena governed by power
laws. Data modeled by heavy-tailed distributions cover a
wide range of application fields, e.g., hydrology (Ander-
son & Meerschaert, 1998; Rietsch et al., 2013), particle
motion (Fortin & Clusel, 2015), finance (Bradley & Taqqu,
2003), Internet traffic (Hernandez-Campos et al., 2004), and
risk management (Chavez-Demoulin & Roehrl, 2004; Das
et al., 2013). Recently, this area of research has gained
some interest in the ML community. Some work has shown
the potential of bridging the gap between ML and EVT
on different aspects, for example dimensionality reduction
(Drees & Sabourin, 2021), quantile function approximation
(Pasche & Engelke, 2022), outlier detection (Rudd et al.,
2017), or classification in tail regions (Jalalzai et al., 2018).
Concerning the generation of extremes, ML methods could
also integrate EVT tools. To our knowledge, only GANs
have been applied to extreme sampling problems. Different
GAN approaches have been considered, exploiting various
strategies. Feder et al. (2020) relied on heavy-tailed latent
variables, as do Huster et al. (2021) who proved that the
output random variable of a neural network obtained from a
heavy-tailed latent random variable have the same extremal
behavior as the latent variable. In Boulaguiem et al. (2022),
all marginals were first fitted to heavy-tailed distributions,
namely Pareto distributions (see, e.g., Tencaliec et al., 2019).
Then they were transformed into a uniform distribution. A
multivariate copula (Embrechts, 2009) is learned using a
GAN. The inverse quantile function of each previously fitted
Pareto distributions was applied to the GAN outputs. This
allows to match the behavior of the tail of each margin but
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imposes a specific shape to the whole distribution. Bhatia
et al. (2021) proceeded empirically by recursively train-
ing GANs from tail samples up to the targeted return level.
Based on the observation that a neural network with rectified
linear units (ReLU) cannot directly map the interval [0, 1]
to the quantile function of a heavy-tailed law, Allouche et al.
(2022) proposed a GAN to learn a transformation of this
quantile function. They proved that the approximation made
by GAN of the quantile functions of marginal laws does
converge to the true quantile functions.
In this work, we propose a VAE framework to generate ex-
tremes. To our knowledge, this is the first attempt to address
whether bridging VAE and EVT can bring fruitful extreme
sampling schemes. In addition, recent research suggest that
state-of-the-art likelihood-based models, including VAEs,
could capture the spread of the true distribution better than
GANs (see, e.g., Razavi et al., 2019; Nash et al., 2021).
This paper is organized as follows. We recall the basic prin-
ciples of VAE and EVT in Section 2. We introduce formally
the proposed VAE framework for multivariate extremes in
Section 3 and detail the associated training setting in Section
4. Section 5 is dedicated to experiments.

2. Background
2.1. Sampling with VAE

To generate a sample from a random variable X, VAE pro-
poses a sampling strategy based on two steps:

• A sample z is drawn from a latent vector -or prior- Z
with prior distribution pα(z) parametrized by α;

• The desired sample is obtained by sampling from the
conditional pdf p(x|z).

Since p(x|z) is in general not known, one uses an approxi-
mation pθ(x|z) parametrized by θ, referred to as the likeli-
hood. The purpose is then to find the parametrization which
enables to generate the most realistic samples of X. To do
so, VAE framework introduces a target distribution qϕ(z|x)
parametrized by ϕ to approximate the true posterior dis-
tribution. The training phase then comes to maximize the
evidence lower bound (ELBO) with respect to the set of
parameters (α, ϕ, θ). Formally, given (x(i))Ni=1 N indepen-
dent samples of X, we have

− log(p(x(i)) ≥ L(x(i), α, θ, ϕ),

with L the ELBO cost given by

L(x(i), α, θ, ϕ) = −DKL

(
qϕ(z|x(i))||pα(z)

)
+Eqϕ(z|x(i))

[
pθ(x

(i)|z)
]
. (1)

The ELBO cost on the whole dataset is obtained by aver-
aging eq. (1) over the N samples of X. To infer the set

of parameters (α, ϕ, θ) by neural network functions of the
data, Kingma & Welling (2013) and Rezende et al. (2014)
derived a specific training scheme for ELBO optimization.
The authors allowed the cost function defined by eq. (1)
to be approximated by an unbiased Monte Carlo estimator
differentiable with respect to both θ and ϕ. This Monte
Carlo estimator is given for a data point by

L̂(x(i), α, θ, ϕ) = −DKL

(
qϕ(z|x(i))||pα(z)

)
+
1

L

L∑
l=1

pθ(x
(i)|z(i,l)), (2)

where z(i,l) are samples from the approximate posterior
qϕ(z|x(i)). To make this expression differentiable, a
reparametrization trick is used. In an explicit reparametriza-
tion setting, a function gϕ has to be find, such that

qϕ(z|x) = gϕ(x, ϵ), (3)

with ϵ a chosen random variable, and gϕ differentiable with
respect to ϕ. When explicit reparametrization is not feasible,
we may exploit implicit reparametrization gradients (see Fig-
urnov et al., 2018). Details about implicit reparametrization
are to be found in Appendix D.

2.2. Univariate extremes

A crucial notion regarding extreme values is the so-called
regular variation property. A random variable X is said to
be regularly varying with tail index α > 0, if

lim
t→+∞

P (X > tx | X > t) = x−α. (4)

Regularly varying functions belongs to the larger class of
generalized Pareto (GP) (Pickands III, 1975) distributions,
where the survival function is defined by

H̄σ,ξ(y) =
(
1 + ξ

y

σ

)−1/ξ

+
, (5)

where a+ = 0 if a < 0. The scalar ξ is called the shape pa-
rameter and, for ξ > 0 is related to the tail index by ξ = 1

α .
The case ξ > 0 corresponds to heavy-tailed distribution.
This parametric modeling is motivated by its stability with
respect to thresholding, namely if a random variable Y has
a GP survival distribution H̄σ,ξ, then P (Y > y + v | Y >
v) = H̄σv,ξ(y) where σv depends on the value of the thresh-
old.
A simple yet efficient way to sample from a GP distribution
with parameters ξ and σ is to multiply an inverse gamma
distributed random variable with shape 1

ξ and rate σ by an
unit and independent exponential one. This multiplicative
feature is essential for understanding the pivotal role of
inverse-Gamma random variable in our sampling scheme in
Section 3.1.
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2.3. Multivariate extremes

A key concept to represent multivariate heavy-tailed data
is the following multivariate regular property (see, e.g.
Resnick, 2007, for details) which extends the notion de-
veloped in eq. (4). Let X be a random vector in (R+)

d . To
define multivariate regular variations, we need to decompose
X into a radial component R = X1 + · · · + Xd = ||X||
and an angular component of the d-dimensional simplex
Θ = X

||X|| . X has multivariate regular variation if the two
following properties are fulfilled:

• The radius R is regularly varying as defined in eq. (4);

• There exists a probability measure S defined on the
d-dimension simplex such that (R,Θ) verify:

P
(
Θ ∈ •

∣∣ R > r
) w−→ S, (6)

with w−→ standing for weak convergence metric. S is
called limit angular measure.

The last characterization (eq. (6)) indicates that given that
the radius is above a sufficiently high threshold, the condi-
tional distribution of the radius and the angle can be con-
sidered independent. This is of key interest to address tail
events of the kind of {X ∈ C} when u = inf{||x||,x ∈ C}
is large.

3. Proposed VAE architecture
We propose the following main three-step scheme to gener-
ate a sample x(i) of a multivariate regularly-varying random
vector:

• Using a VAE, a radius r(i) is drawn from an univariate
heavy-tailed distribution R (see Section 3.2);

• Conditionally on the drawn radius r(i), we sample
Θ(i) an element of the d-dimensional simplex from the
conditional distribution Θ|[R = r(i)] while forcing the
independence between radius R and angle Θ for larger
value of the radius. We use a conditional VAE for this
purpose (see Section 3.3);

• We multiply compoment-wise the angle vector by
the radius to obtain the desired sample, i.e. x(i) =
r(i)Θ(i).

The polar decomposition we used has important advantages.
First, one can generate elements of the simplex with a given
radius and study the dependence between variables at a
given extreme level. Second, the polar decomposition also
offers a great flexibility in modeling the dependence be-
tween variables, including for the limiting angular distribu-
tion, which is not the case for a GAN ReLU with heavy-
tailed latent variables for instance (see Theorem E.2). The

rest of this section details the architecture of the VAEs cho-
sen to sample the heavy-tailed radius and the conditional
angle.

3.1. Idealized multiplicative framework for sampling
heavy-tailed radii

We model R through a latent variable Zrad. In many appli-
cations, the joint pdf f(zrad, r) is assumed to be Gaussian
and this leads to a L2 term of the type EZrad∼q||zrad− r||2Σ
in L(q) (eq. (1)). Still, this limits the resulting ELBO maxi-
mization approach to light-tailed distributions. Therefore, it
does not seem relevant for phenomena that are based on a
multiplicative structure rather than an additive one, the later
being ideal for Gaussian assumptions. We then move away
from the L2-norm and the Gaussian hypothesis and, instead,
we focus on heavy-tailed distributions introduced in Section
2.2. In this context, additional assumptions are needed.
Condition 3.1. Zrad follows the inverse-gamma pdf defined
by

fInvΓ(zrad;α, β) =
βα

Γ(α)
z−α−1
rad exp (−β/zrad), (7)

with α and β two strictly positive constants.
Condition 3.2. R is linked to Zrad throughout a multiplica-
tive model with a positive random coefficient A, i.e.

R
d
= A× Zrad, (8)

where d
= corresponds to a equality in distribution and the

random variableA is absolutely continuous and independent
of Z. We also assume that 0 < EAα+ϵ < ∞ for some
positive ϵ.

Under these conditions, a direct application of Breiman’s
lemma (Breiman, 1965) implies the following statement.
Proposition 3.3. If conditions 3.1 and 3.2 are fulfilled , R
is heavy-tailed with tail index α.

Notice that if A follows an exponential distribution then R
follows a GP distribution (see eq. (5) with ξ = 1

α ), which
models exceedances above a large threshold as seen in 2.2.
This idealized framework is the starting point for our think-
ing on heavy-tailed radius generation for multivariate data
with VAEs. The theoretical properties that ensure that the
tail index of R has the required value provides a structure
towards which we have endeavored to strive as R tends to
infinity.

3.2. Sampling from heavy-tailed radius distributions

To tailor the VAE framework introduced in 2.1 to heavy-
tailed random variables, we set the prior Zrad as an inverse
gamma distribution with parameters α and 1, namely:

pα(zrad) = fInvΓ(zrad ; α, 1). (9)
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Notice that as if X follows an inverse gamma distribution
with parameters α and β, then for each c > 0, cX is an
inverse gamma with parameters α and cβ. Consequently,
and without loss of generality, we set parameter β equal to
1.
From conditions 3.1 and 3.2, the conditional R and Zrad,
given respectively that Zrad and R = r, can be expressed
as

R|[Zrad = zrad]
d
= Azrad, (10)

Zrad|[R = r]
d
=

r

A
. (11)

To perform inference within a VAE framweork, we need to
choose a parametric form for the likelihood. Recall from
Condition 3.2 that A needs to have a tail lighter than Zrad

to satisfy the moment condition EAα+ϵ for some positive
ϵ. With this in mind, choosing the approximate likelihood
in a light-tailed distribution family seems relevant. The
target could be chosen either bounded if R is bounded away
from zero or light to heavy-tail if R seems to have non-null
probability on each open set containing 0. Moreover, as R
is a positive random variable, we must ensure that negative
values for either target and likelihood cannot occur. Overall,
We choose the following parametrizations:

pθ(r|zrad) = fΓ (r ; αθ(zrad), βθ(zrad))

qϕ(zrad|r) = fInvΓ (zrad ; αϕ(r), βϕ(r)) , (12)

with fΓ (resp. fInvΓ) the pdf of a Gamma (resp. inverse
Gamma) distribution. In this context, αθ, βθ, αϕ, βϕ are
neural networks functions with parameters θ and ϕ. By
introducing the inverse-gamma parameterizations for the
prior pα and the target qϕ in the ELBO cost of VAE (eq.
(2)), we obtain the following proposition.

Proposition 3.4. Given expression (7) and (12) for prior
and target distributions, the KL divergence in eq. (2) is
given by:

DKL (qϕ(zrad|r)||pα(zrad)) =

(αϕ(r)− α)ψ(α)− log
Γ(αϕ(r))

Γ(α)

+α log βϕ(r) + αϕ
1− βϕ(r)

βϕ(r)
, (13)

where Γ and ψ stands respectively for the gamma and
digamma functions.

This proposition means that we can optimize our model
with respect to α, and learn the tail index of the distribution
directly from data.
Notice that in the approximated posterior, as the pa-
rameters of the distribution are learned functions of the
samples from the prior, the assumption of independence
between A and Zrad in Condition 3.2 is not necessarily

verified. Therefore, neither does Breiman’s lemma and
this could affect the tail index preventing it from having
the desired value. We have to constraint the function αθ

and βθ of the target to ensure that the generated R has
tail index α. To do so we consider the following proposition.

Proposition 3.5. If the function αθ(.) is a strictly positive
constant and the function βθ(.) satisfies

lim
zrad→+∞

βθ(zrad) ∝
1

zrad
, (14)

then R has a tail index equal to α.

In practice, in the implementation of the method, we force
to satisfy βθ(.) eq. (14) but leave αθ(.) more flexible, con-
straining it only to have a strictly positive finite limit at
infinity. Experimentally, this seems to be enough to obtain
the desired behavior for the extremes.

3.3. Sampling on the multivariate simplex

Once we choose the framework for the radial part of our
dataset, sampling from the angular component part still
remains. After generating R according to the framework
developed in section 3.2, we design a conditional VAE (see,
e.g., Zhao et al., 2017) to sample on the multivariate sim-
plex conditionally on a previously sampled radius, namely
conditional distribution Θ|R. This angular VAE has a latent
variable Zang with a multivariate normal prior. The target
is also parameterized by multivariate normal distributions,
with mean and standard deviation function of the hidden
variable and the observation data. The likelihood could be
parametrized by a projection of a normal distribution on the
multivariate simplex denoted Π, or directly by a Dirichlet
distribution. We summarize hereafter the chosen parametri-
sation where the likelihood is the projection of multivariate
normal:

Zang ∼ N (0, INz
),

pν(Θ|zang, r) ∼ Π (N (µν(zang, r),Σν(zang, r)) ,

pω(Zang|s, r) ∼ N (µω(s, r),Σω(s, r)) ,

where Nz is the dimension of the latent space, µν , Σν , µω

and Σω are neural network functions with parameters ν and
ω. The dependency on R for the target and the likelihood
has been made explicit to turn the framework conditional.
Notice that to enforce the independence between the radius
and the sphere when r → +∞, we make sure that the func-
tions µν and Σν satisfy the following necessary condition:

Condition 3.6. µν and Σν are such that there exist two z-
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varying functions µ∞ and Σ∞ which verify for each zang

lim
r→+∞

µν(zang, r) = µ∞(zang)

lim
r→+∞

Σν(zang, r) = Σ∞(zang)

4. Learning framework
4.1. Training settings

In our numerical experiments, we consider the following
parameterization of the neural architectures. We set the
number of hidden layers of the neural network function of
the probabilistic encoders and decoders to 2 for radii gener-
ation and to 3 for the sampling on the multivariate simplex.
Concerning the latter, projected multivariate normal, and
Dirichlet distribution have both been considered to parame-
terize the approximate likelihood. The optimized cost is the
ELBO cost, which is given in its general formulation by the
eq. (2). The metric chosen to infer the best parametrization
of our approach is the ELBO cost on the validation set. The
training is limited to 5000 epochs, and the learning rate set
to 10−4 for radius generation training and 10−5 for angu-
lar generation training. Concerning radius generation, let
us note that, depending on the experiments, the parameter
α of the prior can either be supposed known or unknown.
When unknown, α can be directly optimized by gradient
descent as a model parameter using eq. (13). We used
the Adam optimizer (Kingma & Ba, 2014). From a code
perspective, we made extensive use of the Tensorflow and
Tensorflow-Probability libraries. The whole code is freely
available1.

4.2. Performance assessment

For radii, log quantile quantile plots (see Resnick, 2007, for
detailed examples), abbreviated as log-QQ plots, are graphi-
cal methods we use to informally assess the goodness-of-fit
of our model to data. This method consists in plotting the
empirical quantiles of a sample generated by our approach
vs the empirical quantiles of the experimental data. If the fit
is good, the plot should be roughly linear. We use the VAE
cost (eq. (2)) on a given dataset as a numerical indicator to
compare the radius distribution obtained with our VAE ap-
proach to a vanilla VAE not tailored for extremes. Another
criterion that we apply is an estimator of the KL divergence,
as well as one of its variants introduced by Naveau et al.
(2014). This variant gives an estimator of the KL divergence
upon a given threshold (see Appendix C.1).
Concerning the whole generated samples, we investigate
several other criteria. We computed the Wasserstein dis-
tance between large samples generated by our model and

1Implementation available at https://anonymous.
4open.science/r/SubmissionICML-0263

true samples. If we select a threshold u, we can compute
the Wasserstein distance above this threshold by restrict-
ing the samples to the points which have a radius greater
than u. In this context, we consider a rescaled version of
the Wasserstein distance upon a threshold divided by the
square of this threshold (see Appendix C.2). To compute the
Wasserstein distances, we use pre-implemented functions
from the Python Optimal Transport package2 (see Flamary
et al., 2021).
We have seen that for a multivariate regularly varying ran-
dom vector, the radius and the angle can be considered
independent in the limit of an infinite radius (see eq. (6)).
In practice, one can consider the radius and the angle in-
dependent by choosing a sufficiently large radius. Wan &
Davis (2019) have established a criterion to detect whether
the respective distributions of the radius and the angle can
be considered as independent, and thus to choose the cor-
responding limiting radius. This allows us to compare the
limiting radii between the true data and the generated data.
To do so, the authors propose a testing framework to cal-
culate a p-value that follows a uniform distribution if the
distributions of the radius and the angle are independent,
and that is close to 0 otherwise (see Appendix C.3).

5. Experiments
We conduct experiments on multivariate datasets, both syn-
thetic and real. The synthetic dataset have a heavy-tailed
radius distribution and the angular distribution on the multi-
variate simplex is a Dirichlet distribution which parameters
varies according to the radius. The real dataset corresponds
to a monitoring of Danube river network discharges.

5.1. Notations and benchmarked approaches

We refer to our generative approach as ExtVAE if we as-
sume that the tail index α is known, and as UExtVAE if the
tail index is learned by minimizing the analytical expression
in eq. (13). If we restrict ourselves to the radii generated by
ExtVAE and UExtVAE via the procedure described in Sec-
tion 3.2, we denote respectively ExtVAEr and UExtVAEr.
We compare our approach with standard VAE (see Cemgil
et al., 2020), i.e. with normal distribution for prior, target
and likelihood, indicated by the acronym StdVAE. We also
compare our approach with, ParetoGAN which is the GAN
for generating extremes proposed by Huster et al. (2021).
The ParetoGAN is a Wasserstein GAN (see Arjovsky et al.,
2017) with Pareto latent variables. Given the difficulty of
training a GAN, as well as the number of factors that can
influence the results it produces, we empirically adjusted the
ParetoGAN architecture to provide a sensible GAN baseline
in our experiments. Though our parameterization may not

2see https://pythonot.github.io/quickstart.
html

https://anonymous.4open.science/r/SubmissionICML-0263
https://anonymous.4open.science/r/SubmissionICML-0263
https://pythonot.github.io/quickstart.html
https://pythonot.github.io/quickstart.html
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Table 1. Mean VAE cost on radius R1 (see eq. (2)) training,
validation and test dataset. These are abbreviated in Train, Val and
Test loss.

Approach Train loss Val loss Test loss
StdVAE 1.21 4.81 +∞
ExtVAEr 0.88 1.10 1.12

UExtVAEr 0.95 1.12 1.15

Figure 2. Log-QQ plot between the upper decile of 10000
radii samples of StdVAE (blue dots), ExtVAEr (orange dots),
UExtVAEr (green dots) and the upper decile of the test dataset of
R1. The dots should lie close to the blue line

be optimal, our interest goes beyond a simple quantitative
intercomparison in exploring and understanding the differ-
ences between the proposed VAE approach and GANs in
their ability to represent and sample extremes.

5.2. Synthetic dataset

We first consider a synthetic dataset with a 5-dimensional
heavy-tailed random variable with a tail index α = 1.5. We
detail the simulation setting in Appendix A.1. The training
dataset consists of 250 samples, compared to 750 for the
validation dataset and 10000 for the test dataset.
In Table 1 and Figure 2, we study the ability of the bench-

marked VAE schemes to sample heavy-tailed radius distri-
bution. The log-QQ plots given in Figure 2 illustrate further
that ExtVAEr and UExtVAEr schemes relevantly reproduce
the linear tail pattern of the radius distribution while this is
not the case for StdVAE. Figure 3 evaluates, for the com-
pared methods, the evolution of the KL divergence between
the true distribution and the simulated ones above a varying
quantile u (eq. (16)). Again, the StdVAE poorly matches
the target distribution with a clear increasing trend for quan-
tiles greater than u = 0.3. Conversely, the KL divergence
is much smaller and much more stable for ExtVAEr and
UExtVAEr schemes, especially for large quantile values.
Interestingly, for the different criteria, the results obtained
with UExtVAEr are very close or even indistinguishable
from those obtained with ExtVAEr. This suggests that the
estimation of the tail index is accurate. In order to better
assess the robustness of this estimation, we report the evo-

Figure 3. KL divergence between the radius distribution of the
benchmared VAE models and the target heavy-tailed distribution:
we display the KL divergence (see eq. (16)) above quantile u for
u varying from 0 to 1 for StdVAE (blue curve), ExtVAEr (orange
curve) and UExtVAEr . Numerically speaking, we sampled 10000
from each distribution and u is taken as the quantile of the sampled
reference dataset.

lution of the tail index of UExtVAEr as a function of the
training epochs for randomly chosen initial values (Figure
4). Given the expected uncertainty in estimating the tail in-

Figure 4. Evolution of the tail index α of UExtVAEr during the
training procedure: we report the value of the tail index as a func-
tion of the training epochs for training runs from different initial
values. The initial values of α are sampled uniformly between 0.8
to 2.25. The true value of α is 1.5 (dashed horizontal line).

dex (see Appendix B), UExtVAEr estimates (Figure 4) are
globally consistent. We report very good estimation patterns
since the reported curves tend to get closer to the true value
as the number of epochs increase, although it might show
some bias when initial value is far from the true tail index
value.
We now focus on the five-dimensional heavy-tailed case-
study. The best parametrization for the likelihood of the
conditional VAE is a Dirichlet parametrization. An impor-
tant advantage of our approach is the ability to generate
samples on the simplex for a given radius as detailed in Sec-
tion 3.3. If we send the radius to infinity, we can estimate
the limit angular measure (eq. (6)). Figure 5 displays this
limit angular measure projected onto the last two compo-
nents of the simplex for the true limit angular distribution,
our ExtVAE approach and the ParetoGAN. For the latter,
we approximate the limit angular distribution by the empiri-
cal distribution above a very high threshold. The ExtVAE
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Figure 5. Log probability of the estimated limit angular measure
obtained with a. ExtVAE, b. true distribution, c. ParetoGAN, pro-
jected on axes 4 and 5 (named θ4 and θ5). The estimation is based
on 10000 samples of each at a high value of radius, typically above
10, which corresponds to the upper percentile of R1 distribution.

shows a good agreement with the true distribution, though
not as sharp. By contrast, the distribution sampled by the
ParetoGAN tends to reduce to a single mode. The spa-
tial direction of ParetoGAN extremes could therefore be
erroneously interpreted as deterministic. This confirms the
result of Theorem E.2.
Beyond the limit angular distribution, we asses the sam-

pling performance of the benchmarked schemes through an
approximation of the Wasserstein distance (eq. (17)) be-
tween 10000 generated items and the test set. The ExtVAE
performs slightly better than the ParetoGAN (5.37 vs. 6.80).
This is highlighted for high quantiles in Figure 6. We plot
the Wasserstein distance upon a radius threshold, dividing
by the square of the threshold, for ExtVAE and ParetoGAN.
We focus on radius thresholds above 2, which corresponds
to the highest decile. The ExtVAE performs again better
than the ParetoGAN, especially for radius values between
2 and 4, corresponding roughly to quantiles between 0.90
and 0.95. We may recall that the ParetoGAN relies on the
minimization of a Wasserstein metric, whereas the ExtVAE
relies on a likelihood criterion. Therefore, we regard these
results as an illustration of the better generalization perfor-
mance of the ExtVAE, especially for the extremes.
At last, we estimate the threshold at which the respective

distribution of radius and angle can be considered as inde-
pendent following the criterion proposed by Wan & Davis
(2019). Although, by construction, there is no radius value
from which there is a true independence, the estimator gives
a radius above which one can approximately consider that
the limit distribution is reached. We compare in Figure 7
the p-values of sampled data as a function of the chosen

Figure 6. Wasserstein distance upon radius threshold r divided by
the square of r calculated between 10000 samples drawn from gen-
erative approaches and test set. In orange, the generative method is
the ParetoGAN and in blue it is our. The considered thresholds are
above 2, which is roughly the upper decile of the radii distribution.

Figure 7. P-values at different radius threshold, (see Wan & Davis,
2019) for the test dataset (green points), 10000 samples of the
ExtVAE (orange points), and 10000 samples of the ParetoGAN
(blue points). The vertical bars correspond to the threshold below
which the p-values are less than 0.45. Above this threshold, the
radius and the angle can be roughly considered as independent.

threshold for the true distribution, the ExtVAE and the Pare-
toGAN. The ExtVAE slightly underestimates the radius of
the threshold compared to the true data (1.3 vs. 1.6), while
the ParetoGAN leads to a large overestimatation (2.7 vs.
1.6). This illustrates further that the ExtVAE better captures
the statistical features of high quantiles than ParetoGAN
does. We regard the polar decomposition considered in the
ExtVAE as the key property of the ExtVAE to better ren-
der the asymptotic distributions between the radius and the
angle.

5.3. Danube river discharge case-study

Our second experiment addresses a real heavy-tailed mul-
tivariate dataset. We consider the daily time series of river
flow measurements over 50 years at five stations of the
Danube river network (see Appendix A.2 for further de-
tails). River flow data are widely acknowledged to depict
heavy-tailed distributions (Katz et al., 2002). In reference
to the numbering of the stations (see Figure 9), we note the
random variables associated with the considered stations
X23, X24, X25, X26, X27. We consider a training dataset
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of 730 daily measurements, the remaining 17486 measure-
ments form the test dataset. We focus on the question raised
in introduction (see Figure 1): can we extrapolate and gener-
ate consistent samples in extreme areas not observed during
the training phase? We focus on extreme areas of the form⋂27

i=23Xi > ui with ui predefined thresholds. This corre-
sponds to flows exceeding predefined thresholds at several
stations. The estimation of the probabilities of occurrence
of such events is key to the assessment of major flooding
risks along the river.
Our experiments proceed as follows. We train generative
schemes on the training set as detailed in Section 3. For
this case-study, the best parametrization for the likelihood
of the angular part of the UExtVAE is a projection of a
multivariate normal distribution. As evaluation framework,
we generate for each trained model a number of samples of
the size of the test dataset, and we compare the proportion
of samples that satisfy a given extreme event to those of
the test dataset. We consider extreme events correspond-
ing to quantile values of 0.9 and 0.99. Table 2 synthesizes
this analysis for the StdVAE and the UExtVAE3. As illus-
trated, the training dataset does not include extreme events
for the 0.99 quantiles. Interestingly, the UExtVAE samples
such extreme events with the same order of magnitude of
occurrence as in the test dataset. For instance, the propor-
tion of samples that satisfy A(0.99)

26 and A(0.99)
27 is consistent

with that observed in the test dataset, respectively 0.2% and
0.18% against 0.4% and 0.25%. By contrast, the StdVAE
cannot generalize beyond the training dataset. Though not
as good as the UExtVAE for the 0.9 quantiles, the StdVAE
truely generates events above these thresholds. However,
the StdVAE does not generate any element in A(0.99)

26 and
A

(0.99)
27 .

Note that the tail index of the radius of the discharge data
set is not known a priori. Asadi et al. (2015) reports an
estimate of 3.5± 0.5 considering only the summer months.
In our case, the tail index of the trained UExtVAE is of
4.5. It is slightly higher than the value found by Asadi et al.
(2015), which means a less heavy-tail distribution. Indeed,
half of the annual maxima occurs in June, July or August,
typically due to heavy summer rain events. Thus, we ex-
pect the summer months to lead to a heavier tail than the
all-season dataset.

Conclusion
This study bridges VAE and EVT to address the generative
modeling of multivariate extremes. Following the concept
of multivariate regular variations, we propose a polar decom-
position and combine a generative model of heavy-tailed

3We do not include in these experiments the ParetoGAN. We
did not succeed in training a satisfactory version of the ParetoGAN
for the river flow dataset.

Table 2. Evaluation of the generation of multivariate extremes
for the Danube river dataset: we report the proportion (in %) of
elements satisfying A

(q)
j in the training and test datasets as well

as datasets sampled from the trained StdVAE and UExtVAE with
the same size as the test dataset, where A

(q)
j =

⋂j
i=23 Xi > u

(q)
i

with u
(q)
i the value of the flow at q quantile for station i in test set.

We report this analysis for quantile values of 0.9 and 9.99.

q = 0.9
Train Test UExtVAE StdVAE

A
(q)
25 5.9 6.6 5.0 3.8

A
(q)
26 4.9 6.0 4.6 3.3

A
(q)
27 3.8 5.1 4.1 2.5

q = 0.99
Train Test UExtVAE StdVAE

A
(q)
25 0.0 0.48 0.22 0.01

A
(q)
26 0.0 0.4 0.2 0.0

A
(q)
27 0.0 0.25 0.18 0.0

radii with a generative model on the sphere conditionally to
the radius. Doing so, we explicitly address the dependence
between the variables at each radius, and in particular the
limit angular distribution. Experiments performed on syn-
thetic and real data support the relevance of our approach
compared with vanilla VAE schemes and GANs tailed for
extremes. In particular, we illustrate the ability to consis-
tently sample extreme regions that have been never visited
during the training stage.
Our contribution naturally advocates for future work, espe-
cially for extensions to multivariate extremes in time and
space-time processes (Basrak & Segers, 2009; Liu et al.,
2012) as well as to VAE for conditional generation prob-
lems (Zheng et al., 2019; Grooms, 2021).
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Figure 8. Empirical densities of synthesized radii R1 for a batch of 1000 samples.

A. Datasets
A.1. Synthesized datasets

We sample in a space of dimension 5. We consider a sampling setting for the radius distribution denoted R1:

R1 ∼ 2U× InvΓ(α1 = 1.5 ; β = 0.6)

with U uniform on [0, 1] and π Bernoulli with parameter 0.3. The radius distribution is heavy-tailed with tail index α1.
The detailed expression of the conditional angular distribution Θ1|R1 = r is given hereafter:

Θ1|R1 = r ∼ Dir (α1(r), α1(r), α2(r), α2(r), α2(r)) , (15)

where α1(r) = 3 (2−min(1, 1/2r)), α2(r) = 3 (1 +min(1, 1/2r)), and Dir stands for Dirichlet distribution.
Figure 8 gives the empirical pdf of R1 for a sample of 1000 values.

A.2. Danube river network discharge measurements

The upper Danube basin is an European river network which covers a large part of Austria, Switzerland and of the south
of Germany. Figure 9 shows the topography of the Danube basin as well as the locations of the 31 stations at which daily
measurements of river discharge are available for a 50 years time window. Danube river network dataset is make available by
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Figure 9. Topographic map of the upper Danube basin with 31 available gauging stations. A dataset of 50 years of daily measurements is
considered (from 1960 to 2010). our training set consists of all measurements for the 5 stations indicated by red triangles

the Bavarian Environmental Agency at http://www.gkd.bayern.de. As river discharges usually exhibit heavy-tailed
distribution, this dataset have been extensively studied in the community of multivariate extremes (see, e.g. Mhalla et al.,
2020; Asadi et al., 2015). We consider measurements from a subset of 5 stations (red triangles in Figure 9) from which we
want to sample.

B. Tail index estimation
Estimating the tail index of an univariate distribution from samples is not an easy task. To see this, we drew the Hill plot
(see e.g Resnick, 2007, Section 4.4), (Xie, 2017, Section 2.2) for R1 in Figure 10. The Hill plot is a common tool in the
extreme value community for estimating the tail index of a distribution. If the graph is approximately constant from a
certain order statistics, this constant is an estimator of the inverse of the tail index. We note that the Hill plot is of little use
in this case because the graph does not exhibit clearly a plateau. Other methods are also broadly used to estimate the tail
index within the extreme value community such as maximum likelihood estimation. It involves fitting a GP distribution
(eq. (5)) to the subset of data above a certain threshold (see Coles et al., 2001, for details). For example, on train dataset of
R1, the maximum likelihood estimation gives an estimation of 1.28 for the tail index when the threshold corresponds to a
0.8-quantile while it becomes 1.67 for a 0.9-quantile.

C. Criteria
C.1. KL divergence upon threshold

Let us assume that we have n samples Rtrue = (R1
true, R

2
true, ..., R

n
true) from the true radius distribution and m samples

Rgen = (R1
gen, R

2
gen, ..., R

m
gen) from a generative approach. Let denote ˜̄Ftrue, ˜̄Fgen empirical estimators of the tail

functions chosen to be non-zero above the upper observed value. Then the empirical estimate K̂u(Rtrue,Rgen) of the KL

http://www.gkd.bayern.de
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Figure 10. Hill plot for the 1000 R1 samples of train and validation set (blue curve), the dashed line indicates the true value of the tail
index, i.e. 1.5.

divergence beyond a threshold u is given by:

K̂u(Rtrue,Rgen) = −1− 1
Nn

∑m
i=1 log

(
˜̄Fgen(max(Ri

gen,u))

˜̄Fgen(u)

)
−1− 1

Mm

∑n
i=1 log

(
˜̄Ftrue(max(Ri

true,u))
˜̄Ftrue(u)

)
, (16)

where Nn and Mm are the number of samples above threshold u respectively among Rtrue and Rgen.

C.2. Wasserstein distance

Assume we have n samples X = (x1,x2, ...,xn) from a random vector X and m samples Y = (y1,y2, ...,yn) from
another random vector with same dimension. Then, the Wasserstein distance we used is defined by:

W (X,Y) =

 min
γ∈Rn×m

+

∑
i,j

γi,j ||xi − yj ||2

 1
2

, (17)

with nγ1 = 1 ; mγT1 = 1,

with 1 a vector filled with ones, and ||.||2 the euclidean distance. The rescaled version of the Wasserstein distance beyond a
threshold r is then given by :

Wr(X,Y) =
W (Xr,Yr)

r2
, (18)

where Xr (respectively Yr) consists of the elements of X (respectively Y) of norm greater than r.
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C.3. Threshold selection

To assess independence between radius and angular distributions, Wan & Davis (2019) relies on the following hypothesis
testing framework:

• H0: R1/rn and Θ1 are independent given R1 > rn;

• H1: R1/rn and Θ1 are not independent given R1 > rn.

Considering this, the authors propose a p-value for computing H0 with respect to H1, such that the p-value follows a uniform
distribution if H0 is true and is close to 0 when H1 is true. Thus, for a given threshold, when we average the p-values, we
should find about 0.5 if H0 is true and closer to 0 when H1 is true. Let define the empirical distance covariance (Székely
et al., 2007) between n observations {Xi} of a random vector X and n observations Yi of a random vector Y by:

Tn(X,Y) =
1

n2

n∑
i,j=1

||Xi−Xj||2|||Yi−Yj||2+
1

n4

n∑
i,j,k,l=1

||Xi−Xj||2||Yk−Yl||−
2

n3

n∑
i,j,k=1

||Xi−Xj||2||Yi−Yk||2,

with ||.||2 the euclidean distance. Note that X and Y have not necessarily equal sizes.
Let us consider X = (X1,X2, · · · ,XN) a sequence of observed vector of Rd, with a polar decomposition (R,Θ). Given a
decreasing sequence of candidate radius threshold rk, we want to find the smallest such as radius and angle of the polar
decomposition of X can be considered independent. For a fixed threshold rk, we first restrict the dataset to observations
which have radii above rk. Then, we randomly choose a subsample {Ri

rk
,Θi} of size nk. We can then compute Tn,k, the

empirical covariance between the radii and angles within the subsample. To compute a p-value of Tn,k under the assumption
that the conditional empirical distribution is a product of the conditional marginals, we take a large number L of subsamples
of size nk of {Ri} on the one hand, and of {Θi} on the other hand. We can compute the empirical covariances {T̃n,k}Ll=1

between radii and angles. The p-value pvk of Tn,k is the empirical value of Tn,k relative the {T̃n,k}Ll=1. This process is
repeated m times which produces m estimates of pvk. The p-value is then the mean of the estimates. If the radius and
angular distribution are independent, the p-value should be around 0.5, otherwise it is closer to 0.

D. Implicit reparametrization
When it comes to optimization of the cost of eq. (2), explicit reparametrization (see eq. (3)) is not feasible for the proposed
framework of eq. (12). Leveraging the work of Figurnov et al. (2018), we use an implicit reparametrization. It consists in
differentiating the Monte Carlo estimator of Eqϕ(Z|r(i))[f(Z)] using the following:

∇ϕEqϕ(Z|r(i))[f(Z)] = −Eqϕ(Z|r(i))[∇zf(z)∇ϕFqϕ(z)(∇zFqϕ(z))
−1],

with Fqϕ the cumulative distribution function of qϕ. An implicit reparametrization of Gamma distribution, as well as inverse
Gamma and many others, is availalble as a Tensorflow package named TensorflowProbability4.

E. GAN and limit angular measure
In a GAN setting, one can think of the following framework for generating multivariate heavy-tailed data:

Assumption E.1. We generate heavy-tail random vector in the non-negative orthant through a generator:

X = G(Z),

with G a ReLU neural network and Z a d-dimensional random vector with i.i.d heavy-tailed margins.

This generating strategy is used by Feder et al. (2020) and Huster et al. (2021). Huster et al. (2021) proved that in the one
dimensional case, X is heavy-tailed with same shape parameter as Z. In the limit of extreme values, one can ask oneself
what are the dependency structures between the variables that such a model can represent. This corresponds to the limit
angular measure defined in eq. (6). If we designate SG as the probability measure on the sphere when ||X|| → ∞, we can
state the following theorem:

4Details could be found at https://www.tensorflow.org/probability

https://www.tensorflow.org/probability
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Theorem E.2. Under Assumption E.1, SG is concentrated on a number of axis less than d.

This result means that in the limit of infinite radius, X is a.s located on a specific axis. While extracting certain principal
directions in extreme regions is a useful tool for comprehensive analysis of a dataset (Drees & Sabourin, 2021), it is severely
lacking in flexibility when it comes to generating extreme samples. To circumvent this difficulty, we chose to describe the
data by its polar decomposition and to generate the angle and the radius separately. Namely, we write X = (R,Θ) as
explained in section 2.3. This allows to make explicit the dependency structure of the data whatever the radius is, especially
for large radii. We can then obtain more varied limit angular measures than measures concentrated on a finite number of
axes. Figure 5 illustrates this difference by showing the limit angular density for both ParetoGAN and our approach.

F. Proofs
F.1. Proof of Proposition 3.5

The pdf of Y is given by :

p(y) =

∫
x

p(y|x)p(x)dx

= yaθ−1

∫
x

βθ(x)
aθ

Γ(aθ)
e−yβθ(x)p(x)dx

=
yaθ−1

Γ(aθ)
Ex∼pα

[βθ(x)
aθe−yβθ(x)]

Let assume βθ(x) = c
x + ϵ(x) with limx→+∞ ϵ(x) = o( 1x ). Using the change of variables z = 1

x , we can rewrite :

Ex∼pα [βθ(x)
aθe−yβθ(x)] = Ez∼Γ(α,1)[βθ

(
1

z

)aθ

e−yβθ( 1
z )]

= Ez∼Γ(α,1)

[(
cz + ϵ(

1

z
)

)aθ

e−y(cz+ϵ( 1
z ))]

We state ϵ̃(x) = ϵ
(
1
x

)
, then:

Ex∼pα
[βθ(x)

aθe−yβθ(x)] = caθy−aθEz̃∼Γ(α, 1y )

[(
z̃ +

y

c
ϵ̃(
z̃

y
)

)aθ

e−(cz̃+yϵ( z̃
y ))

]
.

One can then show using dominated convergence that :

Ex∼pα
[βθ(x)

aθe−yβθ(x)] ∼
y→+∞

Cy−α−aθ

From this equivalent, we can infer that for y → +∞, p(y) ∝ y−α−1. From Karamata’s theorem ((see Resnick, 2007)), the
tail function of Y is regularly varying with index α. It suffices to conclude that Y has tail index α. □

F.2. Proof of Theorem E.2

The proof proceeds by a series of step. First, we note that the latent vector has a limit angular distribution located on the
basis axis. Then, we proove that several transformations of a random vector which limit angular distribution concentrated on
some axes has still limit angular distribution concentrated on axes. The studied transformations are: multiplication by a
matrix, addition of a bias, mapping with a ReLU unit. By applying iteratively this steps, we prove that X has a limit angular
measure concentrated on axes for any ReLU neural network G.
First the limit angular measure of Z is concentrated on the basis axis:
ei = (0, · · · , 1, · · · , 0), with i = 1, · · · , d.
A proof is given in (Resnick, 2007), Section 6.5. Let denote SZ this limit angular distribution.
For the following, we need to specify that a random vector Y has multivariate regular variation if there exists a function
b→ ∞ and a Radon measure µY such that:

lim
t→∞

tP

(
Y

b(t)
∈ •

)
v−→ µY(•).
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Lemma F.1. If the d-dimensional random vector Y has multivariate regular variation with limit angular measure
concentrated on axes, and W is a n × d matrix, then (WY)+ has regular variation and its limit angular measure is
concentrated on axes.

Proof.

lim
t→∞

tP

(
(WY)+
b(t)

∈ •
)

= tP

(
Y

b(t)
∈ W−1(•)

)
,

= µY ◦W−1(•).

(WY)+ has regular variation. Moreover if the limit angular measure of Y is concentrated on d′ ≤ d lines
⋃d′

i=1{tei, t > 0},
then WY is concentrated on

⋃d′

i=1{t(Wei)+, t > 0}. Note that WY is then concentrated on a number of axes less or
equal to d′.

Lemma F.2. If the d-dimensional random vector Y has multivariate regular variation with limit angular measure
concentrated on axes, and b is a d-dimensional vector, then (Y + b)+ has regular variation and its limit angular measure
is concentrated on axes.

Proof.

lim
t→∞

tP

(
(Y + b)+

b(t)
∈ •

)
= lim

t→∞
tP

(
Y

b(t)
∈ •

)
v−→ µY(•).

From Lemma F.1 and Lemma F.2 we get that for any random vector with multivariate regular variation and limit angular
measure concentrated on lines, any matrix W and bias b, (WY + b)+ has multivariate regular variation with limit angular
measure concentrated on lined. This transformation corresponds to a layer of a ReLU neural network. Applying iteratively
this transformation to the initial latent random vector Z, we obtain that X = G(Z) has multivariate regular variation with
limit angular measure concentrated on lines.


