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Highlights Impact and implications
� CLDN1 is upregulated in HCC and is associated with
stemness and an immune-low tumor microenvironment.

� A mAb targeting non-junctional CLDN1 suppresses tumor
growth and invasion in patient-derived cell-based and
in vivo models.

� This mAb perturbs interactions of CLDN1 with signaling
proteins, including Notch ligand JAG1.

� We provide robust pre-clinical proof-of-concept for a first-
in-class CLDN1 mAb for the treatment of advanced HCC.
https://doi.org/10.1016/j.jhep.2022.10.011
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Hepatocellular carcinoma (HCC) is associated with high mor-
tality and unsatisfactory treatment options. Herein, we identi-
fied the cell surface protein Claudin-1 as a treatment target for
advanced HCC. Monoclonal antibodies targeting Claudin-1
inhibit tumor growth in patient-derived ex vivo and in vivo
models by modulating signaling, cell stemness and the tumor
immune microenvironment. Given the differentiated mechanism
of action, the identification of Claudin-1 as a novel therapeutic
target for HCC provides an opportunity to break the plateau of
limited treatment response. The results of this preclinical study
pave the way for the clinical development of Claudin-1-specific
antibodies for the treatment of advanced HCC. It is therefore of
key impact for physicians, scientists and drug developers in the
field of liver cancer and gastrointestinal oncology.
for the Study of the Liver. This is an open access article under the CC BY-NC-ND
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Background & Aims: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepato-
cellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can
also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight
junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored.
Methods: Using humanized monoclonal antibodies (mAbs) specifically targeting the extracellular loop of human non-junctional
CLDN1 and a large series of patient-derived cell-based and animal model systems we aimed to investigate the role of CLDN1
as a therapeutic target for HCC.
Results: Targeting non-junctional CLDN1 markedly suppressed tumor growth and invasion in cell line-based models of HCC and
patient-derived 3D ex vivo models. Moreover, the robust effect on tumor growth was confirmed in vivo in a large series of cell line-
derived xenograft and patient-derived xenograft mouse models. Mechanistic studies, including single-cell RNA sequencing of
multicellular patient HCC tumorspheres, suggested that CLDN1 regulates tumor stemness, metabolism, oncogenic signaling and
perturbs the tumor immune microenvironment.
Conclusions: Our results provide the rationale for targeting CLDN1 in HCC and pave the way for the clinical development of
CLDN1-specific mAbs for the treatment of advanced HCC.

© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatocellular carcinoma (HCC) is a major public health burden
and the fourth leading, and rapidly increasing, cause of cancer-
related death worldwide.1 HCC typically develops on the
background of advanced liver fibrosis caused by viral or
metabolic injury. Irrespective of etiology, hyperactivation of
oncogenic signaling such as the Ras/Raf/MAPK, PI3K/AKT/–
mTOR, Notch and Wnt/b-catenin pathways are common
events involved in HCC initiation and progression. Moreover,
the tumor microenvironment (TME) plays a key role in deter-
mining HCC outcomes.1

Current treatment options for advanced HCC are still un-
satisfactory due to limited response rates.1,2 Therapeutic
resistance to current systemic therapies has been associated
Keywords: Liver cancer; tight junction; CLDN1; HCC; plasticity; resistance; stemness; tum
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with tumor cell plasticity, such as epithelial-mesenchymal
transition (EMT) and stemness, as well as an immune-
exhausted or immune-excluded TME.1,3,4 Persistence of
pro-tumorigenic signals within the fibrotic niche on the other
hand accounts for the high risk of tumor recurrence following
curative treatment approaches.1 Collectively, there is an ur-
gent unmet medical need for novel HCC therapeutics that
address the drawbacks of drug resistance and tu-
mor recurrence.

Claudin-1 (CLDN1) is a transmembrane protein expressed in
tight junctions (TJs) as well as outside of the TJs (non-junc-
tional CLDN1 [NJ-CLDN1]), e.g. at the basolateral membrane of
the human hepatocyte. Interestingly, NJ-CLDN1 serves as a
cell entry factor and signal transducer of HCV,5 a major cause
or immune microenvironment.
er 2022; available online 27 October 2022
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Fig. 1. CLDN1 expression is upregulated in HCC and correlates with stemness and an immune-low tumor microenvironment. (A) Expression of claudin family
members in the TCGA cohort (n = 365 patients, p <0.0001, one-way ANOVA). (B–C) Immunostaining of CLDN1 in healthy (n = 10) and HCC tissues (n = 70) of different
tumor grades. (B) Representative images (C) quantification (p <0.0001, Mann-Whitney U test). Scale bars 100 lm. (D) Representative high magnification images indicate
aberrant NJ localization of CLDN1 in HCC compared to primarily junctional localization in healthy tissue. Scale bars 50 lm. (E) Left panels: Immunostainings of CLDN1
and ZO-1 in consecutive sections of HCC liver tissues. Right panel: Co-staining of CLDN1 (brown) and ZO1 (violet). Scale bars 150 lm (F) CLDN1 expression on single
cell level (GSE151530, n = 14 different HCC tissues) shown as violin plots. (G) t-SNE graphs of tumor cells included in GSE151530/CLDN1low or CLDN1high. (H)
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of HCC worldwide. Using humanized monoclonal antibodies
(mAb) that selectively target NJ-CLDN1, we aimed to study the
role of NJ-CLDN1 in tumor progression, plasticity, metabolism
and signaling.

Materials and methods

Human samples and patient cohorts

Human liver tissue samples for ex vivo perturbation studies
were derived from patients with liver resections at the Pôle
Hépato-digestif, Strasbourg University Hospitals (2014-2021).
All patients provided written informed consent within the ethical
principles of the declaration of Helsinki, approved by the local
and national ethics committee (comités de protection des
personnes, protocol RIPH2, LivMod-IDRCB 2019-A00738-49,
ClinicalTrial NCT04690972). Sampling of human liver tissue for
immunostaining was conducted by Charles River Laboratories
and US Biomax Inc. with informed consent of all donors and
under HIPPA approved protocols. Demographic data and
clinical characteristics of patients enrolled are summarized in
Table S1-3.

Mouse models

Hepa 1.6 mouse model: 8-10-week-old female C57BL/6 J mice
were used for in vivo CLDN1 gain-of-function studies, using
engineered Hepa 1.6 cell line. Experiments were performed at
WuXi Apptec, China, in accordance with the local regulations.

Cell line-derived xenograft (CDX) mouse models: 7-10-week-
old female and male non-obese diabetic Rag1-/-Il2rgc-/- (NRG)
mice were used for all CDX mouse models. Experiments
were performed at the animal facility of Inserm U1110
(approval number E67-482-7) according to local laws, ethics
committee approval and authorization by the French Ministry of
Research and Higher Education (APAFIS #10892-
2017080511379629v3, #22327-2019100815074277v3 and
#27709-2020101514256404v4). PET scan assessments were
performed on CDX mouse models at the animal facility of
Institut Pluridisciplinaire Hubert Curien according to local
laws and ethics committee approval (APAFiS#26596-
2020071609156326v3).

Patient-derived xenograft (PDX) mouse model: 7-week-old
female BALB/c nude mice were used with experiments per-
formed at Crown Bioscience, Inc. The protocols were reviewed
and approved by the Institutional Animal Care and Use Com-
mittee of CrownBio prior to execution. Mice were randomly
assigned to the study groups. For details on methodology,
please see the supplementary information.
Enrichment of gene sets related to stemness and progenitor cells in CLDN1high tumo
sets related to an immune-enriched or immune-active tumor immune microenviron
richments (GSE151530, FDR <0.05, Kolmogorov-Smirnov test). (J) Enrichment of g
expression (GSE20140, n = 164 FDR <0.001, Kolmogorov-Smirnov-test). (K) CLDN1
98) to sorafenib treatment (GSE109211, p <0.0001, Student’s t test). (L) CLDN1 mR
HCC with (VM1, n = 9) or without (VM0, n = 11) venous metastasis (GSE5093, p <0
(50% above median, n = 26) vs. low (50% below median, n = 26) CLDN1 express
represent median (—), 1st and 3rd quartile (bottom and top of the box) and single
Smirnov test) altered gene sets. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. FDR
lar carcinoma; HpSC-HCC, progenitor-like stem cell signature; MH-HCC, hepatocyt
adjacent tissue without venous metastasis; VM1, HCC adjacent tissue with venous
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Results

CLDN1 is overexpressed in an HCC subtype characterized
by a progenitor phenotype and an “immune-low” type
of TME

To investigate the role of CLDN1 in HCC, we first analyzed
CLDN1 mRNA and protein levels in individuals with HCC.
Computational analysis of data retrieved from Genomic Data
Commons Data Portal and the human protein atlas6 revealed
that CLDN1 is the most highly expressed Claudin family
member in HCC at both the mRNA (p <0.0001, Fig. 1A) and
protein levels (Fig. S1A). Indeed, �75% of liver tumors show
medium or high CLDN1 expression (Fig. S1A). Moreover,
CLDN1 is significantly upregulated in pre-malignant dysplastic
nodules of cirrhotic liver (GSE102383, p = 0.03, Fig. S1B), as
well as HCC tissue compared to matched non-tumorous
adjacent liver (GSE113996, p = 0.02, Fig. S1C). Immunostain-
ing of CLDN1 in healthy and HCC tissue confirmed CLDN1
overexpression, particularly in high grade tumors (p <0.0001,
Fig. 1B-C; p = 0.06, Fig. S1D, Table S3). Interestingly, CLDN1
showed aberrant non-junctional localization in HCC in contrast
to primarily junctional localization in healthy liver tissue
(Fig. 1D). The predominantly non-junctional localization of
CLDN1 in HCC tissues was further confirmed by double
immunohistochemistry showing absent co-localization of
CLDN1 with TJ protein ZO-1 (Fig. 1E).

HCC is characterized by a strong intra- and inter-tumoral
heterogeneity and various molecular phenotypes.1 Character-
ization of CLDN1 expression in a large HCC single-cell RNA
sequencing (scRNAseq) dataset revealed that tumor cells are
the key cell population with robust CLDN1 expression (Fig. 1F,
Fig. S2A-B). Gene set enrichment analysis (GSEA) revealed that
highly CLDN1-expressing tumor cells (Fig. 1G, Fig. S2C-D)
exhibited a progenitor or stem cell-like phenotype (false dis-
covery rate [FDR] <0.05, Fig. 1H). Similar results were obtained
in various independent large HCC patient cohorts with available
bulk transcriptomic data (GSE5975, p <0.0001, Fig. S2E,
GSE112791, FDR <0.001, Fig. S2F).

ScRNAseq data from HCC tumors revealed a paucity of
immune cells and suppression of immune signatures in tumors
with low CLDN1 expression in tumor cells (FDR <0.05, Fig. 1I,
Fig. S3A-B), suggesting a functional impact of CLDN1
expression on the tumor immune microenvironment (TIME).
Signatures of angiogenesis and desmoplastic reaction on the
other hand were significantly induced (FDR <0.01, Fig. 1I).
Similar results were obtained in an independent large patient
cohort on the bulk transcriptomic level (GSE112791, FDR =
r cells (GSE151530, FDR <0.05, Kolmogorov-Smirnov test). (I) Enrichment of gene
ment in tumors with low CLDN1 expression. Bars indicate NES of significant en-
enes specific for Boyault Liver Cancer Subclass G1 in tumors with high CLDN1
expression in HCC tissue predicted to confer response (n = 42) or resistance (n =
NA expression in the non-cancerous tumor-microenvironment of individuals with
.0001, Mann-Whitney U test). (M) Recurrence-free survival in individuals with high
ion in tumor adjacent liver tissue (GSE76427, p = 0.008, log rank test). Boxplots
data points (�). Vertical bars show NES of significantly (FDR <0.05, Kolmogorov-
, false discovery rate; FPKM, fragments per kilobase million; HCC, hepatocellu-

e mature HCC; NES, normalized enrichment score; NJ, non-junctional; VM0, HCC
metastasis; t-SNE, t-distributed stochastic neighbor embedding.
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0.04, Fig. S3C). As expected, given the correlation with a pro-
genitor phenotype and an immune-low or -excluded TME,
HCCs with high CLDN1 expression showed enrichment for
genes specific for the Boyault G1 subclass of HCC7 (FDR
<0.001, Fig. 1J). While we did not detect an association of
CLDN1 expression in HCC tumors with survival (Fig. S3D), the
association with transcriptomic signatures of sorafenib resis-
tance8 supports a prognostic function of CLDN1 (GSE109211,
p <0.0001, Fig. 1K). Furthermore, high CLDN1 expression in
HCC adjacent liver tissue was associated with metastatic
behavior of the corresponding tumor and with worse post-
resection recurrence-free survival (GSE5093, p <0.0001,
Fig. 1L, GSE76427, p = 0.008, Fig. 1M). Collectively, these data
suggest that CLDN1 is a potential hallmark for tumor cell dif-
ferentiation and TIME.

Genetic driver mutations, TNF-a/NF-jB and hypoxia
upregulate CLDN1 overexpression that accelerates tumor
growth in vivo

We next screened a large group of different cytokines, growth
factors and conditions to identify molecular drivers of CLDN1
overexpression in HCC. We found hypoxia and TNF-a/NF-jB
to strongly upregulate CLDN1 expression in the human Huh7
HCC cell line (p = 0.03, Fig. 2A-B). Moreover, assessment of
CLDN1 expression dependent on genetic driver mutations in
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the TCGA liver cancer cohort revealed AXIN1 mutations to be
associated with CLDN1 upregulation (p = 0.003, Fig. S4),
whereas CTNNB1 mutations were found to be associated with
CLDN1 downregulation (p <0.0001, Fig. S4). This is in line with
CLDN1 being associated with the G1 Boyault HCC subclassi-
fication that is linked to AXIN1 mutations.7 Finally, CLDN1 gain-
of-function in mouse Hepa1.6 HCC cells that do not endoge-
nously express CLDN1 (Fig. 2C) led to accelerated tumor
growth when subcutaneously injected into syngeneic C57BL/
6 J mice (p = 0.008, Fig. 2D), validating the pro-tumorigenic
phenotype of CLDN1 overexpression in vivo.

CLDN1 mAb suppresses tumor growth and EMT in patient-
derived ex vivo models

Given the upregulation of NJ-CLDN1 in HCC (Fig. 1D-E), we
studied its role as a therapeutic target for HCC using a fully
humanized mAb directed against the first extracellular loop of
CLDN1.5 Flow cytometry revealed robustly enhanced binding
of CLDN1 mAb to patient-derived tumor cells compared to
matched adjacent liver non-tumoral cells (p = 0.004, Wilcoxon
signed-rank test, Fig. S5).

Treatment of human hepatoma cell lines Huh7 and Hep3B
with a CLDN1 mAb significantly inhibited tumor sphere for-
mation, growth and invasion (Fig. S6A-C). We next assessed
the effect of the CLDN1 mAb on tumor growth in a fully
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<0.0001. CAFs, cancer-associated fibroblasts; ECM, extracellular matrix; HCC, hepatocellular carcinoma; mAb, monoclonal antibody.
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patient-derived culture system, modeling tumor heterogene-
ity. Cultured as multicellular micro-tissues, primary HCC
tumorspheres maintain original cell-cell contacts and reca-
pitulate non-parenchymal cells of the TME, including T cells,
which are relevant for tumor progression and therapeutic
resistance.9 CLDN1 mAb treatment markedly disrupted the
architecture of HCC spheroids (Fig. 3A). Moreover, the CLDN1
mAb showed a pronounced effect on sorafenib-resistant HCC
spheroid cell viability1 (donor #ST1 p = 0.003 and #S06 p =
0.04, Fig. 3B). A subsequent screen in HCC spheroids derived
from 15 different patients with HCC (patients’ characteristics
shown in Table S1), corroborated the effects of the CLDN1
mAb on tumor cell viability, with superior response rates
compared to sorafenib and nivolumab (47% vs. 33% and
15%, respectively, defined as a mean decrease in cell viability
of >15%, Fig. 3C).

Collectively, these data indicate strong suppressive effects
of the CLDN1 mAb on HCC growth, including on sorafenib- and
nivolumab-resistant tumors.

CLDN1 mAb suppresses tumor growth in both CDX and
PDX mouse models

We next assessed the effect of the mAb on tumor growth in
Huh7 and Hep3B CDX mouse models (Fig. 4A). The CLDN1-
specific mAb significantly reduced tumor growth in vivo
(Fig. 4B, Fig. S7A). The CLDN1 mAb antagonized tumor cell
proliferation as measured by a strong reduction in the per-
centage of KI67+ cells (Fig. 4C). Assessment of caspase 3
cleavage and TUNEL suggested pro-apoptotic effects (p =
0.002, Fig. 4D, Fig. S7B).

We next used PDX mouse models to partially recapitulate
tumoral heterogeneity and predict clinical outcomes10 to
Journal of Hepatology, Febru
evaluate the anti-tumoral efficacy of the CLDN1 mAb. Following
established tumor growth, mice from 6 different PDX mouse
models (Table S2; Fig. 4E) were randomized into groups
receiving weekly i.p. injections of CLDN1 mAb (n = 3 per model)
or vehicle control (n = 2 per model). Treatment with CLDN1
mAb suppressed tumor growth by 38.5% on average in 4 out of
6 PDX models within 28 days of treatment, a response rate
superior to currently approved treatment in clinical practice1

(Fig. 4F-G). The observed inhibition was confirmed in a sec-
ond study with an increased number of mice per group showing
highly significant, dose-dependent inhibition of HCC growth
(Fig. 4H). Similar to CDX mice, CLDN1 mAb treatment induced
apoptosis as shown by Caspase 3 cleavage (p = 0.01,
Fig. S7C). Body weight in CLDN1 mAb-treated animals
remained unaltered compared to the control group throughout
the study (Table S4).

RNA-sequencing (RNA-seq) and GSEA performed on pre-
treatment PDX HCC tissues revealed that Wnt/b-catenin,
Hedgehog and EMT signatures were strongly enriched in re-
sponders, irrespective of both tumor grade and histological
features (Fig. 4I). Interestingly, treatment resistance was asso-
ciated with MYC and oxidative stress signatures. Similar results
were obtained in tumor samples, whose response to CLDN1
mAb therapy was evaluated in HCC spheroids (Fig. 4I), vali-
dating the predictive values of the PDX signatures. Interest-
ingly, tumors that responded to the CLDN1 mAb showed
enrichment of transcriptomic signatures predicting a fibrotic
and immune-enriched microenvironment (FDR = 0.03 and 0.01,
respectively, Fig. 4J). Collectively, these data provide robust
preclinical proof-of-concept for the treatment of HCC with
CLDN1 mAbs and suggest a functional role of the TIME in
treatment response.
ary 2023. vol. 78 j 343–355 347
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CLDN1 mAb interferes with oncogenic signaling and
suppresses cancer cell metabolism in vivo

To gain further insights into the molecular mechanisms that
underlie the anti-tumor growth effect of CLDN1 mAbs, we next
performed RNA-seq and GSEA on the PDX responder #LI6716
(Fig. 4G). CLDN1 has previously been reported to regulate
intracellular signaling cascades by forming multi-protein com-
plexes at the membrane.11 Corroborating the role of exposed
NJ-CLDN1 as a signaling hub, mice treated with CLDN1 mAb
showed strong suppression of several key oncogenic signaling
pathways, with the strongest effects on TNF-a/NF-jB, TGF-b,
IL-6/JAK/STAT3, KRAS and Wnt/b-catenin signaling (Fig. 5A).
Validating the specificity of these results, suppression of ca-
nonical TNF-a and TGF-b signaling via p65 and SMAD2/3 was
observed intermodally in CDX mice at the protein level (p = 0.04
and 0.03, respectively, Fig. 5B-C, Fig. S8). Interestingly, tran-
scriptomic analysis further revealed a strong suppression of
hypoxia-related genes and a concomitant restoration of bile
acid metabolism, glycolysis and cholesterol homeostasis in
PDX mice treated with the CLDN1 mAb (Fig. 5A). Metabolic
reprogramming is a hallmark of carcinogenesis, contributing to
tumor progression and therapeutic resistance. The Warburg
effect describes the increased uptake of glucose and conver-
sion to lactate in proliferating tumor cells independent of hyp-
oxic conditions.12 Therefore, we evaluated the effect of the
CLDN1 mAb on cancer cell metabolism by performing 3’-
deoxy-3’-[18F]-fluorothymidine ([18F]-FLT) and 2-deoxy-2-[18F]-
fluoro-D-glucose ([18F]-FDG) PET scans of CLDN1 mAb- or
control-treated CDX mice. [18F]-FLT PET scans of 5 represen-
tative CDX mice per group (Fig. 5D) showed reduced uptake of
[18F]-FLT in CLDN1 mAb- compared to control-treated animals
(p = 0.008, Fig. 5E left and middle panel). Moreover, total lesion
proliferation was markedly reduced in CLDN1 mAb- compared
to control-treated mice (p = 0.03, Fig.5E, right panel). Mean-
while [18F]-FDG PET scans (Fig. 5F) revealed strongly reduced
total lesion glycolysis in Huh7 CDX mice treated with the
CLDN1 mAb (p = 0.02, Fig. 5G). In contrast, sorafenib treatment
did not show any effect on total lesion glycolysis (Fig. 5G). We
confirmed the role of CLDN1 in tumor cell metabolism by
investigating the effect of the CLDN1 mAb on the induction of a
Warburg-like metabolic shift by HCV infection in Huh7.5.1 cells.
The flux of lactate and other metabolites was restored to the
level of control cells upon CLDN1 mAb treatment (Fig. 5H and
Fig. S9A-B). Taken together, these data suggest that CLDN1
drives metabolic tumor reprogramming in different models,
including HCC tumors in vivo.

CLDN1 mAb alters the tumor cell plasticity by interfering
with Notch signaling

The association of CLDN1 overexpression with the progenitor-
like stem cell signature suggests a functional role of CLDN1 in
model) compared to corresponding vehicle control-treated mice (n = 2 mice per mod
0.004, Wilcoxon matched pairs test). (H) Tumor growth for #LI6280 (total 24 mice, n =
or control, p = 0.008 and p = 0.004, Wilcoxon matched-pairs test). (I) Response predi
of significantly (FDR <0.05, Kolmogorov Smirnov test) enriched gene sets. (J) Respo
fibroblasts/angiogenesis as well as an immune infiltrate (FDRs = 0.03 and 0.01, respe
CDX, cell line-derived xenograft; FDR, false discovery rate; HCC, hepatocellular c
patient-derived xenograft.
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tumor cell plasticity. Indeed, gene sets related to liver cancer
stemness and EMT were suppressed in CLDN1 mAb-treated
PDX mice (FDR <0.05 and FDR <0.001, respectively, Fig. 6A).
Supporting this concept, CDX mice treated with the CLDN1
mAb showed a significantly suppressed expression of the
stemness and EMT markers EPCAM and fibronectin 1 (Fig. 6B).
Linking the molecular effects on EMT with the observed inhi-
bition of cell invasion (Fig. S6C), the CLDN1 mAb strongly
suppressed expression of matrix metalloproteinase 14 in cell-
based models (p <0.001, Fig. 6C) and CDX mice (p = 0.01,
Fig. 6D, Fig. S10). To validate the role of CLDN1 in cell plasticity
we next assessed the effect of CLDN1 mAb treatment on EMT
in patient-derived liver scaffold culture systems, which enable
the assessment of cancer therapeutics in a 3D growth micro-
environment.13 To study the effect of CLDN1 mAb on EMT18

repopulated liver scaffolds were treated with TGFb (study
protocol illustrated in Fig. 6E). The CLDN1 mAb markedly
suppressed EMT marker gene expression, including expression
of vimentin, fibronectin 1 and snail family transcriptional
repressor 2 (p = 0.005, p = 0.008 and p = 0.005, respectively,
Fig. 6F). Similar results were obtained in a complementary 3D
model system, consisting of Huh7 cells co-cultured with pri-
mary cancer-associated fibroblasts in patient liver-derived
fibrotic extracellular matrix hydrogel (Fig. S11).

To unravel the molecular drivers of EMT and cell plasticity,
we studied the effect of the CLDN1 mAb on Notch signaling – a
key regulator of cell differentiation and stemness. Using cell
membrane co-immunoprecipitation studies in Huh7 cells, we
observed a direct interaction of CLDN1 with JAG1, the up-
stream inducer of canonical Notch signaling (Fig. 6G,
Fig. S13A). The functional relevance of this interaction was
confirmed by robust inhibition of Notch cleavage by CLDN1
mAb in HCC cell-based and CDX animal models (p = 0.03,
Fig. 6H and p = 0.02, Fig. 6I, Fig. S12).
Treatment with CLDN1 mAb reprograms TIME in patient-
derived HCC spheroids

The TIME has been shown to play an important role in HCC
progression and therapeutic resistance.1 Given the association
of CLDN1 expression with an “immune-low” TIME (Fig. 1) and
that a well-described signature of immune infiltration predicted
response to the CLDN1 mAb14 (Fig. 4), we next evaluated the
effects of the CLDN1 mAb on the TIME of patient-derived HCC
tumor spheroids. HCC spheroids (#462, Table S1) were treated
with either CLDN1 mAb or an isotype control mAb for 24 h and
then subjected to scRNA-seq (Fig. 7A). Unbiased sorting of
viable cells enabled sequencing of the transcriptome of all
major immune cell types including T cells, macrophages,
monocytes and dendritic cells (Fig. 7B, Fig. S13A-G and
Table S5). As expected with the short treatment duration, we
did not observe any significant difference in the number of any
el) is shown. (G) Tumor growth for #LI6716 (n = 3 CLDN1 mAb, n = 2 control, p =
8 per group treated with 10 mg/ml QIW CLDN1 mAb, 25 mg/ml BIW CLDN1 mAb

ction to CLDN1 mAb treatment in HCC spheroid and PDX models. Bars show NES
nse prediction to CLDN1 mAb in HCC spheroids by transcriptomic signatures of
ctively, Kolmogorov-Smirnov test). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.
arcinoma; mAb, monoclonal antibody; NES, normalized enrichment score; PDX,
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Fig. 6. CLDN1 mAb modulates cancer cell plasticity and fate by interacting with Notch signaling. (A) Significant suppression of gene sets related to EMT and
stemness in PDX mice treated with CLDN1 mAb (LI6716: FDR <0.05 and FDR <0.001, Kolmogorov-Smirnov-test). (B) Immunohistochemistry and quantitation of
EPCAM and FN1 expression in CDX tumors (n = 5, p = 0.03 and p = 0.04, Mann-Whitney U test, respectively). Scale bars - 1 mm and 200 lm. (C) Inhibition of MMP14
expression in Huh7 spheroids. Left panel: representative immunoblots of MMP14 and b-Actin. Right panel: quantification of normalized MMP14 expression (n = 3
independent experiments in triplicate, p = 0.001, Student’s t test). (D) Quantification of normalized MMP14 expression in CDX HCCs (n = 5, two independent protein
lysates for immunoblots, p = 0.01, Mann-Whitney U test). (E) Patient-derived liver scaffold study protocol. (F) Normalized gene expression of EMT markers vimentin,
FN1 and SNAI2 in CLDN1 or control mAb-treated Huh7+CAF liver scaffolds (3-4 independent experiments in at least triplicates, p = 0.005, p = 0.008 and p = 0.005,
respectively, Wilcoxon signed-rank test). (G) Co-immunoprecipitation of Notch ligand JAG1 and CLDN1 in the cell membrane of Huh7 cells. The western blot shows
JAG1 presence in CLDN1 eluate. (H) Inhibition of Notch signaling in Huh7 cells. Left panel: Representative immunoblots of cleaved Notch1 (Val1744), Notch1 and b-
actin in Huh7 stimulated with JAG1. Right panel: Normalized ratio of cleaved Notch1/Notch1 protein expression (n = 3, p = 0.03, Mann-Whitney U test). (I) Normalized
ratio of cleaved Notch1/Notch1 in HCCs from CDX mice (5 mice per group and two independent lysates each), p = 0.02, Mann-Whitney U test). Bars show mean ±SEM.
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. CAF, cancer-associated fibroblast; CDX, cell line-derived xenograft; EMT, epithelial-mesenchymal transition; FDR, false
discovery rate; HCC, hepatocellular carcinoma; mAb, monoclonal antibody.
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immune cell subsets (Fig. S13A). However, in CLDN1 mAb-
treated patient HCC spheroids, CD8+ T cells showed enrich-
ment of genes associated with immune effector function and
proliferation (Fig. 7C). In contrast, in two immunosuppressive
regulatory T cell clusters, FOXP3 target genes were strongly
downregulated while genes associated with an immune
effector function were upregulated (Fig. 7D,E). Since CLDN1
expression was not detectable in T cells (Fig. S13D,F) these
effects are most likely due to a direct impact of exposed
CLDN1 on tumor cells.

GSEA on HCC sorted tumor cells confirmed the down-
regulation of TGFb-, KRAS, Wnt- and TNFa-signaling pathways
whose activation has been associated with an immune TIME15

(Fig. 7F). Furthermore, gene sets associated with immunogenic
cytokine activity were suppressed in tumor cells (Fig. 7H).

Altogether, these data suggest that exposed CLDN1
expressed on tumor cells may dictate an immunosuppressive
TIME in HCC that can be reverted by the CLDN1 mAb into an
Fig. 7. scRNAseq of patient-derived HCC spheroids suggests that CLDN1 mAb
on sorted immune cells derived from CLDN1 or control mAb-treated HCC spheroids
of cells sorted from CLDN1 vs. control mAb-treated HCC spheroids using t-SNE ma
and proliferation in CD8+ T cells derived from CLDN1 vs. control mAb-treated H
upregulation of markers of non-suppressive T cells in CD4+ CD25+ FOXP3high Treg
genes related to immune effector processes as well as naïve CD4+ T cells in CD4+ C
in tumor cells derived from CLDN1 vs. control mAb-treated HCC spheroids. (G) Sup
control mAb-treated HCC spheroids. (H) Enrichment of gene sets related to cytokine
Horizontal bars indicate NES; *FDR <0.05, **<0.01, ***<0.001, ****< 0.0001. FDR, fa
scRNA-Seq, single-cell RNA-sequencing; Tregs, regulatory T cells; t-SNE, t-distribu

Journal of Hepatology, Febru
immunostimulatory TIME. These data thus provide a rationale
for combining CLDN1 mAbs with immune checkpoint inhibitors
in HCC.
Discussion
Applying patient-derived ex vivo and in vivo models and a
highly specific mAb, we identified CLDN1 as a novel thera-
peutic target for HCC. CLDN1 mAb treatment inhibits tumor
growth and its phenotype (Fig. 8) by (a) targeting CLDN1
upregulated by TNFa and hypoxia (Fig. 1,2); (b) suppressing
cancer cell stemness and EMT, a hallmark of HCC tumors with
high invasive capacity, therapeutic resistance and poor prog-
nosis (Fig. 4); (c) reprogramming tumor metabolism, a feature of
cancer cells that determines cell survival, hyperplastic growth
and evasion from immune responses (Fig. 5); (d) inducing
apoptosis (Fig. 4, 6); and (e) altering the TIME with enhance-
ment of antitumor activity (Fig. 7).
treatment modulates T cell effector activity. (A) Study protocol of scRNA-seq
(n = 10-20 spheroids per group). (B) 2D-visualization of single-cell transcriptomics
ps. (C) Significant upregulation of gene sets related to immune effector processes
CC spheroids. (D) Significant suppression of gene sets specific for Tregs and
s. (E) Significant suppression of gene sets specific for Tregs and upregulation of
D25+ CTLA4high FOXP3high Tregs. (F) Significantly suppressed signaling gene sets
pression of gene sets related to stemness in tumor cells derived from CLDN1- vs.
production in tumor cells derived from CLDN1 vs. control mAb-treated spheroids.
lse discovery rate; HCC, hepatocellular carcinoma; mAb, monoclonal antibody;
ted stochastic neighbor embedding.
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Mechanistic studies indicated that inhibition of Notch
signaling via direct interactions between CLDN1 and JAG1
likely plays a role in the observed effects on tumor cell fate
(Fig. 6). Since we did not observe a significant induction of
Notch effector genes in the PDX HCC transcriptome LI6716
(Fig. 5A), it is conceivable that Notch signaling is either an
early event in the signal cascade or that perturbation of Notch
signaling is heterogenous in individual tumors. The Notch
pathway has been identified as a key regulator of cell differ-
entiation, fate and survival and several functional and clinical
studies have shown that the Notch pathway plays a role in the
pathogenesis of HCC.16,17 Since Notch signaling has also
been identified as a regulator of innate and adaptive immune
responses,18 its perturbation by CLDN1 mAb treatment may
also contribute to the observed effects on the TIME (Fig. 7).

The observed effects on NF-kB, Wnt-b-catenin and P3IK
signaling (Fig. 6A) may be mediated via non-canonical Notch
signaling or by signal transduction of other cell membrane
molecules shown to interact/cross-talk with CLDN1.5,19,20 The
CLDN1 mAb-induced alteration of tumor cell plasticity and its
related immunomodulatory effects highlight potential opportu-
nities for combining CLDN1 mAb treatment with immune-
oncological approaches and multi-kinase inhibitors.1

HCC arises almost exclusively in the context of liver
fibrosis and chronic inflammation.21 The stage of liver
354 Journal of Hepatology, Febru
fibrosis hereby represents a key factor for patient
outcome.1 In addition to the tumor suppressive effects of
the CLDN1 mAb demonstrated in this study, we previously
showed that CLDN1-targeting mAbs suppress liver
fibrosis.20 While HCC treatment strategies are frequently
limited by the degree of cirrhosis,1 the combined anti-
fibrotic and tumor suppressive effects of CLDN1 mAbs
provide a unique opportunity to target not only tumor
growth but also fibrosis and de novo HCC development in
the non-tumorous fibrotic microenvironment.1

Furthermore, this study provides prediction markers to
guide patient selection. Upregulation of EMT as well as
signaling pathways implicated in stemness such as Wnt/b-
catenin and Hedgehog signaling22 predicted response of HCC
tumors to the experimental CLDN1 mAb treatment.

Our data obtained here and in previous studies demonstrate
that the administration of the antibody is safe without detect-
able adverse and off-target effects.5,23 The absence of toxicity
and off-target effects are likely due to the specific binding of the
mAb to NJ-CLDN1 and not to TJ-CLDN1.5,20

Collectively, our data provide robust pre-clinical proof-of-
concept for CLDN1 mAbs as potential first in-class compounds
that could break the plateau of limited treatment response in
advanced HCC, improving the outlook for patients who
currently have a poor prognosis.
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