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Abstract

This work is devoted to formal reasoning on relational properties of
probabilistic imperative programs. Relational properties are properties
which relate the execution of two programs (possibly the same one) on
two initial memories. We aim at extending the algebraic approach of
Kleene Algebras with Tests (KAT) to relational properties of probabilistic
programs. For that we consider the approach of Guarded Kleene Alge-
bras with Tests (KAT), which can be used for representing probabilistic
programs, and define a relational version of it, called Bi-guarded Kleene
Algebras with Tests (BiGKAT). We show that the setting of BiGKAT
is expressive enough to interprete probabilistic Relational Hoare Logic
(pRHL), a program logic that has been introduced in the literature for
the verification of relational properties of probabilistic programs.

keywords: Kleene algebra with tests, relational reasoning, probabilistic
programs, Hoare logic

1 Introduction

Formal verification of program properties has triggered a variety of methods,
among which the algebraic approach of Kleene Algebras with Tests (KAT)
stands out as an elegant, simple and automatizable framework [11, 9]. It is
closely related to modeling with finite automata and has stimulated the devel-
opment of techniques from coalgebra for reasoning about program behavior, for
instance based on bisimulation checking [8]. Among the properties one might
want to check on programs, some important ones are expressed by relating the
execution of two programs on two initial states, or of the same program on
two initial states. They are called relational properties or 2-properties. One can
think for instance of simulation properties, refinements, extensional equivalence.
Another example is that of non-interference: assume the variables are divided
into public ones and private ones, a program satisfies non-interference if the final
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value of public variables after an execution only depends on the initial value of
public variables (and not on private ones).

Actually in a large number of situations the software systems one wants to
verify are not deterministic but admit a probabilistic behaviour. Think for in-
stance of randomized algorithms, cryptography, security, network programming
or differential privacy where one uses random noise to ensure the protection of
private informations. Here also many crucial properties are relational ones. For
instance in cryptography one can express the fact that a randomized encryption
scheme is safe by a probabilistic non-interference property: a public variable
is assigned a ciphered value, obtained from a private variable, and we want to
ensure that one cannot distinguish between two ciphered values computed from
the same private initial state. Similarly in differential privacy (see e.g. [4]),
in order to protect private data one might want to verify that two executions
of a given program on two data-bases that differ only by one individual give
indistinguishable result.

In order to express and prove relational properties on imperative programs
some specific methods have been introduced. First in the deterministic case
let us mention Relational Hoare Logic [7], that extends the classic Floyd-Hoare
logic approach to reason on pairs of programs. This approach has been up-
graded to the setting of probabilistic relational Hoare Logic (pRHL) by Barthe
and coauthors [5]. It has then been extensively applied to the verification of
cryptographic schemes, in particular through the development of the Certicrypt
[6] and Easycrypt [2] tools.

However it would still be useful to benefit from additional techniques which
could help for the automation and the understandability of such reasoning meth-
ods. In particular one difficulty with (probabilistic) relational Hoare Logic is to
find a suitable alignment of the two programs in order to be able, in a second
step, to find the intermediate properties needed for the proof (see [1]). Algebraic
methods coming from Kleene algebras with tests are promising in these respects.
In particular they facilitate reasoning on simple program transformations.

Our goal in this paper is thus to introduce a KAT approach to reason on
relational properties of probabilistic programs. An important step has already
been made in the non-probabilistic setting with the introduction of BiKAT [1].
This setting allows to apply the KAT approach to reasoning on pairs of pro-
grams. Unfortunately standard KAT techniques cannot be applied directly to
probabilistic programs. On this question however a recent progress is the in-
troduction of Guarded Kleene Algebras with tests (GKAT) [13]. In this setting
non-deterministic union and iteration are replaced by guarded union and iter-
ation. One initial motivation of the authors with GKAT was to design a more
efficient version of KAT where the complexity of the equational theory is re-
duced, but they also showed that GKAT admits a probabilistic model and can
be used to interpret probabilistic programs.

Our strategy is thus to adapt the relational extension BiKAT of KAT to the
setting of GKAT, in order to be able to apply this relational approach to pairs
of probabilistic programs.

The goal will be to apply such framework to probabilistic programs which
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could be expressed in the imperative programming language defined in Table 1.

t ::= k | x | f(t1, . . . , tn) functional terms

p ::= p(t1, . . . , tn) | ¬ p | p1 ∧ p2 | p1 ∨ p2 predicate terms

c ::= skip | x ← t | x $← d | c · c | if p then c else c compound programs

while p do c

Table 1: Syntax of PI

where:

• x ∈ X are variables;

• f ∈ F are function symbols. (Fn)n∈N0 ⊆ F denotes sets of function symbols
with arity n. Symbols k ∈ F0 are called constants. Function symbols are
interpreted in F as f : Zn → Z (e.g. +,

√
);

• p ∈ P are predicate symbols. (Pn)n∈N0 ⊆ P denotes sets of predicate
symbols with arity n. Predicate symbols are interpreted in P as p : Zn →
{0, 1} (e.g. =, ≥);

• d are sub-distributions on Z.

Additionally, notation T (X ) stands for the set of terms with variables in X ,
and TF (X ) (respectively, TP (X )) represents its restriction to functional (re-
spectively, predicate) terms.

In order to demonstrate the expressivity of our framework we want to show
how probabilistic relational Hoare Logic reasoning can be interpreted in it, in a
similar way as (standard) Hoare logic can be interpreted in KAT [10]. This will
raise some specific difficulties, in particular for proving the validity of the rule
dealing with the while construct. Finally we will illustrate the benefits of our
setting on some examples.

Outline of the paper. In Sect. 2 we introduce GKAT and its prob-
abilistic model, then define the variant we consider, including an additional
theory for assignments and probabilistic sampling. Then in Sect. 3 we intro-
duce the relational extension BiGKAT of GKAT, define the interpretation of
pRHL judgments in BiGKAT and prove our main theorem, the soundness of
this interpretation. Sect. 4 is then devoted to the study of several examples.

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of guarded Kleene algebra
with tests (GKAT), an abstraction of imperative programs, with conditionals
(c1 +e c2) and loops (c(e)) are guarded by Boolean predicates e. As explained
in the introduction, it presents a restriction of KAT in which we are not allowed
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to freely use operators + and ∗ to build terms, i.e. GKAT does not allow non-
determinism. Although less expressive that KAT, GKAT offers two advantages:
decidability in (almost) linear time (over PSPACE of KAT), and better founda-
tion for probabilistic applications (not necessarily to deal with nondeterminism
and probabilities in the same language). Although the first one was the main
motivation to introduce the structure [13], we are more interested in the second
advantage for this paper.

2.1 Syntax

The language of GKAT, that we will present below, encodes the probabilistic
programming language PI (1). Consider a set of actions Σ and predicates
P , where Σ and P are nonempty and disjoint. Elements of Σ encode either

assignments x ← t or samplings x
$← d , and elements of P , denoted as ρ, encode

predicate terms p ∈ P. The grammar of an arbitrary Boolean expression and
GKAT expression are constructed, respectively, as follows:

e, e1, e2 ∈ BExp ::= 0 | 1 | ρ | ¬ e | e1 · e2 | e1 + e2

c, c1, c2 ∈ Exp ::= a | e | c1 · c2 | c1 +e c2 | c(e)

where, for any e, e1, e2 ∈ BExp, operators ·, + and ¬ denote conjunction,
disjunction and negation, respectively, and, for any c, c1, c2 ∈ Exp, operator
· denotes sequential composition. The Boolean expression 1, by being also an
element of Exp, encodes command skip, and the conditional and iteration im-
perative programming constructs can be abbreviated as GKAT terms as follows:

c1 +e c2
def≡ if e then c1 else c2

c(e)
def≡ while e do c

The precedence of the operators is the usual one. To simplify the writing, we
often omit the operator · by writing c1c2 for the expression c1 · c2, for any
c1, c2 ∈ Exp.

2.2 Semantics

We present now the semantic interpretation of GKAT that we will be using
to interpret GKAT expressions, the Probabilistic model [13]. Note that more
interpretations of GKAT are presented in the literature, namely a relational
model and a language model [13]. We revise first some basic concepts needed
for the semantics we present next. Given the set of relative integers Z, D(Z)
is the set of sub-distributions over Z, i.e. the set of functions f : Z → [0, 1]
summing up to at most 1, i.e.

∑
z∈Z

f (z ) ≤ 1. In particular, the Dirac distribution

δz ∈ D(Z) is the map w → [w = z ] =

{
1, if w=z

0, otherwise
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Typical models of imperative programming languages interpret programs as
Markov kernels. This semantic model interprets programs as sub-Markov ker-
nels, i.e. Markov kernels over probability sub-distributions.

Definition 2.1 (Probabilistic model). Let i = (State, eval , sat) be a triple
where:

• State is a set of states,

• eval(a) ⊆ State → D(State) is a sub-Markov kernel, for each action a ∈ Σ,

• sat(ρ) ⊆ State is a set of states, for each predicate ρ ∈ P .

The probabilistic interpretation of an expression e with relation to i is the sub-
Markov kernel PiJcK : State → D(State) defined as follows:

1. PiJaK := eval(a)

2. PiJeK(σ) := [σ ∈ sat†(e)]× δσ

3. PiJc1 · c2K(σ)(σ′) :=
∑
σ′′
PiJc1K(σ)(σ′′)× PiJc2K(σ′′)(σ′)

4. PiJc1 +e c2K(σ) := [σ ∈ sat†(e)]×PiJc1K(σ) + [σ ∈ sat†(¬ e)]×PiJc2K(σ)

5. PiJc(e)K(σ)(σ′) := lim
n→∞

PiJ(c +e 1)
n · ¬ eK(σ)(σ′)

where sat† : BExp → 2State is the lifting of sat : P → 2State to an arbitrary
Boolean expression over P .
The interpretation of actions a ∈ Σ as sub-Markov Kernels is given as:

• eval(x ← t)(σ) := δσ[x←t]

• eval(x
$← d)(σ) :=

∑
t
d(f (t)) · δσ[x←t]

Additionally, to fully interpret programs written in PI we need the measure
monad M (X ) whose constructor is defined as

M (X )
def
= (X → [0, 1])→ [0, 1]

and operators are defined as

unit : X → M (X )
def
= λ x . λ f .f x

bind : M (X )→ (X → M (Y ))→ M (Y )
def
= λ d . λM . λ f .d(λ x .M x f )
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c +e c = c (1)

c1 +e c2 = c2 +¬ e c1 (2)

(e +b f ) +c g = e +bc (f +c g) (3)

c1 +e c2 = ec1 +e c2 (4)

c1c3 +e c2c3 = (c1 +e c2) · c3 (5)

(c1 · c2) · c3 = c1 · (c2 · c3) (6)

0 · c = 0 (7)

c · 0 = 0 (8)

1 · c = c (9)

c · 1 = c (10)

c(e) = c · c(e) +e 1 (11)

(c +e2 1)
(e1) = (e2 · c)(e1) (12)

c3 = c1 · c3 +e c2

c3 = c
(e)
1 · c2

if E (c1) = 0 (13)

Table 2: Axiomatisation of Guarded Kleene algebra with tests

2.3 Axioms

The list of axioms presented in Table 2 is the one obtained from [13].
Note in particular for the fixpoint axiom (13). Intuitively, it says that if

expression c3 chooses (using guard e) between executing c1 and loop again,
and execute c2, then c3 is a e-guarded loop followed by c2. However, the rule
is not sound in general (see [13]) for more details. in order to overcome such
limitation, the side condition E (c1) = 0 is introduced, assuring that command
c1 is productive, i.e. that it performs some action. To this end, the function E
is inductively defined as follows:

E (e) := e

E (c) := 0

E (c1 +e c2) := e · E (c1) + ¬ e · E (c2)

E (c1 · c2) := E (c1) · E (c2)

E (c(e)) := ¬ e

We can see E (c) as the weakest test that guarantees that command c terminates,
but nevertheless it does not perform any action.

Moreover, note particularly the following observation: the encoding c1; (e; c2+
¬ e; c3) = c1; e; c2 + c1; ¬ e; c3 is not an if then else; it is rather a nonde-
terministic choice between executing c1, then testing e and executing c2, and
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executing c1, then testing ¬ e and executing c3. That is why left distributivity
does not hold in GKAT for any c ∈ Exp; only holds for e ∈ BExp, i.e. if e is a
test.

In Table 3 we list additional derivable equations in GKAT, also obtained
from [13].

c1 +e1 (c2 +e2 c3) = (c1 +e1 c2) +e1+e2 c3 (14)

c1 +e c2 = c1 +e ¬ e · c2 (15)

e1 · (c1 +e2 c2) = e1 · c1 +e2 e1 · c2 (16)

c +e 0 = e · c (17)

c1 +0 c2 = c2 (18)

e · (c1 +e c2) = ec1 (19)

c(e) = c(e) · ¬ e (20)

c(e) = (e · c)(e) (21)

c(0) = 1 (22)

c(1) = 0 (23)

e
(e2)
1 = ¬ e2 (24)

c(e2) = c(e1e2) · c(e2) (25)

Table 3: Derivable GKAT facts

2.4 Equational theory for effects

This section presents an equational theory of GKAT which includes additional
axioms to deal with the effects of assignments and samplings in the course of
execution of a program in language PI. In any GKAT, in general two actions
a1, a2 ∈ Σ are not commutable, however they can commute for the particular
case in which they don’t share variables. Those facts will be useful to deal with
examples later in the paper. Hence, the equational theory of GKAT that we
will resort on ads to the base theory the following additional axioms:

x1 ← t1 · x2 ← t2 =

{
x2 ← t2[t1/x1] · x1 ← t1 if x1 ̸= x2 and x2 ̸∈ FV (t1)

x1 ← t2[t1/x1] if x1 = x2
(26)

x1
$← d1 · x2

$← d2 =

{
x2

$← d2 · x1
$← d1 if x1 ̸= x2

x1
$← d2 if x1 = x2

(27)

x1 ← t · x2
$← d =

{
x2

$← d · x1 ← t if x1 ̸= x2

x1
$← d if x1 = x2

(28)

x1
$← d · x2 ← t = x1 ← t if x1 = x2 (29)

7



Proposition 2.2. The axioms (26)-(29) are valid in the Probabilistic model of
Definition 2.1.

Proof. Proof in appendix. 2

We already mentioned that GKAT does not allow to construct an arbitrary
program by using freely the nondeterministic choice operator +, allowing only
guarded choice +e , for any e ∈ BExp. However, the + operator is included in
the grammar of BExp, representing the Boolean disjunction. Nevertheless, the
grammar also allows to write expressions as e +e e, for any e ∈ BExp. We add
the additional axiom

e +e ¬ e = e · e + ¬ e¬ e (30)

to the theory of GTAK which expresses the guarded sum +e , for any e ∈ BExp,
in terms of the disjunction + on tests. By Boolean reasoning, we can easily
observe that e ·e+¬ e¬ e = 1. Such property will be useful later in the paper.

3 Bi-guarded Kleene algebra with tests

To handle relational reasoning on probabilistic programs, we introduce in this
section Bi-guarded Kleene algebra with tests, an algebraic structure inspired by
Bi Kleene algebra with tests [1], defined over a GKAT.

Definition 3.1. A Bi guarded Kleene algebra with tests (BiGKAT) over a
GKAT
(A,B,+e , ·,(e) ,¬ ,+, 1, 0) is a GKAT

(Ä, B̈,⊕E , #,(E) ,¬,⊕, 1̈, 0̈)

such that E ∈ B̈, B̈ ⊆ Ä, the operator ⊕ is applied only to elements of B , and
⟨ | : A→ Ä, | ⟩ : A→ Ä are homomorphisms satisfying

∀ c1, c2 ∈ A, ⟨c1| # |c2⟩ = |c2⟩ # ⟨c1|; (31)

We call Ä the underlying GKAT, and elements of B̈ are called bi-tests.

We define notation ⟨ | ⟩ as ⟨c|c′⟩ def
= ⟨c|#|c′⟩, with the following consequences:

⟨c|1⟩ = ⟨c| and ⟨1|c⟩ = |c⟩ since |1⟩ =1̈ is the identity of #. Another property
that arrives naturally from the definition of ⟨ | ⟩ is ⟨0|c⟩ = 0 = ⟨c|0⟩, for any
c ∈ A.

The fact that ⟨ | is an homomophism means that the following properties
hold for any e1, e2, e ∈ B , c1, c2, c ∈ A:

• ⟨e1 + e2| = ⟨e1| ⊕ ⟨e2|,

• ⟨c1 · c2| = ⟨c1| # ⟨c2|;

• ⟨c1 +e c2| = ⟨c1| ⊕E ⟨c2|;
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• ⟨c(e)| = ⟨c|E .

where E stands for ⟨e| ∈ B̈. Similarly for | ⟩. The operators have the same
precedence as in ordered-GKAT. For readability we use interchangeably the
same notation for operators in GKAT and BiGKAT, i.e. operators ·, ¬ and
+e , for any e ∈ B , and for constants 1, 0, in GKAT stand also for #, ¬, ⊕⟨e|
( ⊕|e⟩), 1̈ and 0̈ , respectively.

3.1 Encoding pRHL in BiGKAT

In this section we want to prove that probabilistic relational Hoare logic (pRHL)
[5] can be soundly encoded in BiGKAT. For that let us briefly recall probabilistic
relational Hoare logic (pRHL). It can be understood as an extension of Benton’s
Relational Hoare Logic [7] to probabilistic programs. In Relational Hoare Logic
a judgement has the form:

⊢ c ∼ c′ : ϕ⇒ ψ

where c, c′ are deterministic programs and ϕ, ψ (resp. pre- and postcondition)
are relations on states. It means that for any memoriesm1, m2 such thatm1ϕm2,
if the evaluation of c on m1 and c′ on m2 terminate with memories m ′1 and m ′2,
then m ′1ψm

′
2 holds.

Now, in the probabilistic case the evaluation of a program on a memory gives
a subdistribution. In order to extend Relational Hoare Logic, the system pRHL
thus lifts relations over memories to relations over distributions. For that the
lifting to subdistributions of a unary predicate P and of a binary relation ϕ are
defined as follows:

range P d
def
= ∀ f .(∀ a. P a = 0⇒ f a = 0)⇒ d f = 0)

d1 ∼ψ d2
def
= ∃ d . π1(d) = d1 ∧ π2(d) = d2 ∧ range ψ d

where the projections π1(d) and π2(d) are defined by:

π1(d)
def
= bind d (λ(x , y).unit x ) , π2(d)

def
= bind d (λ(x , y).unit y).

Now that these definitions have been set we can describe the judgements in
pRHL.

Definition 3.2. Given two probabilistic programs c, c′ and ϕ, ψ relations on
states, the pRHL judgement ⊢ c ∼ c′ : ϕ⇒ ψ stands for the following property:

∀m1,m2, m1 ϕ m2 ⇒ JcKm1 ∼ψ Jc′Km2.

We say in this case that programs c and c′ are equivalent with respect to
precondition ϕ and postcondition ψ.

Following this interpretation, we encode such judgment in BiGKAT as the
equation

φ · ⟨c|c′⟩ = φ · ⟨c|c′⟩ · ψ (32)

9



• R-Assign rule:

x ← v ∼ x ′ ← v ′ : φ[v/x , v ′/x ′]⇒ φ

• R-Assign left rule:

x ← v ∼ skip : φ[v/x ]⇒ φ

• R-Rand assign rule:

h ◁ (d , d ′)

x
$← d ∼ x ′

$← d ′ : φ⇒ ψ

• R-Seq rule:

c1 ∼ c′1 : ϕ⇒ ψ c2 ∼ c′2 : ψ ⇒ ξ

c1 · c2 ∼ c′1 · c′2 : ϕ⇒ ξ

• R-Cond rule:

ϕ⇒ e=̈e ′ c1 ∼ c′1 : ϕ ∧ ⟨e| ∧ |e ′⟩ ⇒ ψ c2 ∼ c′2 : ϕ ∧ ⟨¬ e| ∧ |¬ e ′⟩ ⇒ ψ

if e then c1 else c2 ∼ if e ′ then c′1 else c′2 : ϕ⇒ ψ

• R-Cond left rule:

c1 ∼ c′1 : ϕ ∧ ⟨e| ⇒ ψ c2 ∼ c′1 : ϕ ∧ ⟨¬ e| ⇒ ψ

if e then c1 else c2 ∼ c′1 : ϕ⇒ ψ

• R-Cond right rule:

c1 ∼ c′1 : ϕ ∧ |e⟩ ⇒ ψ c1 ∼ c′2 : ϕ ∧ |¬ e ′⟩ ⇒ ψ

c1 ∼ if e ′ then c′1 else c′2 : ϕ⇒ ψ

• Weak R-Whl rule:

ϕ⇒ e=̈e ′ c ∼ c′ : ϕ ∧ ⟨e| ∧ |e ′⟩ ⇒ ϕ E (c) = E (c′) = 0

ϕ while e do c ∼ while e ′ do c′ : ϕ ∧ ⟨¬ e| ∧ |¬ e ′⟩ ⇒ ϕ

• R-Sub rule:

ϕ′ ⇒ ϕ c ∼ c′ : ϕ⇒ ψ ψ ⇒ ψ′

c ∼ c′ : ϕ′ ⇒ ψ′

• R-Case rule:

c ∼ c′ : ϕ ∧ ϕ′ ⇒ ψ c ∼ c′ : ϕ ∧ ¬ϕ′ ⇒ ψ

c ∼ c′ : ϕ⇒ ψ

Figure 1: Probabilistic Relational Hoare Logic rules (pRHL)
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where φ,ψ ∈ B̈, and c, c′ ∈ Ä. Let us make a few comments to compare this
encoding to other ones in the literature:

• Note that we do not use the encoding as φ · ⟨c|c′⟩ ≤ φ · ⟨c|c′⟩ · ψ because
in GKAT and BiGKAT there is no natural notion of order ≤ as in KAT
[11, 9] ;

• We do not use either the encoding as φ · ⟨c|c′⟩ · ¬ ψ = 0 as in BiKAT [1].
In KAT, φ · c = φ · c ·ψ is equivalent to φ · c · ¬ ψ = 0, but this cannot be
proved in the same way in GKAT and we suspect the equivalence does not
hold. We only have the implication: (φ · c = φ · c · ψ)⇒ (φ · c · ¬ ψ = 0),
and we choose as encoding the stronger property.

It is necessary also to establish a set of Hoare logic rules that make sense for
reasoning on probabilistic programs. We consider as such rules the ones of pHRL
[5], listed in Figure 1. We use use different notation for pre and post conditions
(φ, ψ) and for guards ⟨e|, |e⟩. Note in particular the side condition ϕ ⇒ e=̈e ′

in rules R-Cond and R-Whl, where the right-hand side e=̈e ′ is equivalent to
⟨e|e ′⟩+ ⟨¬ e|¬ e ′⟩ so the following holds

ϕ⟨e|¬ e ′⟩ = 0 ϕ⟨¬ e|e ′⟩ = 0 (33)

These equalities assure that the predicates e and e ′ are evaluated to the
same value on both left and right programs. In particular, for the R-Cond rule
it means that the same branch is executed for right-hand side and left-hand side
programs. One difference from rules in [5] is the additional condition in R-Whl
rule: in our case, we impose that two commands c, c′ are guaranteed to perform
some action, which we will use to prove the soundness of R-Whl. Note also for
the R-Assign, R-Assign left and R-Rand which are axioms: the first derives
a valid Hoare triple with the substitution of variables x , x ′ by expressions v ,
v ′, respectively; the second just derives an assignment on the left-hand side,
while the right-hand side is a skip instruction; the third derives a valid triple
with samplings over distributions d , d ′. The coupling function h : supp{d} →
supp{d ′} is essential to relate the two samplings over distributions d , d ′, and
must satisfy the following conditions:

• h is bijective;

• for every i ∈ supp{d}, h(i) ∈ supp{d ′};

• Px∼d [x = i ] = Px∼d′ [x = h(i)]

If such a function exists, i.e. there exists a coupling between distributions d , d ′,
we write h ◁ (d , d ′). For more details on coupling see reference [5].

Observe that the R-Whl rule of Figure 1 is actually weaker than the classical
one from the literature, as it has a premise requiring that E (c) = E (c′) = 0.
We added this condition because we need it for the proof of soundness of the
encoding in BiGKAT (Theorem 3.9). More precisely we use this condition in the
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proof of the intermediary Lemma 3.7. This R-Whl rule is actually expressive
enough for many examples.

Now, to show that the rules of Figure 1 are sound in BiGKAT, we interprete
them as follows:

• R-Assign rule:

φ[v/x , v ′/x ′]⟨x ← v |x ′ ← v ′⟩ = φ[v/x , v ′/x ′]⟨x ← v |x ′ ← v ′⟩φ (34)

• R-Assign left rule:

φ[v/x ]⟨x ← v |skip⟩ = φ[v/x ]⟨x ← v |skip⟩φ (35)

• R-Rand assign rule:

φ⟨x $← d |x ′ $← d ′⟩ = φ⟨x $← d |x ′ $← d ′⟩ψ (36)

• R-Seq rule:

ϕ⟨c1|c′1⟩ = ϕ⟨c1|c′1⟩ψ ∧ ψ⟨c2|c′2⟩ = ψ⟨c2|c′2⟩ξ
⇒ ϕ⟨c1 · c2|c′1 · c′2⟩ = ϕ⟨c1 · c2|c′1 · c′2⟩ξ (37)

• R-Cond rule:

ϕ ≤ e=̈e ′ ∧ ϕ · ⟨e| · |e ′⟩ · ⟨c1|c′1⟩ = ϕ · ⟨e| · |e ′⟩ · ⟨c2|c′2⟩ · ψ ∧
ϕ · ⟨¬ e| # |¬ e ′⟩ · ⟨e|e ′⟩ = ϕ · ⟨¬ e| · |¬ e ′⟩ · ⟨c1|c′1⟩ · ψ
⇒ ϕ · ⟨c1 +e c2|c′1 +e′ c′2⟩ = ϕ · ⟨c1 +e c2|c′1 +e′ c′2⟩ · ψ (38)

• R-Cond-left rule:

ϕ · ⟨e| · ⟨c1|c′1⟩ = ϕ · ⟨e| · ⟨c1|c′1⟩ · ψ ∧ ϕ · ⟨¬ e| · ⟨c2|c′1⟩ = ϕ · ⟨¬ e| · ⟨c2|c′1⟩ · ψ
⇒ ϕ · ⟨c1 +e c2|c1⟩ = ϕ · ⟨c1 +e c2|c′1⟩ · ψ (39)

• R-Cond-right rule:

ϕ · |e⟩ · ⟨c1|c′1⟩ = ϕ · |e⟩ · ⟨c1|c′1⟩ · ψ ∧ ϕ · |¬ e⟩ · ⟨c1|c′2⟩ = ϕ · |¬ e⟩ · ⟨c1|c′2⟩ · ψ
⇒ ϕ · ⟨c1|c1 +e c2⟩ = ϕ · ⟨c1|c1 +e c2⟩ · ψ (40)

• R-Whl rule: we can apply it only if E (c) = E (c′) = 0,

ϕ ≤ e=̈e ′ ∧ ϕ · ⟨e| · |e ′⟩⟨c|c′⟩ = ϕ · ⟨e| · |e ′⟩⟨c|c′⟩ · ϕ ∧ E (c) = E (c′) = 0

⇒ ϕ · ⟨c(e)|e ′(e
′)⟩ = ϕ · ⟨c(e)|c′(e

′)⟩ · ϕ (41)

• R-Sub rule:

ϕ′ ≤ ϕ ∧ ϕ⟨c|c′⟩ = ϕ⟨c|c′⟩ψ ∧ ψ ≤ ψ′ ⇒ ϕ′⟨c|c′⟩ = ϕ′⟨c|c′⟩ψ′
(42)
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• R-Case rule:

ϕ · ϕ′ · ⟨c|c′⟩ = ϕ · ϕ′ · ⟨c|c′⟩ψ ∧ ϕ · ¬ ϕ′ · ⟨c|c′⟩ = ϕ · ¬ ϕ′ · ⟨c|c′⟩ψ
⇒ ϕ · ⟨c|c′⟩ = ϕ · ⟨c|c′⟩ψ (43)

To prove some of the rules, namely R-Cond and R-Whl, we need to establish
some auxiliary results.

Lemma 3.3. In any BiGKAT the following two equalities hold:

⟨e| · ⟨c1|c′1⟩ = ⟨e| · ⟨c1 +e c2|c′1⟩ (44)

and

⟨¬ e| · ⟨c2|c′2⟩ = ⟨e| · ⟨c1 +e c2|c′2⟩ (45)

Proof. Proof in appendix. 2

Lemma 3.4. For any BiGKAT,

ϕ · ⟨e +e ¬ e|e ′ +′e ¬ e ′⟩ = ϕ · (⟨e|e ′⟩+e′ ⟨¬ e|¬ e ′⟩) (46)

Proof. Proof in appendix. 2

Now we state the invariance result, adapted from the standard result on
KAT and the equivalent for GKAT, which was proved in [13]. It will be useful
for the While rule.

Lemma 3.5 (Invariance). Let c, c′ ∈ A and ϕ, e, e ′ ∈ B̈. If

ϕe⟨c|c′⟩ = ϕe⟨c|c′⟩ϕ

then
ϕc(e) = (ϕc)(e)ϕ

Proof. Since a BiGKAT is a GKAT (Definition 3.1), it holds by the invariance
lemma (Lemma 3.11) of GKAT [13]. 2

Now we establish a GKAT property that will be used in the proofs ahead.

Proposition 3.6. For any e, c in GKAT, ecc(e) = ec(e).

Proof. Proof in appendix. 2

The following result is useful for reasoning about two while loops. Based on
an analogous property defined for BiKAT [1], we state the corresponding one
for BiGKAT:
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Lemma 3.7 (Expansion). The following property holds in any BiGKAT. As-
sume E (c) = E (c′) = 0, then we have:

⟨c(e)|c′(e
′)⟩ = ⟨c|c′⟩⟨e|e

′⟩(⟨c|¬ e ′⟩⟨e| +⟨e| ⟨¬ e|c′⟩|e
′⟩) (47)

Proof.

⟨c(e)|c′(e
′)⟩

= { (11)}

⟨cc(e) +⟨e| 1|c′(e
′)⟩

= { ⟨ | is homomorphism}

(⟨cc(e)|+⟨e| ⟨1|)(|c′(e
′)⟩)

= { (5)}

⟨cc(e)|c′(e
′)⟩+⟨e| ⟨1|c′(e

′)⟩

= { (31)}

(|c′(e
′)⟩ · ⟨cc(e)|) +⟨e| ⟨1|c′(e

′)⟩

= { (11)}

(|c′c′(e
′)⟩+|e′⟩ |1⟩)⟨cc(e)|+⟨e| ⟨1|c′(e

′)⟩

= { (5)}

(⟨cc(e)|c′c′(e
′)⟩+|e′⟩ ⟨cc(e)|1⟩) +⟨e| ⟨1|c′(e

′)⟩

= { (3)}

⟨cc(e)|c′c′(e
′)⟩+⟨e|e′⟩ (⟨cc(e)|1⟩+⟨e| ⟨1|c′(e

′)⟩)

= { homomorphism}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨cc(e)|1⟩+⟨e| ⟨1|c′(e

′)⟩)

= { (4) and (2)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨ecc(e)|1⟩+⟨e| ⟨¬ e|c′(e

′)⟩)

= { Lemma 3.6 and (4)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨c(e)|1⟩+⟨e| ⟨¬ e|c′(e

′)⟩)

= { (2) and (4)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨¬ e|+ |¬ e ′⟩)(⟨c(e)|1⟩+⟨e| ⟨¬ e|c′(e

′)⟩)

= { fact u5’}
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⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ ((⟨¬ e|+ |¬ e ′⟩)⟨c(e)|1⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { (4)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨e|(⟨¬ e|+ |¬ e ′⟩)⟨c(e)|1⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { B.A.}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ ((⟨e · ¬ e|+ ⟨e|¬ e ′⟩)⟨c(e)|1⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { B.A.}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ ((0 + ⟨e|¬ e ′⟩)⟨c(e)|1⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { (4)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (|¬ e ′⟩⟨c(e)|1⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { homomorphism}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨c(e)|¬ e ′⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { (2), (4), (fact u5’) and B.A.}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ ((⟨¬ e|+ |¬ e ′⟩)⟨c(e)|¬ e ′⟩+⟨e| (⟨¬ e|+ |¬ e ′⟩)⟨¬ e|c′(e

′)⟩)

= { (fact u5’)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨¬ e|+ |¬ e ′⟩)(⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e

′)⟩)

= { (2) and (4)}

⟨c|c′⟩⟨c(e)|c′(e
′)⟩+⟨e|e′⟩ (⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e

′)⟩)

By the fixpoint axiom (13), considering g = ⟨c(e)|c′(e′)⟩, e = ⟨c|c′⟩, b =
⟨e|e ′⟩ and f = ⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e′)⟩, we conclude

⟨c(e)|c′(e
′)⟩ = ⟨c|c′⟩⟨c(e)|c′(e

′)⟩+⟨e|e′⟩ (⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e
′)⟩)

⇒ ⟨c(e)|c′(e
′)⟩ = ⟨c|c′⟩(⟨e|e

′⟩)(⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e
′)⟩)

which proves (47).

2

The intuitive meaning of this equation is that executing two while loops in
parallel (c(e) and c′(e

′)) is equal to loop c and c′ guarded by ⟨e|e ′⟩, assuring
that if one of them stops i.e. either e or e ′ is false, the other loop continues to
execute (until its guard is also false). Note that our proof of Lemma 3.7 differs
from the proof of the analog lemma in BiKAT [1].

Lemma 3.8. In any BiGKAT, if ϕ ≤ e=̈e ′ then we have:

ϕ(⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e
′)⟩) = ⟨¬ e|¬ e ′⟩ϕ (48)
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Proof. Proof in appendix. 2

Now we present the main result on the soundness of pRHL rules in BiGKAT.

Theorem 3.9 (Soundness of pRHL in BiGKAT). The rules (37)-(43) are sound
in any BiGKAT.

Proof.
We present here the proofs for R-Cond and R-Whl and include the remaining

ones in the Appendix.
R-Cond rule:

ϕ · ⟨c1 +e c2|c′1 +e′ c2⟩
= { B.A. and (48)}

ϕ · (⟨e|e ′⟩+e′ ⟨¬ e|¬ e ′⟩) · ⟨c1 +e c2|c′1 +e′ c2⟩
= { (U5,U5’)}

ϕ · ⟨e|e ′⟩ · ⟨c1 +e c2|c′1 +e′ c2⟩+e′ ϕ · ⟨¬ e|¬ e ′⟩ · ⟨c1 +e c2|c′1 +e′ c2⟩
= { (44), (45)}

ϕ · ⟨e|e ′⟩ · ⟨c1|c′1⟩+e′ ϕ · ⟨¬ e|¬ e ′⟩ · ⟨c2|c′2⟩
= { premises}

ϕ · ⟨e|e ′⟩ · ⟨c1|c′1⟩ · ψ +e′ ϕ · ⟨¬ e|¬ e ′⟩ · ⟨c2|c′2⟩ · ψ
= { (44), (45)}

ϕ · ⟨e|e ′⟩ · ⟨c1 +e c2|c′1 +e′ c2⟩ · ψ +e′ ϕ · ⟨¬ e|¬ e ′⟩ · ⟨c1 +e c2|c′1 +e′ c2⟩ · ψ
= { (U5,U5’)}

ϕ · (⟨e|e ′⟩+e′ ⟨¬ e|¬ e ′⟩) · (⟨c1 +e c2|c′1 +e′ c2⟩) · ψ
= { (48)}

ϕ · ⟨c1 +e c2|c′1 +e′ c2⟩ · ψ

R-Whl rule:

ϕ⟨c(e)|c′e
′
⟩

= { Lemma 3.7 (47)}

ϕ⟨c|c′⟩⟨e|e
′⟩(⟨c(⟨e|)|¬ e ′⟩+⟨e| ⟨¬ e|c′(|e

′⟩)⟩)

= { premise and Lemma 3.5}

ϕ⟨c|c′⟩⟨e|e
′⟩ϕ(⟨c(⟨e|)|¬ e ′⟩+⟨e| ⟨¬ e|c′(|e

′⟩)⟩)

= { Lemma 3.8 (48)}

ϕ⟨c|c′⟩⟨e|e
′⟩⟨¬ e|¬ e ′⟩ϕ

= { B.A.}
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ϕ⟨c|c′⟩⟨e|e
′⟩⟨¬ e|¬ e ′⟩ϕϕ

= { Lemma 3.8 (48) reverse direction}

ϕ⟨c|c′⟩⟨e|e
′⟩ϕ(⟨c(⟨e|)|¬ e ′⟩+⟨e| ⟨¬ e|c′(|e

′⟩)⟩)ϕ

= { Lemma 3.5 (reverse direction)}

ϕ⟨c|c′⟩⟨e|e
′⟩(⟨c(⟨e|)|¬ e ′⟩+⟨e| ⟨¬ e|c′(|e

′⟩)⟩)ϕ

= { Lemma 3.7 (47) reverse direction}

ϕ⟨c(e)|c′(e
′)⟩ϕ

= { (fact w4)}

ϕ⟨c(e)¬ e|c′(e
′)¬ e ′⟩ϕ

= { Def. 3.1}

ϕ⟨c(e)|c′(e
′)⟩⟨¬ e|¬ e ′⟩ϕ

2

4 Examples

In this section we use the framework presented before to reason about invariance
features of probabilistic programs. We take two executions of one program
containing random assignments, which produces a probabilistic distribution of
states. That means that two executions may lead to different outputs, due to
the random nature of the assignments. In the following examples we prove the
invariance of certain variables of probabilistic programs in the output relatively
to the input, by relational reasoning on two executions of those programs.

Example 4.1. Consider the following program:

var x : mybool ;
var y : mybool ;
var b : mybool ;
i f ( x = t t ) {

b <−$ dmybool ;
i f ( b = t t ) {

y <− y xor t t ;
}

}
e l s e {

b <− f f ;
}

y <− y xor b ;
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Abbreviate the above program as c, and one copy of it as c′. We prove the
invariance of variables y , y ′, relational predicate [y = y ′], over executions of
c, c′, which corresponds to the following pRHL judgment:

⊢ c ∼ c′ : [y = y ′]⇒ [y = y ′] (49)

We translate this judgment to the BiGKAT equation:

[y = y ′]⟨c|c′⟩ = [y = y ′]⟨c|c′⟩[y = y ′] (50)

To prove this equation, we encode the above program as the BiGKAT term

(b $← dbool ; ((y ← y xor tt) +[b=tt] 1) +[x=tt] (b ← ff )) · (y ← y xor b) (51)

In order to simplify the writing we denote d1 = b =
$← dbool ; (y ← y xor tt),

d2 = b ← ff and c2 = (y ← y xor b).
Thus we prove

[y = y ′]⟨(d1 +[x=tt] d2) · c2|(d ′1 +[x ′=tt] d
′
2) · c′2⟩

= { e +e ¬ e = 1}

[y = y ′]([x = x ′] + ¬ [x = x ′])⟨(d1 +[x=tt] d2) · c2|(d ′1 +[x ′=tt] d
′
2) · c′2⟩

= { (16)}

[y = y ′][x = x ′]⟨(d1 +[x=tt] d2) · c2|(d ′1 +[x=tt] d
′
2) · c′2⟩

= { (5)}

[y = y ′][x = x ′]⟨(d1 · c2) +[x=tt] (d2; c2)|(d ′1 · c′2) +[x=tt] (d
′
2 · c′2)⟩

which we subdivide into 4 subgoals, depending on the evaluation of [x = tt ] and
[x ′ = tt ]:

1. [x = tt ][x ′ = tt ]

2. [x ̸= tt ][x ′ = tt ]

3. [x = tt ][x ̸= tt ]

4. [x ̸= tt ][x ′ ̸= tt ]

• subgoal (1): To prove this subgoal, we introduce a coupling in order to apply
the R-Rand rule, to assure the invariance of variable b in the sampling

b
$← dmybool. For this example, we chose as coupling the function h,

defined such that b = h(b). Hence we use rule (R-Rand) in BiGKAT to
obtain
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[y = y ′]⟨b $← dmybool |b′ $← dmybool ′⟩

=[y = y ′]⟨b $← dmybool |b′ $← dmybool ′⟩[y = y ′][b = b′]

rule R-Assign to obtain

[y = y ′]⟨y ← y xor tt |y ′ ← y ′ xor tt⟩ = [y = y ′]⟨y ′ ← y ′ xor tt |y ′ ← y ′ xor tt⟩[y = y ′]

which, by ’adding’ [b = tt ][b′ = tt ] on both sides yields,

[y = y ′][b = tt ][b′ = tt ]⟨y ← y xor tt |y ′ ← y ′ xor tt⟩
=[y = y ′][b = tt ][b′ = tt ]⟨y ← y xor tt |y ′ ← y ′ xor tt⟩[y = y ′]

to form the premise of the conditional rule (40).

By rule (38) and the equations above we obtain

[y = y ′][b = tt ][b′ = tt ]⟨(y ← y xor tt) +[b=tt] 1|(y ′ ← y ′ xor tt) +[b′=tt] 1⟩
=[y = y ′][b = tt ][b′ = tt ]⟨(y ← y xor tt) +[b=tt] 1|(y ′ ← y ′ xor tt) +[b′=tt] 1⟩[y = y ′]

and finally for ⟨y ← y xor b|y ′ ← y ′ xor b′⟩ we reason with R-Rand to
obtain

[y = y ′][b = b′]⟨y ← y xor b|y ′ ← y ′ xor b′⟩
=[y = y ′][b = b′]⟨y ← y xor b|y ′ ← y ′ xor b′⟩[y = y ′]

and the main proof of subgoal (1) proceeds by proving the invariance of
[y = y ′] as follows:

[y = y ′]⟨d1 · c2|d ′1 · c′2⟩

= { abbreviation and homomorfism}

[y = y ′]⟨b $← dbool |b′ $← dbool ′⟩⟨y ← y xor tt +[b=tt] 1|y ′ ← y ′ xor tt +[b′=tt] 1⟩
⟨y ← y xor b|y ′ ← y ′ xor b′⟩

= { R-Rand}

[y = y ′]⟨b $← dbool |b′ $← dbool ′⟩[y = y ′][b = b′]

bihomy ← y xor tt +[b=tt] 1y
′ ← y ′ xor tt +[b′=tt] 1bihomy ← y xor by ′ ← y ′ xor b′
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= { (38)}

[y = y ′]⟨b $← dbool |b′ $← dbool ′⟩[y = y ′][b = b′]

⟨y ← y xor tt +[b=tt] 1|y ′ ← y ′ xor tt +[b′=tt] 1⟩[y = y ′][b = b′]

⟨y ← y xor b|y ′ ← y ′ xor b′⟩

= { R-Assign}

[y = y ′]⟨b $← dbool |b′ $← dbool ′⟩[y = y ′][b = b′]

⟨y ← y xor tt +[b=tt] 1|y ′ ← y ′ xor tt +[b′=tt] 1⟩[y = y ′][b = b′]

⟨y ← y xor b|y ′ ← y ′ xor b′⟩[y = y ′]

= { (37)}

[y = y ′]⟨b $← dbool |b′ $← dbool ′⟩⟨y ← y xor tt +[b=tt] 1|y ′ ← y ′ xor tt +[b′=tt] 1⟩
⟨y ← y xor b|y ′ ← y ′ xor b′⟩[y = y ′]

= { homomorfism and abbreviation}

[y = y ′]⟨d1 · c2|d ′1 · c′2⟩[y = y ′]

• subgoal (2):

[y = y ′][x ̸= tt ][x ′ = tt ]⟨(d2 · c2)|(d ′
1 · c′2)⟩ = [y = y ′][x ̸= tt ][x ′ = tt ]⟨(d2 · c2)|(d ′

1 ·
c′2)⟩[y = y ′]

On one side, pogram (d2 · c2) yields y := y xor ff , while on the other
side, program (d ′1 · c′2) yields

d ′1; c
′
2

= { defn}

b′
$← dbool ; ((y ′ ← y ′ xor tt) +[b′=tt] 1) · y ′ ← y ′ xor b′

= { (5)}

b′
$← dbool · ((y ′ ← y ′ xor tt · y ′ ← y ′ xor b′) +[b′=tt] (y

′ ← y ′ xor b′))

= { (4) and (2)}

b′
$← dbool · ([b′ = tt ] · (y ′ ← y ′ xor tt · y ′ ← y ′ xor b′)

+[b′=tt][b
′ = ff ](y ′ ← y ′ xor b′))

= { instantiation of b′}

b′
$← dbool · ([b′ = tt ] · (y ′ ← y ′ xor tt · y ′ ← y ′ xor tt)

+[b′=tt][b
′ = ff ](y ′ ← y ′ xor ff ))

= { B.A.}
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b′
$← dbool · ([b′ = tt ] · (y ′ ← y ′ xor tt) +[b′=tt] [b

′ = ff ](y ′ ← y ′ xor ff ))

= { (5) and e +e ¬ e = 1}

b′
$← dbool · y ′ ← y ′ xor ff

Since variable b′ does not interfere in the assignment y ′ ← y ′ xor ff , we
derive the post condition [y = y ′].

• subgoal (3): symmetrical to the previous one relatively to variables x , x ′.

• subgoal (4):

[y = y ′][x = tt ][x ̸= tt ]⟨d2 · c2|d ′2 · c′2⟩

= { Abbreviations}

[y = y ′][x = tt ][x ̸= tt ]⟨b ← ff · y ← y xor b|b′ ← ff · y ′ ← y ′ xor b′⟩

= { homomorfism}

[y = y ′][x = tt ][x ̸= tt ]⟨b ← ff |b′ ← ff ⟩⟨y ← y xor b|y ′ ← y ′ xor b′⟩

= { R-Assign}

[y = y ′][x = tt ][x ̸= tt ]⟨b ← ff |b′ ← ff ⟩[y = y ′][b = b′]

⟨y ← y xor b|y ′ ← y ′ xor b′⟩[y = y ′]

= { (37)}

[y = y ′][x = tt ][x ̸= tt ]⟨b ← ff |b′ ← ff ⟩⟨y ← y xor b|y ′ ← y ′ xor b′⟩[y = y ′]

= { homomorfism}

[y = y ′][x = tt ][x ̸= tt ]⟨b ← ff · y ← y xor b|b′ ← ff · y ′ ← y ′ xor b′⟩[y = y ′]

5 Related work

The GKAT system was introduced in [13], which also introduced its probabilistic
model with sub-Markov kernels. It was investigated further in [12], which in
particular provides a semantics for which the equational theory is complete.

Relational Hoare logic was introduced in [7]. Probabilistic relational Hoare
logic (pRHL) is due to Barthe and coauthors in [5], where it was motivated by
the certification of cryptographic proofs.

The relational extension BiKAT of KAT was introduced in [1]. It is shown
in this paper that the rules of relational Hoare logic [7] can be interpreted in
BiKAT.

6 Conclusion and perspectives

In this work we have introduced a variant of KAT allowing to reason on relational
properties of probabilistic programs. We have illustrated its expressivity by
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proving how probabilistic relational Hoare logic [5] can be interpreted in it. In
future work we would like to explore if the soundness theorem (soundness of
pRHL in BigKAT) can be extended to the logic with the general form of while
rule, without side condition (E (c) = E (c′) = 0). We would also be interested
in exploring the application of GKAT to unary (non-relational) properties of
probabilistic programs, and for that to investigate the relationships with the
probabilistic Hoare logic aHL of [3].
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Appendix

Proof of Proposition 2.2.
To prove this proposition we use the interpretation of assignment and sam-

plings in the probabilistic model (Definition 2.1). We give the proof of axiom
(2.1), the remaining ones are proved analogously. Given a probabilistic model
i ,

PiJx1 ← t1 · x2 ← t2K(σ)(σ′)
= { Definition 2.1}∑

σ′′
PiJx1 ← t1K(σ)(σ′′)× PiJx2 ← t2K(σ′′)(σ′)

= { Definition 2.1}∑
σ′′

eval(x1 ← t1)(σ
′′)× eval(x2 ← t2)(σ

′)

= { Definition of eval}∑
σ′′
δσ′′[x1←t1] × δσ′[x2←t2]

= { commutativity of ×}∑
σ′′
δσ′′[x2←t2] × δσ′[x1←t1]

= { Definition of eval}∑
σ′′

eval(x2 ← t2)(σ
′′)× eval(x1 ← t1)(σ

′)

= { Definition 2.1}∑
σ′′
PiJx2 ← t2K(σ)(σ′′)× PiJx1 ← t1K(σ′′)(σ′)

= { Definition 2.1}
PiJx2 ← t2 · x1 ← t1K(σ)(σ′)

Proof of Lemma 3.3.
To prove the first equality, reason

⟨e| · ⟨c1|c′1⟩
= { homomorfism}
⟨e · c1|c′1⟩

= { (U8)}
⟨e · (c1 +e c2)|c′1⟩

= { homomorfism}
⟨e| · ⟨c1 +e c2|c′1⟩

For the second equality, we reason analogously
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⟨¬ e| · ⟨c2|c′2⟩
= { homomorfism}
⟨¬ e · c2|c′2⟩

= { (U8)}
⟨¬ e · (c2 +¬ e c1)|c′2⟩

= { (U2)}
⟨¬ e · (c1 +e c2)|c′2⟩

= { homomorfism}
⟨¬ e| · ⟨c1 +e c2|c′2⟩

Proof of Lemma 3.4.
To prove the equality, first note that

⟨e +e ¬ e|e ′ +e′ ¬ e ′⟩
=⟨e · e + ¬ e · ¬ e|e ′ · e ′ + ¬ e ′ · ¬ e ′⟩
=⟨1|1⟩
=1

by axiom (30) and Boolean algebra.
Using this observation, we reason for (48)

ϕ · ⟨e +e ¬ e|e ′ +′e ¬ e ′⟩
= { homomorfism}

ϕ · ⟨e +e ¬ e| · |e ′ +′e ¬ e ′⟩
= { (U5’)}

ϕ · (⟨e +e ¬ e| · |e ′⟩+e′ ⟨e +e ¬ e|¬ e ′)

= { (U5)}
ϕ · ((⟨e| · |e ′⟩+e ⟨¬ e| · |e ′⟩) + e ′(⟨e| · |¬ e ′⟩+e ⟨¬ e| · |¬ e ′⟩))

= { (U5’)}
(ϕ · ⟨e| · |e ′⟩+e ϕ · ⟨¬ e| · |e ′⟩) + e ′(ϕ · ⟨e| · |¬ e ′⟩+e ϕ · ⟨¬ e| · |¬ e ′⟩)

= { (side condition)}
ϕ⟨e|e ′⟩+ e ′ϕ⟨¬ e|¬ e ′⟩

= { (U5’)}
ϕ(⟨e|e ′⟩+ e ′⟨¬ e|¬ e ′⟩)

Proof of Proposition 3.6.

ec(e)
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= { (11)}

e(cc(e) +e 1)

= { fact u5’ and (10)}

ecc(e) +e e

= { (2) and (4)}

ecc(e) +e ¬ e · e
= { B.A.}

ecc(e) +e 0

= { fact u6 and B.A.}

ecc(e)

Proof of Lemma 3.8.

ϕ(⟨c(e)|¬ e ′⟩+⟨e| ⟨¬ e|c′(e
′)⟩)

= { homomorfism and (4)}

ϕ(⟨e|¬ e ′⟩⟨c(e)|+⟨e| ⟨¬ e|c′(e
′)⟩)

= { fact u5’}

ϕ⟨e|¬ e ′⟩⟨c(e)|+⟨e| ϕ⟨¬ e|c′(e
′)⟩

= { (33) and (7)}

0 +⟨e| ϕ⟨¬ e|c′(e
′)⟩

= { (2) and fact u6}

⟨¬ e|ϕ⟨¬ e|c′(e
′)⟩

= { B.A.}

ϕ⟨¬ e|c′(e
′)⟩

= { (11)}

ϕ⟨¬ e|c′c′(e
′) +e′ 1⟩

= { (2), (4) and (10)}

ϕ⟨¬ e|e ′c′c′(e
′) +e′ (¬ e ′)⟩

= { fact u5’ and homomorfism}

ϕ(⟨¬ e|e ′c′c′(e
′)⟩+|e′⟩ ⟨¬ e|¬ e ′⟩)
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= { homomorfism and (fact u5’)}

ϕ⟨¬ e|e ′⟩|c′c′(e
′)⟩+|e′⟩ ϕ⟨¬ e|¬ e ′⟩

= { (33)}

0 +|e′⟩ ϕ⟨¬ e|¬ e ′⟩

= { (2) and fact u6}

|¬ e ′⟩ϕ⟨¬ e|¬ e ′⟩

= { B.A.}

⟨¬ e|¬ e ′⟩ϕ

Proof of Theorem 3.9.
R-Seq rule:

ϕ · ⟨c1 · c2|c′1 · c′2⟩
= { homomorfism}

ϕ · ⟨c1|c′1⟩ · ⟨c2|c′2⟩
= { premises}

ϕ · ⟨c1|c′1⟩ · ψ · ⟨c2|c′2⟩ξ
= { premise}

ϕ · ⟨c1|c′1⟩ · ⟨c2|c′2⟩ · ξ
= { homomorfism}

ϕ · ⟨c1 · c2|c′1 · c′2⟩ · ξ

R-Cond right rule:

ϕ⟨c1|c′1 +e c2
′⟩

= { (30)}

ϕ(|e⟩+|e⟩ |¬ e⟩)⟨c1|c′1 +e c2
′⟩

= { (5)}

ϕ|e⟩⟨c1|c′1 +e c2
′⟩+|e⟩ ϕ|¬ e⟩⟨c1|c′1 +e c2

′⟩

= { (31) and (19)}

ϕ⟨c1|ec′1⟩+|e⟩ ϕ⟨c1|¬ ec′2⟩

= { premises}

ϕ⟨c1|ec′1⟩ψ +|e⟩ ϕ⟨c1|¬ ec′2⟩ψ

= { (31), (19), (5) and (30) reverse steps}
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ϕ(|e⟩+|e⟩ |¬ e⟩)⟨c1|c′1 +e c2
′⟩ψ

= { B.A.}

ϕ⟨c1|c′1 +e c2
′⟩ψ

R-Cond left rule: symetrical to R-Cond right rule.
R-Sub rule:

ϕ′ · ⟨c|c′⟩
= { ax (30)}

ϕ′ · ϕ · ⟨c|c′⟩
= { premise}

ϕ′ · ϕ · ⟨c|c′⟩ · ψ
= { ax (30)}

ϕ′ · ϕ · ⟨c|c′⟩ · ψ · ψ′

= { premise}
ϕ′ · ϕ · ⟨c|c′⟩ · ψ′

= { ax (30)}
ϕ′ · ⟨c|c′⟩ · ψ′

R-Case rule:

ϕ · ⟨c|c′⟩
= { B.A., ax (30)}

ϕ · (ϕ′ϕ′ϕ′) · ⟨c|c′⟩
= { (U5), (U5’) of GKAT}

ϕ · ϕ′ · ⟨c|c′⟩+ϕ′ ϕ · ¬ ϕ′ · ⟨c|c′⟩
= { premises}

ϕ · ϕ′ · ⟨c|c′⟩ · ψ +ϕ′ ϕ · ¬ ϕ′ · ⟨c|c′⟩ · ψ
= { (U5’) of GKAT}

ϕ · (ϕ′ · ⟨c|c′⟩ · ψ +ϕ′ ¬ ϕ′ · ⟨c|c′⟩ · ψ)
= { (U5) of GKAT}

ϕ · ((ϕ′ +ϕ′ ¬ ϕ′) · ⟨c|c′⟩ · ψ)
= { (B.A.), ax (30)}

ϕ · ⟨c|c′⟩ · ψ
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