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ARTICLE

Nonlinear wave evolution with data-driven breaking
D. Eeltink 1,2✉, H. Branger3, C. Luneau3, Y. He 4, A. Chabchoub 4,5,6, J. Kasparian 7,

T. S. van den Bremer2,8 & T. P. Sapsis1✉

Wave breaking is the main mechanism that dissipates energy input into ocean waves by wind

and transferred across the spectrum by nonlinearity. It determines the properties of a sea

state and plays a crucial role in ocean-atmosphere interaction, ocean pollution, and rogue

waves. Owing to its turbulent nature, wave breaking remains too computationally demanding

to solve using direct numerical simulations except in simple, short-duration circumstances.

To overcome this challenge, we present a blended machine learning framework in which a

physics-based nonlinear evolution model for deep-water, non-breaking waves and a recurrent

neural network are combined to predict the evolution of breaking waves. We use wave tank

measurements rather than simulations to provide training data and use a long short-term

memory neural network to apply a finite-domain correction to the evolution model. Our

blended machine learning framework gives excellent predictions of breaking and its effects on

wave evolution, including for external data.
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The importance of wave breaking, the main mechanism that
dissipates energy input into ocean waves, is twofold. First,
wave breaking provides an upper limit to how tall or steep

waves can become, thereby limiting the steepening effects of
winds1, currents2, crossing seas3, refraction by bathymetry4,
abrupt depth transitions5,6, and nonlinear focusing7–9. Second,
wave breaking itself plays a crucial role in important physical
processes, such as the transport and dispersion of surface pollu-
tion including plastic debris and oil10, the energy, momentum,
and mass fluxes in ocean-atmosphere interactions11,12 with cli-
mate applications such as atmosphere-ocean CO2 exchange13,14,
and the formation of rogue waves15.

Despite its ubiquity and importance, no satisfying models for
wave breaking exist. In potential-flow models, such as (variants
of) the nonlinear Schrödinger (NLS) equation7,16 and higher-
order spectral methods (HOSM)17, the effects of breaking and the
vorticity the breaking induces are ignored as a direct consequence
of the potential-flow assumption; they must be re-introduced
through reduced-form breaking terms added to the model in ad-
hoc fashion18–21. Such reduced-form breaking terms have been
validated for highly simplified cases, but not for realistic broad-
banded spectra, and require parameter tuning, yielding them
unfit for prediction. On a larger scale, spectral wave models, such
as WaveWatch III, include wave breaking through empirically
determined dissipation modules22–24, but do not resolve
individual waves.

Direct numerical simulations (DNS) of the Navier–Stokes
equations have to be performed in 3D to explicitly resolve tur-
bulence and have only recently been used to capture the entire
pre- and post-breaking of only a single wave in 3D25, although at
very high computational cost. The 2D approximation26,27 offers a
promising prospect but remains so computationally demanding
that only a very narrow region in space and time can be studied.
In short, none of the three methods to describe breaking dis-
cussed above can be used in practical wave-resolving forecasting.

In other related fields, machine learning (ML) has recently
been used to complement physical models with great success. In
climate modeling, where the main uncertainty comes from esti-
mating sub-grid processes, ML techniques can be used to emulate
physical processes not resolved by the climate model28. In fluid
dynamics, ML in conjunction with the Navier–Stokes equations
can be used to obtain the pressure on the wall of an aneurysm
from just an image of the velocity field29. Using ML, extreme
event statistics in nonlinear dynamical systems can be correctly
predicted from only a small number of samples30. In so-called
blended machine learning specifically, a simplified physics-based
model is combined with an ML algorithm to capture the physical
processes missing from the simplified model. The algorithm is
then trained on data to learn the full solution or ground truth.
This approach has been successfully applied to spatiotemporally
non-local turbulence closures31 and particle trajectories in vor-
tical flows32. The key ingredient is to include the memory of
previous time steps in a recurrent neural network (RNN),
allowing non-local representations by which the missing physical
processes or “closure terms” can be parameterized. While ML
studies have been performed in the context of wave breaking,
these have focused on the detection and classification of breaking
waves33–35, rather than their prediction and simulation.

In this paper, we develop a blended machine learning frame-
work to model wave breaking and its effects on the nonlinear
evolution of ocean waves. We show that the framework can be
used for wave-resolving forecasting of breaking waves. In doing
so, we overcome the challenge of having to explicitly model the
turbulent nature of wave breaking. In the framework we develop,
we use the viscous modified NLS (MNLS) equation7,16,36,37 as the

physics-based model for non-breaking waves and wave tank
measurements to serve as the ground truth.

Several mechanisms influence the evolution of waves, both in a
tank and in the ocean. These include wind forcing, dispersion,
nonlinear interactions, and dissipation as a result of kinematic
viscosity, tank side-walls, and wave breaking. The MNLS is a
canonical wave model that can predict the nonlinear and dis-
persive evolution of the (complex) envelope a of the free surface
of unidirectional water waves accurately38 and at a very low
computational cost, provided the waves are in deep water, do not
break, there is no energy input from wind, and dissipative effects
other than the kinematic viscosity are excluded. In non-
dimensional form, the MNLS we use reads:

∂a
∂ξ

þ i
1
2
∂2a
∂τ2

þ iajaj2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NLS

¼ ϵ 8jaj2∂a
∂τ

þ 2a2
∂a�

∂τ
þ 2iaH ∂jaj2

∂τ

� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
higher�order terms

�δ0a� iδ1
∂a
∂τ

� δ2
∂2a
∂τ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

viscous damping

;

ð1Þ

where ξ is dimensionless space, τ dimensionless time, the steep-
ness ϵ ¼ A0k0

ffiffiffi
2

p
with A0 the characteristic surface elevation

amplitude and k0 the carrier wave number, the * symbol denotes
the complex conjugate, H a Hilbert transform, and the zeroth,
first and second-order viscous contributions have coefficients
δ0= 1/(2ϵ)ν, δ1= 5ν/2, δ2= 5ϵν respectively, where ν ¼ T04k

2
0~ν

with T0 the carrier wave period and ~ν ¼ 1:00 ´ 10�6 m2/s the
kinematic viscosity.

From the listed mechanisms, the NLS terms7 in eq. (1) capture
the key physical processes (i.e., nonlinearity and dispersion) that
are responsible for the Benjamin–Feir39 or modulational
instability (MI), which characterizes the evolution of non-
breaking deep-water surface gravity waves. The higher-order
terms16 account for asymmetries in the spectrum and allow for
steep (narrow-banded) waves to be modeled accurately38. The
MNLS is derived from the water-wave equations using a per-
turbation expansion in steepness and a slowly varying envelope
approximation16,40; as such, its validity is compromised for very
broad-banded spectra. We emphasize that the spatial-evolution
version of the MNLS we use (i.e., eq. (1)) captures linear dis-
persion exactly even for broad-banded spectra, whereas temporal-
evolution versions require additional higher-order (spatial)
derivatives41–44. The bandwidth limitations of eq. (1) arise
because of the combination of broad bandwidth and nonlinearity.
The viscous damping terms in eq. (1) account for the kinematic
viscosity, and more importantly, restrict the growth of spurious
high-frequency waves when the MNLS reaches unphysical
amplitudes36,37. We do not account for side-wall friction, which
does not have a significant effect in our experiments. Further-
more, we study the effect of wave breaking in isolation and
therefore omit wind forcing45,46.

For the blended framework, high-fidelity turbulence-resolving
direct numerical simulations remain too computationally
expensive as a method to generate training data. We instead use
measurements of breaking waves in a wave tank as the ground
truth (see Methods). We obtain a training data set consisting of
three wave types. Modulated plane waves (Wave Category I) are
the simplest idealized example of breaking waves, reaching their
maximum amplitude due to MI. Dispersively focused irregular
waves (Wave Category II) provide a more realistic representation
of the ocean47, and can reach a breaking amplitude due to
focusing on the phases of the different-frequency wave compo-
nents. Modulated plane waves and focused irregular waves (Wave
Categories I-II) are chosen deliberately as they are the only two
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wave types for which breaking can be clearly and non-
controversially detected in the spectrum. Finally, irregular
waves with random phases (Wave Category III) are closest to a
(unidirectional) sea state, where the number of breaking waves is
sporadic, depending on the significant wave height, and breaking
is harder to detect. The data set is split into training, validation,
and test sets, of which only the first two are used in the training
and training optimization process of the model. In addition, the
model is only trained on segments of the total propagation length
of the experiments.

Although measurements have the added advantage of being
closer to the ground truth than any model (measurement errors
notwithstanding) thus capturing the relevant physical processes
more completely, data is only available at a finite number of
measurement locations, where wave gauges are positioned, and
not at each solver step. While the wave envelope varies suffi-
ciently slowly and can be interpolated, the phase cannot (see SI
section 1). To overcome the requirement of conventional
machine learning methods31,32,48 to have the full ground truth at
each solver step, we develop a finite-domain machine learning
(FDML) correction, which applies an RNN over multiple solver
steps. The RNN allows the network’s memory states to detect
signals, such as steepening or spectral broadening, as predictors of
wave breaking. In addition, it allows future information of the
simplified model (MNLS) to influence the correction at earlier
time steps. The algorithm is thus non-local and non-causal, partly
explaining its efficiency. The FDML framework we develop can
be used in other applications in which only part of the ground
truth is available, such as in optical fibers, in which it is notor-
iously difficult to measure phase49.

Results
Wave Category I: modulated plane waves. Figure 1 shows results
for the canonical case of a modulated (or perturbed) plane wave
(Wave Category I), consisting of a carrier wave perturbed by
upper and lower sidebands, resulting in dynamics that are mainly
determined by only three spectral modes. Due to modulational
instability7,39, the spectral sidebands grow, and the spectrum
broadens. In the time domain, this corresponds to an amplifica-
tion of the amplitude. In the MNLS simulation (Fig. 1a, e), an
approximate recurrence back to the initial condition occurs,
known as the Fermi–Pasta–Ulam–Tsingou (FPUT)
recurrence50–52. In the experiment (Fig. 1c), the amplitude
amplification leads to breaking at ξ= 3.42, most notably resulting
in the lower sideband becoming dominant (Fig. 1g)8,53,54.

We note that existing breaking models, such as the steepness
threshold model by19 and the nonlinear dissipation term in18

correctly predict a spectral downshift for a modulated plane wave,
although they have not been compared to experimental data therein
(see Supplementary Information for a comparison with our results).
The kinetic energy equation-based model20,21 also gives good
qualitative agreement for the downshift with modulated plane wave
experiments but requires parameter tuning.

Our MNLS+ FDML model correctly predicts the permanent
downshift of the peak (Fig. 1f) and consequently of the spectral
mean. The large amplitudes predicted by the MNLS alone (Fig. 1a)
leading to breaking and amplitude reduction in experiments (Fig. 1c)
are capped correctly (Fig. 1b). The dispersive spread of the
measurements (Fig. 1c) at long distances is captured well by
the MNLS+FDML model, although the light-colored ‘valleys’ of the
envelope in the experiments are somewhat deeper and broader.

Fig. 1 Example result (not used for training) for the spatial evolution of a modulated plane wave (Wave Category I) showing wave breaking at
ξ= 3.42, as indicated by the black dotted line. a–d Time domain. Color bar indicates surface envelope amplitude a (see eq. (1)). a MNLS simulations.
b MNLS+ FDML simulations. c Measurements. d Mean squared error (MSE) at each wave gauge between measurements and MNLS or MNLS+ FDML
simulations. e–h Frequency domain, similar panel configuration as in the time domain, with the color bar indicating the magnitude of the amplitude
spectrum normalized by the maximum of the initial condition (âN).
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Importantly, our MNLS+FDML model does not apply an over-
correction for non-breaking waves (see SI section 2).

Wave Category II: dispersively focused irregular waves. To
examine wave fields that form a more realistic representation of
the real ocean environment, we apply our MNLS+ FDML fra-
mework to focused irregular waves created using a JONSWAP
spectrum47 as the input condition. The phases of the components
of this spectrum are chosen so that they all come into phase
(according to linear theory) at position ξf in the tank, creating a
steep wave that will break at ξf or before.

Figure 2 shows the evolution of an example wave, breaking at
ξ= 0.78. The measured envelope evolution differs from the MNLS
prediction, and equally from a non-breaking wave, in several ways.
First, in the time domain, the MNLS model (Fig. 2a) predicts a much
higher amplitude around ξ= 0.78 than the measurement (Fig. 2c),
as also manifested by the much higher steepness (Fig. 3c). Second,
breaking causes a sudden loss of about 30% of the total energy
(calculated as the norm of the envelope, i.e., NðξÞ ¼ R

â2dΩ), as
shown in Fig. 3a, unlike the MNLS prediction. This energy loss (not
a redistribution across the spectrum) is due to the turbulent nature
of breaking. Third, the MNLS predicts strong dispersive spreading
for ξ > 0.78 (Fig. 2a, e) not present in the measurements (Fig. 2c, g).
The additional high-frequency components present in the MNLS
predictions at long distances (Fig. 2e) travel at slower speeds
(Fig. 2a), in accordance with the linear surface gravity wave
dispersion relation. The discrepancy in high-frequency components
between MNLS and measurements is most clearly displayed in the
time series at ξ= 1.33 (gauge 7, Fig. 4b) and at ξ= 2.06 (gauge 11,

Fig. 4c). Focusing in the time domain corresponds to a broadening
of the spectrum at ξ= 0.78 in the MNLS simulations (Fig. 4d). In
reality, these additional high-frequency components are quenched
by breaking (comparing Fig. 2e to g and Fig. 4d to e, f). Finally, wave
breaking induces a downshift of the spectral peak and the spectral
mean8,53–55. The MNLS prediction does not account for the former
(Fig. 4e, f), and even shows a slight upshift of the mean frequency, as
shown in Fig. 3b, whereas the downshift in the measurement is
dramatic.

For the focused irregular waves, the architecture and training
procedure of the FDML algorithm is identical to that used for the
modulated plane wave, but the training data set consists of
focused wave groups with initial JONSWAP spectra. The MNLS
+FDML model is able to reproduce accurately the measured
evolution in both the time and the frequency domain. The
significant improvement compared to the MNLS model is
indicated by the mean squared error (MSE) evolution in Fig. 2d,
h. Examining the effect of breaking, Fig. 2b shows the maximum
amplitude of the envelope is attenuated to a value close to the
measurement value, as corroborated by the sharp decline of the
norm in Fig. 3a. In addition, the suppression of the dispersive
spreading at long distances is correctly predicted. In the
spectrum, Fig. 2f shows the spectral width at the breaking point
is reduced. Figure 4e, f shows that the (slight) downshifting of the
peak is correctly reproduced. The downshift of the mean
frequency closely follows the measurements (Fig. 3b). As for
modulated plane waves, for non-breaking focused irregular waves
our MNLS+ FDML model does not apply an over-correction.
We refer to the Supplementary Information for an example of a
non-breaking wave.

Fig. 2 Example result (not used for training) for the evolution of focused irregular waves (Wave Category II) showing wave breaking at ξ= 0.78, as
indicated by the black dotted line. a–d Time domain. Color bar indicates surface elevation envelope a. a MNLS simulations. b MNLS+ FDML simulations.
c Measurements. d Mean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+ FDML. e–h Frequency domain,
similar panel configuration as in the time domain, with the color bar indicating the magnitude of the spectrum normalized by the maximum of the initial
condition (âN). The horizontal red dashed lines correspond to the gauge locations examined in Fig. 4.
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To assess the overall performance of the MNLS+ FDML model,
Fig. 5 shows the mean squared error (MSE) for the full length of
propagation, averaged over the experiments in the test set, i.e., those
that were not used for training (see Supplementary Information for
all cases from the test set). The FDML correction is responsible for an
order-of-magnitude improvement compared to the MNLS predic-
tion. To verify the generality of our MNLS+ FDML model, we also
predict wave breaking in an external data set of focused breaking

waves recorded in the Multifunctional Ship Model Towing Tank at
Shanghai Jiao Tong University, which has a much larger tank and
wave dimensions than our training set and find comparable results to
those reported here. Results are displayed in SI section 3.4.

Wave Category III: random irregular waves. Moving yet further
to a realistic random sea state, we investigate the ability of our

Fig. 3 Evolution of summary parameters of the focused irregular waves (Wave Category II) shown in Figs. 2 and 4. a Evolution of the norm N/N0

b Evolution of the mean frequency Ωc. Note that Ω= 0 corresponds to the central peak of the initial spectrum, which is lower than Ωc for the initial
condition. c Evolution of the characteristic steepness ηmaxk0.

Fig. 4 Envelopes and amplitude spectra of the focused irregular waves (Wave Category II) at different wave gauge locations indicated by the red-
dotted lines in Fig. 2. a–c Time-domain envelopes. d–f Amplitude spectra. a, d Gauge 3. b, e Gauge 7. b, e Gauge 11. Initial condition (IC, dotted gray),
measurements (solid blue), MNLS simulations (dashed yellow), and MNLS+ FDML simulations (dashed-dotted green).

Fig. 5 Mean squared error (MSE) relative to the ground truth for the MNLS+ FDML model compared to the MNLS model, averaged over all
experiments from the test set (the set of data not used for training) that are breaking. The shaded region corresponds to ±1 standard error across cases.
Data were shown for the full propagation length. Wave Category I in the time domain (a) and frequency domain (b) and Wave Category II in the time
domain (c) and frequency domain (d). We plot the dimensional distance x on the horizontal axis, as the dimensionless distance ξ is different for each
sample.
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MNLS+ FDML model to provide forecasts of (unidirectional)
irregular waves based on a broad-banded JONSWAP spectrum
with peak enhancement factor γ= 3.3, with random instead of
focused phases (Wave Category II). In this category, both dis-
persion and MI can lead to wave steepening. Random sea state
forecasts face two challenges. First, based on a finite-duration
measurement at a point, random irregular waves can, as a result
of dispersion, only be forecast over a finite so-called predictable
region, which narrows as the time horizon of prediction increases
or spectra become more broad banded56. Second, the signature of
breaking is much less pronounced in the spectrum of (broad-
banded) irregular waves. We therefore only compare the physical-
space evolution. The training data generation for this method is
detailed in SI section 5.

Because wave breaking in an irregular sea is generally sporadic,
the dynamics (and the MSE) are dominated in large part by the
waves that do not break. To assess the ability of the MNLS+
FDML model to capture breaking, we select and examine wave
groups from the test data set that are sufficiently steep, according
to the criterion ~ak0 > 0:28, ensuring a high likelihood of breaking.
These events are displayed in SI section 5.3.

Figure 6 shows the evolution of a representative example, with
a breaking event occurring around ξ= 1.1 (gauge 7). The MNLS
overestimates the amplitude, even predicting a non-physically
large-amplitude indicated by the red circle in Fig. 6a, whereas the
MNLS+ FDML model corrects this over-estimation. For non-
breaking waves, the performance of the MNLS+FDML model is
comparable to that of the MNLS only, see SI Fig. 5.7. When there
is a breaking event, the MNLS+FDML model outperforms the
MNLS model, see Fig. 6d. The model has been trained on
segments with a maximum length of half the propagation length
in Fig. 6. Although the MNLS+FDML model has been trained on
a broad-banded JONSWAP spectrum (peak enhancement factor
γ= 3.3), it works equally well for a more narrow-banded
JONSWAP spectrum (γ= 6, see SI Fig. 5.3).

Discussion
We have demonstrated that the MNLS+ FDML framework
developed herein can predict the unidirectional evolution of the
wave envelope and its spectrum for an arbitrary propagation
length, even if wave breaking occurs along the way. This includes
the correct prediction of dissipation of total energy by breaking,
as well as the resulting suppression of higher frequencies and the
downshift of the mean and peak frequency of the spectrum. The
attenuation of the maximum amplitude of the surface elevation
and the reduction in dispersive spreading are also correctly pre-
dicted. We have shown that our developed method is successful
for modulated plane waves (Wave Category I), JONSWAP
spectrum-based dispersively focused wave groups (Wave Cate-
gory II), and broad-banded JONSWAP random irregular wave
evolution (Wave Category III), increasing the degree of realism
step by step. As we work with non-dimensional values for the
wave amplitude and the carrier wave frequency, we expect that
our results generalize well to other wave heights and wavelengths.

Our framework employs experimental data as the ground truth
instead of a high-fidelity numerical model. Using measurements
allows previously inaccessible physics to be included in the model,
as opposed to just achieving a speed-up of the simulation of
known physics by a more complex model31,32,57–59. This direct
access does come at a price when considered in the context of the
growing body of work60–63 in which machine learning algorithms
discover partial differential equations (PDEs), parts thereof, or
their solutions. First, the ground truth is not always known in full
at the model solver step, as required in an infinitesimal-domain
blended model31,32, because of the finite resolution of measure-
ments and the difficulty interpolating all aspects of the ground
truth information to the required time step (such as the phase in
this paper) or because it is notoriously difficult to measure them
(such as the phase in optics49). Second, a convergence of the ML
algorithm to a global minimum is not guaranteed if the error
between measurements and the full solution (a PDE or PDE term

Fig. 6 Example result (not used for training) for the evolution of the envelope of random irregular waves (Wave Category III), showing wave breaking
at ξ= 1.1, as indicated by the red circle. The color bar indicates surface elevation envelope a. a MNLS simulations. b MNLS+ FDML simulations.
cMeasurements. dMean squared error (MSE) at each wave gauge between measured envelope and MNLS and MNLS+ FDML simulations. e–g Envelopes
a at the wave gauge locations indicated by the red-dotted lines in (a): measurements (solid blue), MNLS simulations (dashed yellow), and MNLS+ FDML
simulations (dashed-dotted green).
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to be discovered) is due to missing physics instead of simply
Gaussian noise added to synthetic data60,61. Third, when mea-
surement data is only available in limited quantities, purely data-
driven approaches are not successful, and a physics-based model
is essential to compensate for the lack of data61,64. For instance,
for optical fibers, the evolutionary dynamics can be described by a
Neural Network instead of the NLS equation65, when trained on
large volumes of data. However, in the water-wave setting,
obtaining such large quantities of wave tank experiments is
prohibitively expensive.

While the finite-domain ML framework we have developed
addresses some of these challenges, it has limitations. The evo-
lution of the envelope over a finite domain strongly depends on
the wave input, as the nonlinear interactions quickly mix the
effects of all terms in the PDE. Therefore, over a finite domain,
the difference in evolution with and without breaking has
entangled in it the effects of both the wave type and its inherent
nonlinear behavior and the breaking behavior. Consequently, the
parameters that minimize the loss function of the network have
different values for different wave types, and the FDML model
cannot yet extrapolate from one wave type to another. If phase
information at the solver step becomes available through either
measurements or simulations, we envisage that the infinitesimal-
domain method could remedy this limitation in future work as
the effect of breaking on the spectrum and the nonlinear (non-
breaking) spectral evolution itself then can become decoupled.

The main novelty of our work is the demonstration that the
turbulent breaking process can be captured by a neural network
with memory, and decoupled from the potential flow. As wave
breaking is a complex phenomenon, the first step must be to
select circumstances in which the signature of breaking is clearly
detectable in both the time and frequency domain. Fulfilling this
requirement, we choose Wave Categories I (modulated plane
waves) and II (dispersively focused irregular waves), which are
conventionally studied in the context of wave breaking8,26,66–68.
Our results for Wave Category III (random irregular waves) act as
a proof of concept for the applicability of our FDML model in
wave-resolving forecasts of realistic random sea states. In this
latter category, both dispersion and MI can steepen the waves.

To tackle more realistic sea states, we anticipate two future
directions of development, distinguishing those that make use of
the infinite-domain and those that make use of the finite-domain
approach. In the finite-domain approach, the same approach as in
this paper can readily be used for other combinations of models
and measurement techniques, depending on the purpose of the
study, such as deterministic wave forecasting, statistics, or
extreme event detection. For each purpose, the blended approach
as in this work can be applied: a model that captures the basic
physics without breaking, a machine learning layer with memory,
and measurements that track the evolution at finite intervals.

Before turning to the challenging integration with other effects
such as wind forcing, the effect of directional spreading should be
examined. While the unidirectional wave is a valid approximation
for sea states dominated by swell, most realistic sea states have a
degree of directional spreading. To generalize our approach to
directional sea states, the 1D MNLS equation will need to be
replaced by the 2D MNLS41,43,69 or a model that directly
describes the surface elevation (instead of the envelope) and is less
restrictive on bandwidth, such as higher-order spectral methods
(HOSM)17,70, or the Zakharov equation7,71. For the surface ele-
vation, crest slows down is an additional signature of incipient
breaking, which can be used to test the validity of results72.
Challenges will arise from dealing with the finite predictable
region in 2D, from the boundaries of a finite spatial domain or a
finite-size wave tank, and from the need for large quantities of
spatially resolved data to be suitable for machine learning. For the

latter, different measurement techniques such as stereo-
imaging73,74 could be used. Finally, although the effect of small
degrees of directional spreading on breaking is understood75,
breaking in crossing seas is not and maybe much less dissipative
and amplitude-limiting3.

For the infinitesimal-domain method, the first challenge in
future work will be to identify and develop suitable, high-fidelity
models that capture at least the most salient features of wave
breaking, are able to do so for a range of wave types and con-
ditions, and can generate a sufficient amount of training data
without the excessive computational cost. Numerical models
based on the Reynolds-averaged Navier–Stokes equation with a
turbulence model are a promising candidate for this76. In addi-
tion, for this method, it will be crucial to guarantee stability such
that the error of the predicted evolution as indicated in Fig. 7b,
does not increase cumulatively with every step. To prevent such
instability and non-physical results, hard physical constraints can
be enforced on the output of the network, often implemented as
some form of outer loop optimization5,77–80 or added as a penalty
in the cost function (so-called soft constraints).

In conclusion, we have developed a blended framework to
predict the evolution of waves that includes the abrupt and tur-
bulent process of wave breaking based on a canonical potential
flow-based wave evolution equation. We foresee that being able to
incorporate breaking effects in wave evolution equations in a
simple way will help lift restrictions breaking has placed on the
validity of models explaining the behavior of waves subject to
winds1, currents2, crossing seas3, refraction by bathymetry4,
abrupt depth transitions5,6, and nonlinear focusing7–9. The
experiment-based blended framework for wave breaking we have
developed in this paper builds a suitable foundation for applica-
tion to wave-resolving forecasting in real-world sea states, which
should be the direction of future research.

Methods
Wave tank experiments. For Wave Categories I (modulated plane waves) and II
(focused irregular waves), ground-truth training data was generated in the 40 m
long, 2.7 m wide wave facility at Aix Marseille University, France, by means of a
piston wavemaker. Waves were measured by 12 wave gauges placed along the
center-line of the tank with a sampling rate of 400 Hz. Experiments for Wave
Category III (random irregular waves) were performed in the 30 m long, 1 m wide
facility at the University of Sydney, Australia, again by means of a piston wave-
maker. An array of eight wave gauges was moved along the tank for repeated
measurements, to obtain a final number of 24 wave gauges positions spaced 0.83 m
apart (covering 19.1 m). The gauges had a sampling rate of 32 Hz. See Fig. 7a for
the experimental set-up.

MNLS simulations and non-dimensionalization. MNLS simulations were carried
out by integrating eq. (1) numerically using a split-step Fourier method. The
envelope constructed from the measured surface elevation η(t) at any wave gauge
can be used as an initial condition. The envelope can be constructed from the
surface elevation by means of the Hilbert transform:

~aðx; tÞ ¼ ηðx; tÞ þ i~ηðx; tÞ� 	
e�iðk0x�ω0 tÞ; ð2Þ

where ~η is the Hilbert transform, ~η ¼ H½η� ¼ F�1 �i signðωÞF ½η�
 �
, with F a

Fourier transform and ω the angular frequency. To obtain a smooth envelope,
bound modes are filtered from the measurement signal, and smoothing filters are
applied. Quantities have been made dimensionless as a ¼ ~a=~a0, τ ¼ t0=T0, and

ξ= x/L0, where t0 ¼ t � x=cg is the group time scale with cg ¼ 1
2 g=k0
� 	�1=2

the
linear group velocity in the deep-water limit, T0= 1/(ω0ϵ), L0= 1/(2ϵ2k0), ~a the
dimensional envelope, ~a0 its initial value, and ϵ ¼ ~ak0=

ffiffiffi
2

p
the steepness.

Wave Category I. The modulated plane wave consists of a carrier wave seeded by
upper and lower sidebands with modulation frequency ΩM, defined in dimen-
sionless form as:

að0; τÞ ¼
ffiffiffiffiffi
b0

p
þ

ffiffiffiffiffiffiffi
b�1

p
eiðΩMτþψÞ þ

ffiffiffiffiffiffiffi
bþ1

q
eið�ΩMτþψÞ: ð3Þ

where
ffiffiffiffiffi
b0

p
,

ffiffiffiffiffiffiffi
bþ1

p
, and

ffiffiffiffiffiffiffi
b�1

p
are the amplitudes of the main mode and upper and

lower sidebands, respectively, and ψ the relative phase between the sidebands and
the carrier mode. The amplitudes of the three modes of the initial condition are
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given by:

b0 ¼ 1� bF ; b�1 ¼ ð1� b0 þ αÞ=2; bþ1 ¼ ð1� b0 � αÞ=2; ð4Þ
where bF is sideband fraction, and α the sideband unbalance. The dimensional
signal for the wavemaker can be obtained as ηð0; tÞ ¼ ~a0að0; τÞeiω0 t . Due to
modulation instability (MI)39,81, the spectrum will broaden, and the amplitude of
the wave will increase, attaining a maximum at the focus position ξf, after which the
modulation will decrease: the FPUT recurrence cycle50–52. By selecting the initial
steepness ~a0k0=

ffiffiffi
2

p
, bF, α, and ΩM, we can set the steepness at ξf.

To generate a variety of waves, parameters were drawn from the following ranges:
f0=ω0/(2π)∈ [1.30, 1.55] Hz, ~a0k0 2 ½0:12; 0:25�, bF∈ [0.01, 0.1], ΩM∈ [0.7, 1.55],
ψ∈ [0, 2π] and α∈ [−0.16, 0.16]. A data set of 258 wave trajectories were generated
and measured. Figure 1 shows the evolution of a breaking wave with initial parameters
f0= 1.40 Hz, ~a0k0 ¼ 0:19, bF= 0.09, ΩM= 1, ψ= π, and α= 0.

Wave Category II. For the focused irregular waves, the JONSWAP spectral density
S(ω) is characterized by the shape parameter γ:

Sð0;ωÞ ¼ Kg2

ω5
exp � 5

4

ωp

ω

� 
4
� �

γr ; ð5Þ

with r ¼ exp � ðω�ωp Þ2
2σ2s ω

2
p

h i
. Here, ωp is the peak frequency in rad/s and σs the spectral

width. σs= 0.07 for ω≤ωp and σs= 0.09 for ω > ωp. As the parameter K scales the
entire spectrum, it can be chosen to obtain the appropriate significant wave height
Hs. When mimicking a random sea state, the phases of the spectrum are rando-
mized. To focus the spectrum, the phases are chosen such that components an(ωn)
of the JONSWAP spectrum superimpose to a maximum at the same position in the
tank, xf, creating a maximum amplitude of the wave group at this position, and
possibly a breaking event. The surface elevation at the wavemaker reads:

ηð0; tÞ ¼ ∑
n
an cosðωnt þ knxf Þ: ð6Þ

Parameters were drawn from the following ranges: γ∈ [2, 5], Hs∈ [10, 60] mm,
fp= ωp/(2π)∈ [0.5, 1.25] Hz, xf∈ [10, 24] m, such that each initial condition was
generated based on a unique combination of these parameters. A data set of 180
wave trajectories were generated and measured. Note that for both wave categories,
parameters cannot be selected randomly, as not every combination leads to a

breaking event within the length of the tank. Figures 2 to 4 show the evolution of a
breaking wave with initial parameters fp= 0.91 Hz, (ωp= 5.7 rad/s), γ= 4, Hs=
30 mm and xf= 14 m.

Wave Category III. For the random irregular waves, the JONSWAP spectral
density eq. (5) is used. Instead of manipulating the phases to exhibit dispersive
wave focusing, they are randomly drawn from a uniform distribution for each wave
frequency in the spectrum. Parameters for the initial condition were γ= 3.3, fp=
1.25 Hz, and four different significant wave height values: Hs= 25, 34, 41, 54 mm.
For each wave height, three 20-min experiments (about 1500 wave periods) were
conducted. Shorter experiments were performed to create a test set with properties:
γ= 6.0, fp= 1.25 Hz, σs= 1, Hs= 44 mm.

Neural network and algorithm. The goal of training is to teach the network the
discrepancy between the MNLS propagation prediction and the true propagation
from measurements over an arbitrary number of solver propagation steps when
started from the same initial condition. As we do not have the phase information
that allows us to Fourier transform the envelope between the time and frequency
domain at each solver step, we correct the evolution of the time and frequency
domain separately, by using two separate Neural Networks with identical archi-
tecture. One in the time domain and the other in the frequency domain. Below, we
outline the structure of the algorithm for Wave Categories I and II (see SI section 6
for further details). The procedure for Wave Category III is slightly different, as this
involved segmenting a continuous time series and is outlined in SI section 5.1.

● Obtaining the ground truth at the solver step —The wave tank
experiments need to be interpolated such that the ground truth is available
at very (fixed-size) solver propagation step Δξ instead of only at the wave
gauge positions. The Nyquist–Shannon sampling theorem provides a lower
bound for the sampling frequency to capture all the information from a
continuous signal of final bandwidth. Following this, the slowly varying
envelope is sufficiently sampled by our 12 gauges in space, and by the wave
gauge sampling frequency in time. As we can only interpret the modulus of
the envelope of the measurement and not its phase, we perform a spline
interpolation on the modulus of the wave tank measurements separately in
the time and frequency domains. Hereby moving from the envelope at
discrete locations of the wave gauges atrue(ξwg) to the modulus of the

Fig. 7 Overview of methods. a Schematic drawing of the wave tank. For waves Categories I and II experiment the wave tank was 40m long, 2.7 m wide,
with a water depth of 0.80m. A total of 12 wave gauges were placed at ~3 m distances along the center-line of the tank, starting 3.7 m from the wavemaker
(red). For wave Category III, the wave tank was 30m long, 1 m wide, with a water depth of 0.70m. A total of 24 wave gauge positions were placed 0.83m
apart, starting at 3.0 m from the wavemaker. b For the infinitesimal-domain method, access is needed to the complex envelope at each solver step, to serve
as the initial condition for the MNLS. c For the finite-domain method the complex envelope is only needed at the wave gauge positions, and only the
absolute value of the envelope is needed at each solver step. d When given a (complex) initial condition, the MNLS solver can predict the evolution for an
arbitrary propagation distance. The two separate RNNs then independently provide corrections to the spectral evolution and the physical-space evolution,
respectively.
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envelope-field at interval Δξ for both domains:

atrueðξwgÞ�!jajtrueðξÞ; jâjtrueðξÞ ð7Þ
● Data augmentation—Simply using the entire experiment would not yield

enough data, and we, therefore, augment the data by creating smaller
propagation segments. In order to account for different stages of evolution
of the wave, we can choose training samples starting at different positions
ξ0. Note that this is different from simply cutting the entire propagation
comparison of MNLS and experiment into smaller pieces, as each segment
requires its own MNLS simulation starting from its own initial condition.
For each experiment, three segments lengths are selected. The starting
position can only be at wave gauge positions ξk, as these are the only
locations with access to the complex field (modulus and phase). An MNLS
simulation can be started from this initial condition a(ξk, τ), a segment
length nsteps, yielding aMNLS(ξk, ξk+ nstepsΔξ, τ). This prediction can then
be compared to the same stretch of the measured field, or true evolution
atrue in eq. (7). Since only the modulus of the envelope is available at the
solver step, an input-output training pair s is the modulus of the envelope

s ¼ ½input; output� ¼ jajMNLSðξk; ξk þ nstepsΔξÞ; jajtrueðξk; ξk þ nstepsΔξÞ
h i

:

ð8Þ
Similarly, a separate training pair ŝ can be created for the modulus of the
spectrum of the envelope. To limit the number of free parameters, the
number of modes (and, correspondingly, the length of the time-vector) is
truncated to nt= 512. The input and output therefore each have matrix
dimensions [nsteps, nt= 512]. By varying the segment length and the
starting gauge, many pairs s∈ S can be created. Note that the network is
never trained on the entire propagation length available in the tank.

● Neural Network—A neural network is a nonlinear function FNN of its
parameters β (the weights and biases) and the input:

jajpred ¼ FNNðβ; jajMNLSÞ: ð9Þ
The goal is to optimize β such that the mean squared error (MSE) of the
prediction and the true value of the envelope is minimized. We employ a
separate network for the time and frequency domain. For the time-domain
RNN, this cost function is simply defined as:

JðβÞ ¼ 1
N

∑
N

i¼1
ðFNNðβ; jajMNLSÞi � jajtrue;iÞ2 ¼

1
N

∑
N

i¼1
ðjajpred;i � jajtrue;iÞ2;

ð10Þ
where i the grid point, and N= nsteps × nt, the total number of grid points.
The definition for the frequency-domain network is the counterpart of eq.
(10) for jâj. To find the network parameters β that minimize the cost
function, J(β), the Adam stochastic gradient descent method with bounded
gradient is used. Details of the optimization include:

For this optimization problem, different network architectures can be
chosen for FNN. Our work employs an RNN, for which the weights of the
hidden states are updated based on the previous propagation step and
passed on to the next recursively. As such, RNNs are able to return an
output sequence, incorporating the memory of all the propagation steps in
the input sequence. This is crucial to detect breaking signatures along the
evolution. The main property of the finite-domain correction is that the
system evolves for several propagation steps, after which the correction is
applied. As a consequence, the correction uses information from future
propagation steps and is non-causal. To mediate the problems of vanishing
and exploding gradients that a fully-connected RNN would have, we
employ the long short-term memory (LSTM) method82.
The measurement data are divided into a training (80%), validation (15%),
and test (5%) set. The first is used to minimize eq. (10), the second to
evaluate performance after each training epoch (a complete pass through
the training set), and the latter is never used in the optimization process,
and only serves to validate the performance of the model.
Since wave breaking does not possess any conserved quantities for the
envelope evolution, no physical constraints can be added as either soft or
hard constraints.
As the time-vector is of length 512, consequently, the input and output layers
must consist of 512 units. The LSTM layer is connected to the input and
consists of 128 hidden units, followed by one dense, or fully-connected, layer
with 64 units. To promote generality, the dense layer has a dropout of 0.1,
meaning this fraction of neurons will be randomly turned off during training.
The dense layer is connected to the output layer. All layers have a leaky
rectified linear unit (ReLu) activation function. The resulting model has a total
of 369,728 parameters (degrees of freedom). Note that the architecture of the
LSTM layer stays the same for all propagation steps; more propagation steps
do not add more degrees of freedom.
Note that for prediction, the MNLS trajectory must have the same time and
propagation step as during training: Δξ= Δξtrain. Similarly for the time step

Δτ= Δτtrain. Finally, the network is trained on data normalized by the
maximum value of the initial condition.
The MNLS solver has periodic boundary conditions, therefore it is
equivariant to translations of the input in τ. To account for this in physical
space we add 40 random translations ntr 2 ½0; nt ¼ 512� of the input and
output vectors. Note that in frequency space, these shifts do not affect â.
Additional examples of these translated results are included in SI
section 2.2.

● MNLS+ FDML correction—Once the network is trained, MNLS+ FDML
model can be utilized as illustrated in figure Fig. 7d. While the network has
been trained on shorter segments, it can be used for longer, or arbitrary
propagation length, and on unseen data. Like the MNLS, an initial value or
deterministic wave-forecasting problem is solved. That is, for a given initial
condition at a position x0, one wants to know the evolution up to and
including a point x1. If the initial condition is a time-series measurement of
the surface elevation, the complex envelope a(x0, t) has to be obtained
using the Hilbert transform. Subsequently, the MNLS solver can be used to
propagate the solution forward to x1. Over this finite stretch of evolution,
the RNN applies a correction to the modulus of the time-domain envelope
amplitude, or on the frequency-domain envelope amplitude to correct for
breaking effects. Figures 1 and 2 show the entire propagation length
available in the tank merely because this offers the most extensive
comparison.

Data availability
The wave tank measurement data generated in this study have been deposited in the
Zenodo database under accession code https://zenodo.org/record/6326470.

Code availability
The code used in this study has been deposited in the Zenodo database under accession
code https://zenodo.org/record/6338618.
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