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Abstract 
 
In this paper, mass and momentum balances are used to model and simulate the most 
significant phenomena occurring in a continuous urban sludge clarifier. This model is 
designed to be the core of a digital twin in the future. This has two consequences: the 
choice of a one-dimensional model only and a numerical scheme for simulation that 
allows a reasonable runtime. We propose a different way of writing of the dynamic model 
of the clarifier. Instead of using volume fractions and velocity of solid particles as state 
variables, we use volume fractions and flux of solid particles. This approach, which is 
used for conservation law systems, gives more stable simulation results for hyperbolic 
systems. 
This paper focuses on comparative discussions of these two different versions of the 
model. The numerical simulation scheme is presented. In addition, the simulation is 
compared with experimental data obtained in a full-scale wastewater treatment plant. 
 
Keywords: Urban sludge continuous settling, Dynamic mass and momentum balances, 
nonlinear hyperbolic system, Rusanov numerical approximation 
 

1. Introduction 
 
The efficiency of wastewater treatment facilities is a worldwide major problem. Urban 
wastewater treatment plants are regulated by European directives, such as 91/271/EEC.  
The biological treatment unit of a treatment plant purifies wastewater before it is released 
into the natural environment by using a clarifier. The quality of the clarified water 
strongly depends on the instantaneous hydraulic loads arriving upstream, on the design 
of the equipment and on the operating conditions. The settling of the sludge in the clarifier 
enables the separation of more concentrated sludge that is pumped down and clarified 
water that is released up into the environment in an overflow. Thus, the quality of the 
plant effluent is highly dependent on the performance of the clarifier. In order to optimise 
its operation, modelling and simulation are the first steps to perform. 
 
In the literature, the modelling of clarifiers is obtained through mass and momentum 
balance equations for solid particles. The latter is written as a static or dynamic partial 
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differential equation (Chauchat (2013), Garrido (2003)) or replaced by a constitutive 
relation representing the velocity of solid particles (Li (2014)). In the case where the 
momentum balance is represented by a PDE, the global model is weakly hyperbolic and 
the position of the so-called sludge blanket corresponds to the front of a shock wave. This 
shock is related to a discontinuity in the solid particle volume fraction and a peak value 
in the flux. 
In this paper, we present two choices of state variables for the sludge settling modelling 
in a clarifier (Valentin (2022)) and discuss the simulation results with respect to 
experimental data. 

2. A 1-D schematic representation of the clarifier  
 
Fig. 1 shows a 1-D schematic representation of the clarifier. It is connected to the 
wastewater treatment process at three points, one inlet and two outlets: 
• one inlet where the sludge, consisting of fluid and particles, flows into the clarifier by 
gravity from the upstream biological aeration tank at the volume flow rate Qf(t) and with 
a particle concentration Cf(t). The sludge feed is situated at a depth of z = zf, 
• one top outlet for clarified water at z = 0, with a volume flow rate Qe(t) and particle 
concentration Ce(t), 
• one bottom outlet for compressed sludge at z = zb, with a volume flow rate Qu(t) and 
particle concentration Cu(t). Some of the compressed sludge is recirculated back into the 
aeration tank at a volume flow rate Qur(t) and some is extracted from the clarifier at a 
volume flow rate Que(t) such that Qu(t) = Qur(t) + Que(t). 
 

Figure 1: Schematic view of a clarifier 
 

 
A 1175 m2 

𝑨𝒌 0.02 m/s 
𝜺𝒄 4.1 10-2 
nr 2 
ns 11 
𝝆𝒍 1000 kg/m3 
𝝆𝒔 1030 kg/m3 
𝝈𝟎 0.5 kg/ms2 
zb 2.8 m 
zf 1.8 m 

 
Table 1: Model parameter values 

The open-air settler content can be divided into two moving interfaces separating three 
zones: 
• The upper interface is the sludge blanket, located at depth zv(t). It separates the 
clarification zone (which contains no or very few particles) from the intermediate zone, 
• The lower interface is defined by the intermediate/compression threshold and is located 
at depth zc(t) where a change in the particles behaviour occurs as the particle concentration 
Cs(z,t) exceeds the critical threshold Cc. Above this threshold, interparticle stress comes 
into effect. Under zc(t), the liquid phase flows through a porous network of concentrated 
particles, Toorman (1996). The model parameter values are given in Table 1. 
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3. A 1-D dynamic model of the clarifier 
 
The knowledge-based model includes two dynamic mass and momentum balances of 
urban sludge added with physical constitutive equations under standard simplifying 
assumptions, Valentin (2022). As the liquid and solid phase densities 𝜌 and 𝜌௦ are 
constant, the two most natural state variables are the particle volume fraction, 𝜀௦, and the 
particle flux, 𝑓௦ = 𝜀௦𝑣௦ with 𝑣௦ the particle velocity. The corresponding hyperbolic system 
of conservation laws is then defined, if 𝜀௦ > 0, by: 

                                                𝜕௧𝜀௦ + 𝜕௭𝑓௦ = 
𝑓ଵ௦

𝜌௦

 𝛿                                                    (1) 

  𝜕௧𝑓௦ + 𝜕௭ ቆ
𝑓௦

ଶ

𝜀௦

ቇ = 𝜀௦𝑔 ൬1 −
𝜌

𝜌௦

൰ −
𝜕௭𝜎(𝜀௦)

𝜌௦

+
𝑟(𝜀௦)(𝜀௦𝑣 − 𝑓௦)

𝜌௦𝜀௦(1 − 𝜀௦)
 +

𝑓ଶ௦

𝜌௦

 𝛿    (2) 

with 𝜎(𝜀௦) the interparticle stress between the particles, 𝑟(𝜀௦) the liquid/solid drag force 
and 𝑣  the average velocity of the liquid/solid mixture (also the total volume flux of the 
suspension). f1s and f21s are the source terms representing the sludge feed inlet in the 
particle mass and momentum balances equations respectively. They depend on Qf and Cf. 
 𝛿 is a Dirac function that represents the location of the sludge feed at 𝑧 = 𝑧. The two 

boundary conditions are 𝑣௦(0, 𝑡) = −
ொ


 and 𝑣௦(𝑧 , 𝑡) =

ொೠ


. 

 
Various kind of constitutive equations that describe the compression and drag phenomena 

have been proposed in the literature, Li (2014). 𝑟(𝜀௦) =
ఘ

ೖ
𝜀௦

ଶ
(ଷିೝ)ൗ  is proposed in 

Chauchat (2013) and the following 𝜎(𝜀௦) expression, that depends on the particle volume 

fraction, in Garrido (2003). If 𝜀௦ > 𝜀 (in the compression zone), 𝜎(𝜀௦) = 𝜎
ఌೞ

ೞିఌ
ೞ

ఌ
ೞ  else 

(in the two other zones), 𝜎(𝜀௦) = 0 (see Table 1).  𝜎(𝜀௦) is a continuous function on [0, 
zb] but its disadvantage is that it is zero over the upper part of the spatial domain which 
makes the system weakly hyperbolic only. 
 
Most of the papers in the literature present a model based on a dynamic particle mass 
balance with the state variable, 𝜀௦, coupled with a constitutive equation that gives the so-
called batch or hindered settling velocity (Garrido, 2003), (Li, 2014). This motivated us 
and others, Chauchat (2013), Valentin (2022) to use first the state variables (𝜀௦, 𝑣௦) 
according to the following hyperbolic system of two PDEs: 

                                              𝜕௧𝜀௦ + 𝜕௭(𝜀௦𝑣௦) = 
𝑓ଵ௦

𝜌௦

  𝛿                                                  (3) 
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  𝛿     (4) 

This representation is based on the temporal and spatial derivatives of products such as 
𝜀௦𝑣௦. As shock waves appear on the two state variables, such product derivatives may 
lead to mathematical problems. Moreover, the difficulty of numerically solving the model 
based on the state variables (𝜀௦, 𝑣௦) and the oscillations obtained on the spatial profiles of 
the velocity 𝑣௦ led us to return to the more "natural" state variables that correspond to 
those used in the so-called conservative approach, the particle volume fraction, 𝜀௦, and 
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the particle flux, 𝑓௦ =  𝜀௦𝑣௦ (equations (1) and (2)) and to include the interparticle stress 
in the flux. 

4. Numerical discretization scheme 
 

The simulations were carried out using explicit Euler time-discretization and an efficient 
numerical scheme adapted to hyperbolic and weakly hyperbolic nonlinear PDE systems: 
a finite volume method spatial-discretization with the Rusanov approximation of the 
fluxes (Godlewski (1996), LeVeque (2002)). 

The state variable vector 𝑥  and the flux vector 𝐹௦(𝑥) are defined if 𝜀௦ > 0 by 𝑥 = ቀ
𝜀௦

𝑓௦
ቁ 

and 𝐹௦(𝑥) = ൭
𝑓௦

ೞ
మ

ఌೞ
+

ఙ(ఌೞ)

ఘೞ

൱. The state variables are considered as uniform in each volume 

i of the mesh and equal to the average values �̅�
 at time step k. 

For time step k and volume i, the flux at the input interface 𝑖 −
ଵ

ଶ
 is approximated by: 

 
with 𝜔௦

 = 𝑚𝑎𝑥


(𝜌
), 𝜌

  the spectral radius of the volume i which depends on �̅�
.  

Then: 

 
where we assume that 𝑆ଵ(�̅�) is a good approximation of   

 
and that the variable time-step ∆𝑡 respects the CFL (Courant-Friedrichs-Lewy) condition: 

∆𝑡 =  𝛾 
∆௭

ఠೞ
ೖ  with 0 < 𝛾 < 1. As 𝜎(𝜀௦) = 0  in the clarification and intermediate zones, 

the system is only weakly hyperbolic. 

5. Simulation of a transient state experiment of continuous settling 
 

The model simulation is compared to experimental data obtained in a full-scale settler 
operated under the following transient state scenario (Fig.3): the sludge feed rate was 
abruptly increased by a magnitude of two from a value corresponding to a stationary 
profile at 𝑡 =  1.40 𝑎𝑚 (660 m3/h) and abruptly decreased 8 hrs later (370 m3/h). The 
flow rates and concentrations at the sludge inlet and outlet were measured on-line as well 
as the sludge blanket position. 
 
Simulations based on this model were performed with various discretization parameters such 
as spatial mesh size, convergence condition (Courant-Friedrichs-Lewy). They are compared 
to the experimental data. Measured sludge feed flow rate, Qf (t), recirculation flow rate, 
Qur(t) and extraction flow rate, Que(t) as well their mean values are given in Fig.3. 
 
An N-node spatial mesh was used to run the simulations of the discretized model 
presented in section 4. with the constitutive equations and boundary conditions given in 
section 3. 

𝐹
ି

ଵ
ଶ

 =
1

2
൫𝐹௦

(�̅�ିଵ + 𝐹௦
(�̅�)൯ −

𝜔௦


2
൫�̅�

 − �̅�ିଵ
 ൯ 

�̅�
ାଵ = �̅�

 +
∆𝑡

∆𝑧
(𝐹

ି
ଵ
ଶ

(�̅�, 𝑡) − 𝐹
ା

ଵ
ଶ

(�̅�, 𝑡)) + ∆𝑡(𝑆ଵ(�̅�) + 𝑆ଶ) 

1

∆𝑧
න 𝑆ଵ(𝑥)𝑑𝑧

ାଵ/ଶ

ିଵ/ଶ

 



5 

 
Figure 3: Applied flow rates 

 
The calculated sludge blanket position zv(t) corresponds to the location where the 
maximum gradient of the solid concentration is reached. Fig 4.a shows that the simulated 
and measured sludge blankets positions are very close. 
 

 

  
Figure 4: Simulated zv(t) and  𝐶௦(z), vs(z), fs(z) spatial profiles (N=200) 

 
Five spatial profiles at t1, t2, t3, t4 and t5 are shown in Fig 4.b to Fig 4.d. Fig 4.b presents 
particle concentration spatial profiles. The particle concentration at the top of the clarifier 
(z=0) is close to zero. It increases sharply at the depth of the sludge blanket and then 
increases more moderately to the bottom as soon as the critical threshold is exceeded. The 
effect of the interparticle stress below the critical threshold is also well highlighted. 
Spatial profiles vs(𝑧) and fs(𝑧) are shown in Fig. 4.c and Fig. 4.d. The shock wave is also 
clearly visible at the "peak" location. The particle velocity at the bottom of the settler 
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vs(𝑧) is very low compared to the velocity at the sludge blanket position, 5.3 10-4 m/s, 
and is set by the Qu flow rate. 
 
Good results are obtained with this numerical scheme for a mesh size of up to 800 
volumes and 𝛾 = 0.99 in the CFL condition. Choosing a lower 𝛾 value gives the same 
results but with a longer runtime due to a smaller ∆𝑡. The runtime of a simulation with 
200 volumes on a workstation equipped with an Intel Xeon at 3.8GHz is 8 min 15 s. 
According to the nature of the numerical scheme, the runtime with N = 800 is 16 times 
longer that makes 2 hrs 12 min. Although the simulation gives good results with N = 800 
with less numerical diffusion, as this model will be the core of a decision support system 
and then a digital twin, a compromise must be decided. A spatial discretization of N = 
200 seems suitable.  

6. Conclusions 
As a conclusion, the well-suited conservative state variables are the volume fraction and 
the volume flux of the solid particles. The expression of the momentum balance includes 
the compression stress between the particles based on a nonlinear constitutive law taken 
from Garrido (2003). A numerical scheme with explicit Euler time-discretization and a 
finite volume method spatial-discretization with the Rusanov approximation of the fluxes 
works well. The simulation results are close to experimental results by using a set of well-
chosen parameter values. It can be used for prediction and decision support for other 
scenarios of operation. The runtime with a spatial mesh of 100 volumes is still about 2 
min 4 s on a workstation equipped with Intel Xeon at 3.8GHz, which may be a limitation 
of this approach. 
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