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REVIEW SPECIAL ISSUE: THE RAS PATHWAY

RAS pathway regulation in melanoma
Amira Al Mahi and Julien Ablain*

ABSTRACT
Activating mutations in RAS genes are the most common genetic
driver of human cancers. Yet, drugging this small GTPase has proven
extremely challenging and therapeutic strategies targeting these
recurrent alterations have long had limited success. To circumvent
this difficulty, research has focused on the molecular dissection of the
RAS pathway to gain a more-precise mechanistic understanding of
its regulation, with the hope to identify new pharmacological
approaches. Here, we review the current knowledge on the
(dys)regulation of the RAS pathway, using melanoma as a
paradigm. We first present a map of the main proteins involved in
the RAS pathway, highlighting recent insights into their molecular
roles and diverse mechanisms of regulation. We then overview
genetic data pertaining to RAS pathway alterations in melanoma,
along with insight into other cancers, that inform the biological
function of members of the pathway. Finally, we describe the clinical
implications of RAS pathway dysregulation in melanoma, discuss
past and current approaches aimed at drugging the RAS pathway,
and outline future opportunities for therapeutic development.

KEYWORDS: Cancer genetics, Melanoma, RAS pathway, Signaling,
Targeted therapies

Introduction
RAS proteins are small GTPases that can adopt either of two
conformations: an inactive GDP-bound state or an active GTP-
bound state (Bourne et al., 1990). The activation status switches via
guanine nucleotide exchange, with GTP hydrolysis reverting to the
inactive GDP-bound conformation. This switch is tightly controlled
by multiple regulators and involves profound conformational
changes in the switch I and switch II regions of the highly
conserved catalytic G-domain (Milburn et al., 1990) (Fig. 1). The
C-terminal domain of RAS proteins comprises a hypervariable
region (HVR) that differs between isoforms and is essential for their
association with the plasma membrane (Willumsen et al., 1984).
Over 150 RAS genes have been identified in mammalian genomes
(Goitre et al., 2014; Wennerberg et al., 2005). Among these, the
most studied are KRAS (Kristen-RAS) (Der et al., 1982), HRAS
(Harvey-RAS) (Parada et al., 1982; Santos et al., 1982) and NRAS
(neuroblastoma-RAS) (Hall et al., 1983; Shimizu et al., 1983).
KRAS and HRAS were initially identified in cancer cells as the
human orthologs of those proto-oncogenes responsible for the
initiation of sarcoma in rats infected with two cancer-causing

viruses, while NRASwas discovered shortly after by homology with
KRAS and HRAS (Malumbres and Barbacid, 2003). The RAS
proteins regulate cellular responses to growth factors by activating
multiple molecular cascades that transduce signals from the
membrane to the nucleus and, thus, have crucial roles in many
biological processes, including cell proliferation, differentiation,
migration and apoptosis (Campbell et al., 1998).

More than 30% of all human cancers harbor oncogenic mutations
in RAS genes (Hobbs et al., 2016). In melanoma, an aggressive
form of skin cancer caused by the malignant transformation of
melanocytes (Box 1, Glossary), almost 100% of tumors exhibit at
least one genetic lesion in a RAS pathway regulator (Schadendorf
et al., 2015). For over 40 years, research has been deciphering the
molecular mechanisms of RAS regulation, with the goal of
translating this knowledge into new treatment strategies that
benefit patients with cancer. Recently, tremendous progress in
basic science and clinical care has established melanoma as the
exemplar of tumors driven by aberrant, but therapeutically
targetable, RAS pathway activation. Here, we review the
mechanisms of RAS pathway regulation, the genetic basis of
RAS pathway dysregulation and the therapeutic approaches that
target this pathway by using melanoma as a paradigm.

Molecular definition and regulation of the RAS pathway
Activators and negative regulators of RAS
The RAS pathway can be activated at the cell membrane by receptor
tyrosine kinases (RTKs; Box 1) in response to growth factors
(Fig. 2A). Ligand binding stimulates enzymatic activity of the RTK
and results in its autophosphorylation (Heldin, 1995), which allows
binding to adaptor proteins, such as growth factor receptor-bound
protein 2 (GRB2) (Lowenstein et al., 1992). GRB2 is then able to
recruit guanine exchange factors (GEFs) (Egan et al., 1993; Li et al.,
1993) to catalyze the switch from the inactive GDP-bound form to
the active GTP-bound conformation of RAS (Bos et al., 2007)
(Fig. 2B). In mammals, the main RAS-GEFs are son of sevenless
homolog 1 and 2 (SOS1 and SOS2, respectively) (Bowtell et al.,
1992).

Unlike GEFs, GTPase-activating proteins (GAPs) catalyze the
hydrolysis of GTP by RAS, as RAS itself has low intrinsic GTPase
activity (Hunter et al., 2015). This results in RAS inactivation
(Fig. 2B). Neurofibromin 1 (NF1; Box 1) is the first-identified and
most-studied RAS-GAP in humans (Ballester et al., 1990; Martin
et al., 1990; Xu et al., 1990a,b). Inactivation of NF1 reduces the rate
of GTP hydrolysis by RAS to negligible levels, thus increasing the
proportion of GTP-bound RAS and leading to the hyperactivation
of the pathway (Basu et al., 1992; Bollag et al., 1996; DeClue et al.,
1992).

Interestingly, the RAS-inactivating function of NF1 depends on
its translocation to the plasma membrane, which is facilitated by
sprouty-related EVH1-domain-containing 1 (SPRED1; Box 1)
(Stowe et al., 2012), another negative regulator of RAS activity
(Wakioka et al., 2001) (Fig. 2A). Recent functional studies and
structural data have brought new insights to the molecular regulation
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of RAS through NF1 and SPRED1, by demonstrating that SPRED1
binds to the GAP-related domain of NF1 without disturbing NF1
binding to RAS (Hirata et al., 2016; Yan et al., 2020). Although
several other GAPs have been identified, NF1 appears to be the
main direct negative regulator of RAS. Moreover, the variety of
RAS regulators underscores the complexity of the RAS pathway
regulatory network.

Downstream effectors and their biological functions
RAS regulates several signaling pathways. The mitogen-activated
protein kinase (MAPK) pathway is arguably the most-studied
effector of RAS activity. It transduces RAS signals from the cell
membrane to the nucleus via a phosphorylation cascade, eventually,
recruiting transcription factors to activate specific sets of target
genes (Fig. 2A). The first direct target of RAS identified was
the serine-threonine-specific protein kinase RAF (Warne et al.,
1993; Zhang et al., 1993). There are three homologues of RAF
protein: ARAF, BRAF and CRAF (officially known as RAF1). In
the presence of growth factors, GTP-bound RAS allosterically
activates RAFs (Chuang et al., 1994), while RAFs are
simultaneously phosphorylated by other kinases (Fig. 2A).
Activated RAFs can then phosphorylate and activate two
members of the mitogen-activated protein kinase kinase
(MAP2K) family, i.e. MEK1 and MEK2 (officially known as
MAP2K1 and MAP2K2, respectively; hereafter referred to as
MEK) (Gardner et al., 1994) that, in turn, phosphorylate and
activate two members of the mitogen-activated protein kinase
(MAPK) family, i.e. ERK1 and ERK2 (officially known asMAPK3
and MAPK1, respectively but, hereafter, referred to as ERK)
(Fig. 2A). Active ERK can translocate to the nucleus or
phosphorylate its substrates directly in the cytoplasm, of which
hundreds have been identified (Ünal et al., 2017) (Fig. 2A). ERK
signaling regulates a wide range of biological processes, such as
cell cycle progression (Monje et al., 2005) and proliferation (Sears
et al., 2000), which signifies the expansive impact of the RAS
pathway. In particular, microphthalmia-associated transcription
factor (MITF), a master regulator of melanocyte differentiation,
represents an important downstream target of the MAPK pathway in
the context of melanoma (Wellbrock and Arozarena, 2015), as
its transcriptional activity and protein turnover are modulated by
ERK or ERK effectors through post-translational modifications,
such as phosphorylation, SUMOylation and ubiquitylation
(Hemesath et al., 1998; Wu et al., 2000).
Another well-known effect of RAS is exercised via the

phosphoinositide 3-kinase (PI3K) pathway (Sjolander et al., 1991)
(Fig. 2A). PI3Ks are a family of lipid kinases and are activated by

GTP-bound RAS, initiating a series of phosphorylation events that
regulate several signaling proteins, including the serine-threonine
protein kinases AKT1, 2 and 3 (hereafter referred to as AKT)
(Fig. 2A). AKT phosphorylates many different substrates (Alessi
et al., 1996), leading, in particular, to degradation of TP53 (Zhou
et al., 2001) and the inhibition of various pro-apoptotic proteins
(Brunet et al., 1999), thus blocking apoptosis. In addition, AKT
triggers a cascade of events resulting in the activation of the
mechanistic target of rapamycin (mTOR), a major regulatory hub
for translation and growth (Chung et al., 1992; Navé et al., 1999)
(Fig. 2A). Interestingly, the phosphatase and tensin homolog
(PTEN), which represses a phosphorylation step downstream of
PI3Ks, is a major melanoma tumor suppressor (Li et al., 1997).
Many other effectors of RAS activation have been reported (Khan
et al., 2019); however, by focusing on the MAPK and PI3K
pathways alone, it is evident that RAS controls multiple cellular
processes, including cell proliferation and growth, cell survival and
apoptosis as well as angiogenesis and cell migration, dysregulation
of which can lead to malignant transformation.

Regulatory feedback loops
Owing to its crucial importance in essential cellular processes, the
RAS pathway is tightly regulated. Multiple feedback loops fine-tune
its level of activation (Fig. 2A). It was first noticed that activation
of the RAS pathway upon growth factor receptor stimulation is
transient despite continuous presence of a ligand. Deactivation of
the pathway has been linked to a negative feedback loop, involving
phosphorylation of SOS1 and SOS2 by ERK and subsequent
dissociation of the GRB2–SOS1/2 complex (Cherniack et al., 1995;
Waters et al., 1995). Direct phosphorylation of RAF by ERK has
also been proposed to disrupt the RAS/RAF interaction, thus
inhibiting further pathway activation (Dougherty et al., 2005)
(Fig. 2A).

In addition, several direct RAS regulators are transcriptionally
controlled through the MAPK pathway itself. Indeed, a study
investigating the immediate changes in gene expression upon
MEK inhibition within melanoma cell lines with hyperactive
MAPK signaling, identified several members of the dual specificity
phosphatase (DUSP), sprouty RTK-signaling antagonist
(SPROUTY; Box 1) and sprouty-related EVH1 domain
containing (SPRED) families, namely DUSP4, DUSP6, SPRY2,
SPRY4 and SPRED2, as drastically downregulated (Pratilas et al.,
2009) (Fig. 2A). DUSPs comprise a large family of phosphatases
that dephosphorylate phosphorylated tyrosine (Y), serine (S) or
threonine (T) residues. A subset of them is involved in the MAPK
pathway. DUSP5 and DUSP6, for example, dephosphorylate ERK

G domain

P-loop Switch I Switch II

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

HVR

KeyQ61G12 G13

Effector binding GTP binding Mg2+/nucleotide binding RAS mutation hot spots

Fig. 1. RAS structure and functional domains. The 164 N-terminal residues constitute theG domain, which is involved in GTP binding, effector interactions and
Mg2+/nucleotide binding. Its Switch I and Switch II regions (aa 30-38 and 60-67, respectively) mediate protein interactions, and the P-loop region (aa 1-17) binds
phosphate groups. The C-terminal end corresponds to the hypervariable region (HVR) of RAS, containing sequences that interact with the membrane. Indicated
are amino acid positions G12, G13 and Q61 that are frequently mutated in cancer (G12D, G12V, G12C, G13D and Q61R), and account for 70% of all RAS
mutants in patients (Prior et al., 2020).
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in the nucleus and the cytoplasm, respectively, thus terminating the
pathway (Karlsson et al., 2004; Kidger et al., 2017). SPROUTYs
have initially been identified in Drosophila as repressors of FGF
signaling (Hacohen et al., 1998) and, later, as negative regulators of
the RAS pathway, preventing the activation of the GRB2–SOS1/2
complex and inhibiting RAS-induced activation of RAFs (Hanafusa
et al., 2002; Yusoff et al., 2002). In addition to the transcriptional
upregulation of SPROUTY family members by RAS pathway
effectors, their RTK-induced phosphorylation seems crucial for
their binding to GRB2, suggesting the existence of multiple RAS-
mediated ways to activate SPROUTY proteins. Finally, SPRED
proteins facilitate NF1-mediated inhibition of RAS. In human
melanoma cell lines, SPRED1 levels are modulated via the RAS
pathway, suggestive of a negative feedback loop similar to that

regarding SPROUTY proteins (Ablain et al., 2021). All these
feedback mechanisms form a network that plays a crucial role in
controlling the intensity and duration of RAS pathway signaling,
and their importance in cell homeostasis is highlighted by their
frequent inactivation in cancer (Courtois-Cox et al., 2006).

Regulation of cellular localization
In addition to protein–protein interactions, the cellular localization
of RAS pathway members modulates the activity of the pathway
and influences its output (Fig. 3). For instance, the shuttling of
phosphorylated ERK in and out of the nucleus is tightly controlled.
MEK1 and MEK2 contain a nuclear export signal that keeps the
MEK/ERK complex in the cytoplasm in the absence of RAS/
MAPK pathway stimulation (Fukuda et al., 1997a) (Fig. 3A). Upon
pathway activation, MEK phosphorylates ERK, which dissociates
the MEK–ERK complex, then allowing ERK to interact with
nuclear pores and reach the nucleus (Matsubayashi et al., 2001;
Whitehurst et al., 2002) (Fig. 3A). After inactivation of the pathway,
the export of dephosphorylated ERK from the nucleus also seems to
depend on MEK (Fukuda et al., 1997b). Another proposed
mechanism involves the scaffold protein PEA15 that sequesters
ERK in the cytoplasm by preventing its interaction with
nucleoporins, thus modulating the phosphorylation of ERK
substrates and interfering with downstream signaling
(Formstecher et al., 2001; Whitehurst et al., 2004) (Fig. 3A).

Another illustration of the importance of cellular localization in
the regulation of RAS pathway activity is the membrane tethering of
RAS and its direct interactors. In order to be active, RAS proteins
need anchorage to the membrane, which requires post-translational
modifications of the short HVR in their C-terminus (Willumsen
et al., 1984). One example is isoprenylation, an irreversible lipidic
modification that consists of the addition of a fatty acid chain, such as
a farnesyl or a geranylgeranyl group (Hancock et al., 1989) (Fig. 3B).
This is performed by either farnesyl transferase or geranylgeranyl
prenyltransferase (Zhang and Casey, 1996) (Fig. 3B).

Interestingly, activity of NF1 also depends on its membrane
localization. NF1 does not contain anymembrane-associated domain
and, therefore, relies on its interaction with SPRED1 to localize to the
membrane and achieve physical proximity with RAS (Fig. 3B).
Indeed, the cysteine-rich SPROUTY-related domain of SPRED1,
which is responsible for its membrane association (Lim et al., 2002),
is also required for NF1 targeting to the plasma membrane and for
NF1-mediated repression of RAS activity (Stowe et al., 2012).
Membrane tethering of the RAS–NF1–SPRED1 complex, the
structure of which was recently resolved (Yan et al., 2020), is thus
emerging as a key mechanism for pathway regulation. The local
concentrations of RAS, GEFs and GAPs at the plasma membrane
may, indeed, facilitate guanine exchange and switch of RAS activity,
thus increasing the responsiveness of the pathway to input signals.

Clinical manifestation of RAS pathway alterations
RAS mutations in cancer
RAS genes are mutated in close to a third of all human cancers
(Hobbs et al., 2016) and, in some tumor types, they even represent
the main oncogenic driver (Fig. 4). For example, activating
mutations in KRAS have been reported in 60–90% of pancreatic
cancer cases (Bailey et al., 2016; Zehir et al., 2017), whereas in
colorectal and lung cancers, they are fond in 30–50% of tumors
(Campbell et al., 2016; Yaeger et al., 2018). NRAS is mutated in
∼30% of melanomas (Akbani et al., 2015; Hodis et al., 2012).

KRAS is most frequently altered on glycine at position 12
(Fig. 1), which prevents proper interaction with GAPs and, thus,

Box 1. Glossary
Acral melanoma: a rare subtype of melanoma that develops in the skin
of palms and soles (Basurto-Lozada et al., 2021).
Benign nevus (commonly known as mole): a common circumscribed
skin lesion due to a local proliferation of melanocytes. Benign nevi often
harbor BRAF mutations but only rarely progress to melanoma.
Cutaneous melanoma: an aggressive form of skin cancer that arises
from the malignant transformation of skin melanocytes.
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4): an example
of an immune checkpoint (Tivol et al., 1995; Waterhouse et al., 1995).
Immune checkpoints: pathways that regulate the immune system. They
play a crucial role in self-tolerance by inhibiting the cytotoxic activity of T-
cells.
Immunotherapy: blocks immune checkpoints to reactivate anti-tumor
immunity. This can be used against certain cancer cells that activate
immune checkpoints to escape immune surveillance.
Melanocyte: cell that produces the melanin pigment. Melanocytes are
located in the bottom layer of the skin epidermis, as well as in the eye and
in epithelial layers lining various internal organs.
Mucosal melanoma: arises from melanocytes of mucosal epithelia
lining oronasal, anorectal and vulvovaginal cavities (Postow et al., 2012).
Neurofibromin (NF1): a major RAS-GAP. The GAP-related domain
located in the center of the NF1 protein contains the catalytic site and the
RAS-binding region that interacts with RAS switch regions I and II
(Scheffzek et al., 1997). NF1 cellular distribution appears mainly
cytoplasmic and requires binding to SPRED1 to reach the plasma
membrane where active RAS is located (Stowe et al., 2012).
Programmed cell death protein 1/ programmed cell death 1 ligand 1
(PDCD1/CD274, also known as PD-1/PD-L1): an example of an
immune checkpoint (Dong et al., 1999; Freeman et al., 2000).
Receptor tyrosine kinases (RTKs): a class of cell-surface receptors for
growth factors, cytokines and hormones. They initiate intracellular
signaling cascades by phosphorylating one or several substrates upon
ligand binding. Examples of RTKs include the stem cell factor receptor
KIT, the epidermal growth factor receptor (EGFR), the platelet-derived
growth factor receptor (PDGFR) or the insulin-like growth factor 1
receptor (IGF1R).
SPRED1: sprouty-related EVH1 domain containing 1, initially discovered
as a repressor of RAS signaling (Wakioka et al., 2001). It contains an N-
terminal EVH1 domain, a central KIT binding domain and a C-terminal
SPROUTY-related domain. The SPROUTY-related domain of SPRED1
is involved in membrane anchorage, whereas the EVH1 domain binds to
the GAP-related domain of NF1.
SPROUTY: family of proteins that inhibit the RAS/MAPK pathway as a
feedback loop, comprising SPRY1, SPRY2, SPRY3, SPRY4. These
proteins contain a conserved, C-terminal cysteine-rich region, called the
SPROUTY domain that promotes their membrane anchorage.
Uveal melanoma (also called ocular melanoma): malignant
transformation of melanocytes that are present in the part of the eye
known as the uvea. The uvea comprises the iris, ciliary body and choroid
(Jager et al., 2020).
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inhibits GTP hydrolysis and inactivation (Scheffzek et al., 1997).
Although the three RAS genes are extremely similar in both
sequence and protein structure – and despite them sharing
oncogenic properties – their functions, as assessed in knockout
mouse models, do not entirely overlap (Table 1). For example,
mutant NRAS failed to recapitulate the oncogenic effect of mutant
KRAS in mouse colonic epithelium (Haigis et al., 2008).
Furthermore, KRAS is the most-expressed RAS gene in mouse
tissues (Newlaczyl et al., 2017) and the only one that is embryonic
lethal when knocked out (Koera et al., 1997) (Table 1). Although
the exact reasons for the apparent tissue specificity of the different

RAS oncogenes remain obscure, these observations suggest that
KRAS is the functionally dominant RAS gene in many tissues and
might explain why it is the most frequently mutated in human
cancers. It is likely that future therapeutic strategies against RAS-
driven tumors will need to be adapted to the specificities and even
the type of mutations of each RAS gene.

RAS pathway alterations in cutaneous melanoma
Melanoma is a disease of aberrant RAS pathway activation.
Virtually all human melanomas exhibit at least one genetic lesion
causing RAS pathway hyperactivation that drives oncogenic
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Fig. 2. The RAS pathway. (A) Growth factor binding to RTKs, such as stem cell factor receptor (KIT), epidermal growth factor receptor (EGFR) or platelet-derived
growth factor receptor (PDGFR), leads to receptor autophosphorylation and recruitment of the adaptor protein growth factor receptor bound 2 (GRB2). In turn,
GRB2 recruits the guanine exchange factor SOS1/2, activating RAS. Amain effector of the RAS pathway is the RAF/MEK/ERK (MAPK) cascade that leads to the
transcription of different target genes (e.g. FOS, MYC, MDM2, MITF) implicated in cell proliferation, survival and cell cycle progression. The PI3K/AKT/mTOR
(PI3K) pathway is another important effector of active RAS, promoting cell growth and implicated in melanoma development. Gray lines represent regulatory
feedback loops. These include direct phosphorylation of SOS1/2 and RAFs by ERK, leading to dissociation of GRB2–SOS1/2 and RAS–RAF complexes,
respectively, as well as the transcriptional induction of negative regulators, such as members of the DUSP, SPROUTY and SPRED families, i.e. DUSP4, DUSP5,
DUSP6, SPRY1, SPRY2, SPRY3, SPRY4, SPRED1 and SPRED2. P, phosphate; SPRY, sprouty RTK signaling antagonists 1,2, 3 and 4. (B) Regulation of RAS
activity by guanine nucleotide exchange factors (GEFs), such as SOS1 or 2, and GTPase-activating proteins (GAPs), such as NF1. GEFs stimulate the formation
of the GTP-bound active state, whereas GAPs catalyze GTP hydrolysis and favor reverting to the GDP-bound inactive state.
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transformation and sustains cancer growth (Cohen et al., 2002). It is
important to distinguish between the different melanoma subtypes,
as their driving genetic alterations differ (Hayward et al., 2017). In
cutaneous melanoma (Box 1), the most frequently mutated driver
gene is the RAS effector BRAF (Berger et al., 2012; Hodis et al.,
2012; Krauthammer et al., 2012), which is altered in 50% of cases
(Table 2). Class I BRAF mutations, affecting valine (V) at position
600, account for 80% of alterations and confer constitutive kinase
activity to the BRAF monomer, which becomes independent of
upstream RAS-signaling (Davies et al., 2002; Wan et al., 2004).
Other mutations that affect different residues of BRAF protein were
categorized by the group of Neil Rosen as class II mutants allowing
BRAF to signal as a dimer independently of RAS activity (Yao
et al., 2015), and class III mutants that display low kinase activity
but bind to RAS and CRAF more tightly and, thus, amplify RAS
downstream signaling (Heidorn et al., 2010; Wan et al., 2004; Yao
et al., 2017). Rare gene fusions implicating the BRAF gene have also
been reported (Hayward et al., 2017; Palanisamy et al., 2010).
Interestingly, BRAF mutations have also been detected in other
tumor types including colorectal and brain cancers (Davies et al.,
2002). The prevalence of BRAS mutations at V600 in melanoma
has prompted the development of inhibitors specifically directed
against these mutants (Bollag et al., 2010), but small molecules
targeting other mutant classes have also recently been identified
(Yao et al., 2019).
NRAS is mutated in ∼30% of cutaneous melanomas (Akbani

et al., 2015) (Fig. 4), mostly at the Q61 residue in the switch II
region (Fig. 1) that abolishes RAS GTPase activity and, thus, results
in constitutive activation. Mutations in the other RAS genes KRAS
and HRAS are much rarer, occurring in 3% and 2% of cutaneous
melanoma, respectively.
The third major oncogenic lesion in melanoma affects the tumor

suppressor NF1. Loss-of-function alterations of NF1 are present in
almost 20% of melanomas and include missense or truncating
mutations as well as chromosomal deletions (Akbani et al., 2015;
Krauthammer et al., 2015). These lesions abolish the RAS-GAP

catalytic activity of NF1, leading to constitutive RAS activation.
Importantly, another RAS-GAP, Ras GTPase-activating protein 2
(RASA2), is inactivated in a significant proportion of melanoma
(Arafeh et al., 2015). Finally, chromosomal amplifications or
activating mutations of the receptor tyrosine kinase KIT are found in
5–10% of cutaneous melanomas and confer independence from
external growth factors, thus representing the most-upstream source
of RAS pathway hyperactivation.

Overall, alterations in BRAF, NRAS, NF1 and KIT are present in
93% of human cutaneous melanomas in a mutually exclusive
pattern, although a small fraction of tumors harbor alterations in
several of these genes (Akbani et al., 2015; Hayward et al., 2017;
Hodis et al., 2012) (Table 2). These data reinforce the idea that
activation of the RAS/MAPK pathway constitutes the driving
oncogenic force in this tumor type. This idea is also supported by
strong experimental evidence in genetically engineered animal
models that recapitulate in vivo the genetics of human melanoma
(Table 1). RAS pathway regulators are highly conserved between
vertebrate species and, in these models, expression of mutant BRAF
or NRAS under the control of a melanocyte-specific promoter
induces the formation of benign nevi (Box 1), as it does in humans.
However, these mutations only initiate melanoma when combined
with inactivation of a tumor suppressor gene, such as CDKN2A,
PTEN or TP53 (Ackermann et al., 2005; Dankort et al., 2009;
Dhomen et al., 2009; Dovey et al., 2009; Patton et al., 2005). A
genomic classification of cutaneous melanoma was proposed on the
basis of these observations, upon the release of sequencing data
from hundreds of human melanoma samples by The Cancer
Genome Atlas (TCGA) consortium, and four groups were thus
defined, i.e. BRAF-mutant, NRAS-mutant, NF1-mutant, and triple
wild-type (WT) group (Akbani et al., 2015). The latter represents
<10% of melanomas and includes KIT-driven tumors. It is likely
that triple-WT tumors also rely on hyperactive RAS/MAPK, but
their drivers are less-common members of this pathway, not known
to play a role in cancer or might be RAS pathway regulators that
have not yet been discovered. Indeed, mutations in other RAS
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Fig. 3. The RAS pathway – regulation of its cellular localization. (A) MEKs contain a nuclear export signal that keeps the MEK–ERK complex within the
cytoplasm if the RAS/MAPK pathway has not been activated. Upon pathway activation, ERK is phosphorylated by MEK, which leads to the dissociation of the
complex, allowing ERK to translocate to the nucleus and to interact with substrates. The scaffold protein PEA15 can also sequester ERK in the cytoplasm by
preventing its interaction with nucleoporins. Dephosphorylation of nuclear ERK by DUSPs mediates its translocation back to the cytoplasm. (B) RAS requires
membrane localization to be active. Addition of a farnesyl or a geranylgeranyl group to its hypervariable region (HVR) by farnesyl transferase or geranylgeranyl
prenyltransferase, respectively, facilitates RAS membrane anchorage. In order to implement its RAS-GAP activity and to downregulate RAS, NF1 requires
interaction with SPRED1 and localization to the membrane, thereby achieving physical proximity with RAS.
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pathway genes, such as the upstream regulators SOS1, SOS2, GRB2
and PTPN11 (also known as SHP2) and in genes encoding
downstream effectors MEK1/2 and ERK1/2, can be detected in
≤5% of cutaneous melanomas. A more-complete characterization
of these minor alterations would not only expand our knowledge of
RAS pathway regulation but might also reveal new opportunities for
innovative treatment strategies against the non-BRAF mutant
genetic subtypes of melanoma, for which there are currently no
targeted therapy options.

RAS pathway alterations in rare melanoma subtypes
The proportions of genetic alterations in members of the RAS
pathway vary between cutaneous melanoma and rare melanoma
subtypes, such as uveal, mucosal and acral melanoma (Box 1),
which account for a small percentage of all melanomas (Alicea and
Rebecca, 2021) (Table 2). Uveal melanoma (Box 1) has radically
different genetic causes compared to cutaneous melanoma because
mutations in BRAF or NRAS are exceedingly rare. Instead, >90% of
uveal melanoma harbor oncogenic driver mutations in GNA11 or
GNAQ, two genes encoding G proteins that can directly activate the
MAPK pathway (Johansson et al., 2020; Van Raamsdonk et al.,
2009) (Table 2).

As mucosal and acral melanoma arise from areas of the body that
are rarely exposed to sunlight, their mechanisms of tumorigenesis
are different from those leading to cutaneous melanoma. Therefore,
the genetic landscape of these tumors is characterized by a lower
mutation burden and the absence of UV-induced DNA-damage
signatures. However, mucosal and acral melanoma display more
copy-number alterations and complex chromosomal rearrangements
compared to cutaneous melanoma (Hayward et al., 2017). BRAF
mutations are less common in these subtypes – apart from class III
mutants that potentiate tighter binding to RAS and CRAF, which are
more prevalent in acral and mucosal melanoma (Box 1) than in
cutaneous melanoma. Interestingly, alterations in upstream
regulators of the RAS pathway, such as activation of KIT, are also
more prevalent (Ablain et al., 2018; Liang et al., 2017; Newell et al.,
2019, 2020) (Table 2). Our own group recently discovered that the
negative regulator of RAS, SPRED1, is a major tumor-suppressor
gene deleted in >26% of mucosal melanomas (Ablain et al., 2018).
Although mutations in SPRED1 and KIT are relatively weaker
activators of the RAS pathway compared to the BRAFV600E or
NRASQ61R mutants, they frequently occur together to drive mucosal
melanoma (Ablain et al., 2018). Since neither BRAFV600E nor
NRASQ61R are induced by UV light, it is still unclear whether the
genetic differences between melanoma subtypes reflect different
modes of mutational acquisition or depend on the nature and/or
environment of the melanocyte population. Owing to the relative
rarity of some of these subtypes, the genetic landscapes of acral and,
to a lesser extent, mucosal melanoma are still incompletely defined.
However, recently launched initiatives will provide a more-precise
and thorough description of RAS pathway alterations in these
tumors, with the possibility of unconventional RAS pathway
regulators, perhaps those associated with developmental disorders
rather than cancer (see Box 2), being identified as new oncogenic
drivers.

Treating RAS pathway-driven cancer
In the past 15 years, the prognosis of patients with melanoma has
radically changed. In the early 2000s, although localized lesions
could be surgically removed with a cure rate close to 100%,
metastatic disease was associated with extremely poor outcomes,
a median survival of 6 months after diagnosis and a 5-year overall
survival of under 5% (Korn et al., 2008). The development
of therapies targeting the MAPK pathway, followed by the
introduction of immunotherapies has revolutionized the clinical
management of patients with metastatic melanoma (Schadendorf
et al., 2018).

Therapies targeting the RAS pathway
As the development of melanomas heavily relies on RAS pathway
mutations, an array of drugs targeting this pathway has been
developed and is used in the clinic with varying degrees of success.
Based on the mutational landscape of human cutaneous melanoma
and on protein structure data, drugs were designed to specifically
block the most-common BRAF mutant, BRAFV600E (Bollag et al.,
2010). Vemurafenib and, later, dabrafenib, elicited partial responses
in most patients with metastatic BRAF-mutant melanoma, and
some patients presented complete responses with impressive tumor
shrinkage (Flaherty et al., 2010; Hauschild et al., 2012). Treatment
improved overall survival at 6 months by 30% compared to standard
chemotherapy, providing an average benefit of over 3 months
(Chapman et al., 2011). However, tumors invariably developed
resistance to BRAF inhibition (Sosman et al., 2012). To augment
the arsenal of targeted therapies against the RAS/MAPK pathway
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Fig. 4. Frequency of RAS isoform (HRAS, NRAS, KRAS) mutations in
human cancers. The proportion of human tumors with mutations in each RAS
gene is indicated for some of themost-common types of cancer, demonstrating
the prevalence of RAS mutations in driving cancer and underscoring the need
for therapeutic strategies that specifically target the RAS pathway.
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and delay drug resistance, the MEK inhibitors trametinib and
cobimetinib were rapidly tested. Although they only showedmodest
clinical efficacy as single agents (Flaherty et al., 2012a), they had a
significant anti-cancer impact when combined with BRAF
inhibitors. The drug combination significantly improved response
rates, progression-free survival and overall survival compared to
single-agent BRAF inhibition (Flaherty et al., 2012b; Larkin et al.,
2014; Long et al., 2014; Robert et al., 2015a). Five-year outcomes
after combination therapy showed a complete response rate of 19%,
a median overall survival of 26 months and a 5-year overall survival
rate of 34% in patients with metastatic melanoma, who, historically,
had extremely poor prognosis (Robert et al., 2019).
Targeted therapy options are scarcer for patients with non-BRAF-

mutated melanoma. No direct inhibitors of NRAS are available and
initial studies suggested lower sensitivity of NRAS-driven tumors to
MEK inhibition compared to BRAF-driven ones in vitro and in
preclinical xenograft models (Solit et al., 2006). However, the
second-generation MEK inhibitor binimetinib elicited similar rates
of partial response, i.e. ∼20% in patients with NRAS- and BRAF-
driven melanoma in a phase II clinical trial (Ascierto et al., 2013).
The reported median progression-free survival under binimetinib
treatment was 2.8 months compared to 1.5 months under standard
chemotherapy in patients with NRAS-mutant melanoma (Dummer
et al., 2017). Despite the partial responses and a modest

improvement in disease evolution, the impact of MEK inhibition
alone appears limited in these patients. This limited clinical efficacy
may be due to insufficient target inhibition, which might be
overcome by combining MEK and ERK inhibitors, a treatment
modality that induces better responses than either agent alone in
NRAS-mutant melanoma in vitro (Rebecca et al., 2014). The
efficacy of MEK inhibitors may also be hindered by treatment-
related toxicities and/or the protective effect of signaling pathways
other than the MAPK pathway, such as PI3K/AKT, that are active
downstream of mutant RAS.

Little is known about the response of NF1-driven melanoma to
targeted therapies. Based on the molecular mode of action of NF1,
one could predict transient and partial sensitivity toMEK inhibition,
a hypothesis supported by in vitro data (Nissan et al., 2014). More
studies are needed to identify vulnerabilities, potential drug targets
and new treatment strategies in this genetic subtype. In contrast,
melanomas with WT BRAF, NRAS and NF1 that are driven by
activating KIT mutations can be treated with the RTK inhibitor
imatinib, yielding response rates of 16–30% (Carvajal et al., 2011;
Guo et al., 2011; Hodi et al., 2013); however, most of these
responses were partial and transient. Later trials using the more-
specific KIT inhibitor nilotinib showed similar responses (Carvajal
et al., 2015; Delyon et al., 2018; Guo et al., 2017; Lee et al., 2015).
This therapeutic strategy, although successful, suffers from the same

Table 2. RAS pathway mutations or copy-number alterations in melanoma subtypes (in %)

KIT GNA11 GNAQ NRAS KRAS HRAS NF1 SPRED1 BRAF MAP2K1 MAP2K2 MAPK3 MAPK1 Total

Cutaneous 8 5 3 32 4 1.9 19 6 53 7 4 1.9 4 95
Uveal 1.3 46 50 0 0 0 1.3 0 0 0 1.3 0 0 93
Mucosal 14 0 0 14 7 0 14 26 21 0 0 0 0 77
Acral 2.9 2.9 2.9 12 6 0 9 12 21 2.9 6 0 0 56

RAS pathway alterations (in %) in melanoma cutaneous (https://portal.gdc.cancer.gov), uveal (https://portal.gdc.cancer.gov), mucosal (Ablain et al., 2018) and
acral melanoma (Liang et al., 2017).MAP2K1,MAP2K2,MAPK3 andMAPK1 encode for MEK1, MEK2, ERK1 and ERK2, respectively. The total does not reflect
the sum of all cases with alterations in indicated genes but rather the number of cases with at least one alteration in one of the indicated genes.

Table 1. Laboratory models to study the RAS pathway

Model Genotype Phenotype References

Knockout mice Kras–/–

Nras–/–

Hras–/–

Embryonic lethal due to multi-organ abnormalities
No obvious developmental phenotype
No obvious developmental phenotype. Partially protects from
carcinogen-induced skin tumor formation

Koera et al., 1997
Umanoff et al., 1995
Ise et al., 2000

Transgenic mice HRASG12V (constitutive, ubiquitous)
NRASQ61K (constitutive, melanocyte-specific)
+Cdkn2a loss

BRAFV600E (inducible, melanocyte-specific)

BRAFV600E (inducible, melanocyte-specific)
+Pten loss

BRAFV600E (inducible, melanocyte-specific)
+Tp53 loss

Embryonic lethal due to tumor formation in utero
NRASQ61K induced hyperpigmented skin lesions that rarely
progress to melanoma. Combination with cdkn2a loss
strongly accelerates melanoma onset

Nevus formation, spontaneous progression to melanoma in
70% of animals

Expression of mutant BRAF in melanocytes induces the
formation of nevi that do not progress to melanoma.
Combination with Pten loss triggers melanoma formation

Tp53 mutations accelerate BRAFV600E-driven melanoma
onset

Katsuki et al., 1989
Ackermann et al., 2005

Dhomen et al., 2009

Dankort et al., 2009

Viros et al., 2014

Transgenic
zebrafish

BRAFV600E (constitutive, melanocyte-specific)
+tp53 loss

NRASQ61R (constitutive, melanocyte-specific)
+tp53 loss

Expression of mutant BRAF in melanocytes induces the
formation of nevi that do not progress to melanoma.
Combination with tp53 loss triggers melanoma formation

Expression of mutant NRAS in melanocytes induces skin
hyperpigmentation but not melanoma. Combination with
tp53 loss triggers melanoma formation

Patton et al., 2005

Dovey et al., 2009

Patient-derived
xenograft (PDX)
mice

Generation and characterization of 23 PDX from advanced
melanomas

Establishment of 459 melanoma PDX for pre-clinical
pharmacological studies

Einarsdottir et al., 2014

Krepler et al., 2017
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limitations as MEK inhibition in NRAS-driven tumors. However,
combining KIT and MEK inhibitors may represent a valuable
treatment option for patients with KIT-mutant melanoma. Addition
of PI3K/AKT inhibitors to the treatment regimen could also be
explored as KIT-driven tumors seem to rely on the activity of this
parallel pathway for growth and survival (Todd et al., 2014).
Promising preclinical data suggest that strategies combining MAPK
and PI3K inhibitors may similarly prove beneficial in NRAS- and
NF1-driven melanoma (Petit et al., 2019; Posch et al., 2013).

Immunotherapies and RAS pathway alterations
Of all solid cancers, melanomas have the highest rate of response to
immunotherapy (Box 1) (Waldman et al., 2020). This might, at least
partially, be due to the high number of neoantigens produced by
melanoma cells, which facilitates recognition of tumor cells by
immune cells. Indeed, melanoma is the tumor type that exhibits the
highest mutational burden of all cancers (Alexandrov et al., 2013),
and mutation and neoantigen loads appear significantly correlated
with the response to immunotherapy and clinical benefit
(McGranahan et al., 2016; Snyder et al., 2014; Van Allen et al.,
2015). It is noteworthy, however, that this correlation is rather weak,
and that mutation load does not always predict treatment outcome,
suggesting the existence of other predictive factors. Antibodies
against the immune checkpoints CTLA-4 or PDCD1/CD274 (also

known as PD-1/PD-L1) (Box 1) can reactivate the T-cell anti-tumor
activity that is abrogated in many cancers (Leach et al., 1996;
Melero et al., 2007). The combination of CTLA-4 and PD-1
blockade in patients with advanced melanoma has demonstrated an
unprecedented response rate of 58%, translating into a median
overall survival rate of >5 years, and a 5-year overall survival rate of
52% (Larkin et al., 2015a, 2019; Postow et al., 2015), making this
drug combination the standard of care in unresectable melanoma.

After early suggestions that non-BRAF-driven melanomas exhibit
different sensitivities to immunotherapy, subsequent studies
concluded that all genetic subtypes similarly respond to immune
checkpoint blockade. For instance, nivolumab – an antibody against
PD-1 – induced objective responses in 40% of patients with BRAF-
WT metastatic melanoma (Robert et al., 2015b), which was similar
to response rates in cohorts where genetic alterations were not an
inclusion criterion (Larkin et al., 2019). A retrospective analysis of
several clinical trials, indeed, concluded that nivolumab has
comparable efficacy in patients with WT or mutant BRAF
melanoma (Larkin et al., 2015b). Other retrospective studies
focusing specifically on NRAS-driven tumors, however, produced
conflicting results. One study reported a significantly higher
response rate and clinical benefit for patients with NRAS-mutant
melanoma compared to patients with NRAS-WT tumors receiving
immunotherapy (Johnson et al., 2015a). In this study, the difference

Box 2. RASopathies inform RAS pathway function and regulation
In addition to its frequent involvement in cancer, genetic dysregulation of the RAS pathway causes several developmental disorders called RASopathies
that, together, affect ∼1 in 1000 individuals (Rauen, 2013). The identification of the causative germline mutations has established a network of crucial RAS
regulators. Moreover, these rare syndromes share several clinical manifestations that have informed the biological functions as well as lineage specificity of
RAS pathway regulators. RASopathies include Noonan syndrome (Pandit et al., 2007; Tartaglia et al., 2001), Noonan syndrome with multiple lentigines
(Digilio et al., 2002; Pandit et al., 2007), neurofibromatosis type 1 (Viskochil et al., 1990; Wallace et al., 1990), Legius syndrome (Brems et al., 2007),
capillary malformation–arteriovenous malformation syndrome (Eerola et al., 2003), Costello syndrome (Aoki et al., 2005) and cardio-facio-cutaneous
syndrome (Rodriguez-Viciana et al., 2006), each of which is characterized by a unique set of mutations (Table 3). As in melanoma, these genetic lesions act
at different levels of the RAS pathway and all lead to its aberrant activation.

Noonan syndrome and the rare autosomal-dominant disorder Noonan syndrome with multiple lentigines (formerly known as LEOPARD syndrome) are
characterized by congenital heart defects, short stature and developmental delay of variable degree. They are linked to over 18 genes principally encoding
upstream positive regulators of the RAS pathway. The most-common mutations are gain-of-function mutations affecting the RAS activator PTPN11
(Tartaglia et al., 2001). Several mechanisms of action have been proposed for the PTPN11 phosphatase (Dance et al., 2008), including activation of
SPROUTY proteins (Hanafusa et al., 2004), activation of SRC family kinases (Cunnick et al., 2002) or even direct dephosphorylation of RAS (Bunda et al.,
2015). The secondmost-frequent genetic lesions found in patients with Noonan syndrome are mutations in the RAS-GEF SOS1, which abrogate the SOS1
autoinhibitory function and result in its constitutive activation (Roberts et al., 2007; Tartaglia et al., 2007).

Neurofibromatosis type 1, Legius syndrome and capillary malformation–arteriovenous malformation syndrome are all associated with the inactivation of
direct negative regulators of RAS. Neurofibromatosis type 1 is the most-common and best-known RASopathy (Williams et al., 2009). It is caused by
mutations in the NF1 gene resulting in loss-of-function, which is also the case in cutaneous melanoma (Krauthammer et al., 2015). The disease manifests
as café-au-lait spots on the skin and as tumors, such as gliomas and neurofibromas (Shen et al., 1996). Legius syndrome (also called NF1-like syndrome) is
only differentiated from neurofibromatosis type 1 by the absence of non-pigmentary clinical manifestations, such as tumors (Brems et al., 2007). It is caused
by heterozygous inactivating mutations in the gene encoding the other major negative regulator of RAS, SPRED1, which have also been implicated in
mucosal melanoma (Ablain et al., 2018). The clinical similarities between neurofibromatosis type 1 and Legius syndrome reflect the inter-dependent
functions of the two causative genes in RAS regulation. Indeed, structural and functional studies demonstrated that the mutations found in the two
syndromes disrupt the interaction between NF1 and SPRED1 (Dunzendorfer-Matt et al., 2016; Hirata et al., 2016). Capillary malformation–arteriovenous
malformation syndrome is also due to the inhibition of a RAS-GAP. Heterozygous inactivating mutations in RASA1 have been linked to this disorder of the
vascular system, characterized by capillary and cardiovascular malformations (Eerola et al., 2003).

Finally, Costello syndrome and cardio-facio-cutaneous syndrome are usually diagnosed through cardiac anomalies and caused by activation of the RAS
pathway at the level of RAS itself or of its downstream effectors. Costello syndrome is due to heterozygous activating mutations inHRAS (Aoki et al., 2005),
whereas cardio-facio-cutaneous syndrome is caused by mutations in KRAS, BRAF or MEK1/2 (Rodriguez-Viciana et al., 2006).

RAS signaling is essential to many cell functions in most tissues, both during development and at homeostasis. Hence, it is not surprising that inherited
dysregulation of the RAS pathway should elicit systemic manifestations. Yet, RASopathies exhibit common phenotypic features that include cutaneous
lesions, craniofacial abnormalities, cardiac malformations, neurological dysfunction and increased cancer risk. This observation points to a common
mechanism behind the various mutations identified in these syndromes and, possibly, also to specific cell types affected by this mechanism. In this respect,
it is interesting to note that the common manifestations of RASopathies, such as pigmentation abnormalities, can be linked to defects in cell types derived
from the neural crest (the embryonic cell lineage that gives rise to melanocytes), further highlighting the parallel between RASopathies and melanoma. It
remains to be elucidated whether the clinical differences between the various RASopathies reflect differences in the way the RAS pathway is activated or,
rather, variations in the sensitivity of different cell lineages to specific mutations. The study of the molecular and cellular manifestations of RASopathies
could provide detailed understanding of the function of each RAS pathway regulator in a context devoid of additional genetic alterations andmight, thus, cast
new light on the functional consequences of their mutation in melanoma.
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observed under inhibition of PD-1 was attributed to higher levels of
PD-L1 detected in NRAS-mutant tumors, even though previous
reports had found no significant differences in PD-L1 expression in
human melanoma cell lines of different genotypes (Atefi et al.,
2014). In a larger cohort, however, patients with NRAS-mutant
tumors showed comparable rates of response to immunotherapy but
significantly shorter overall survival compared to patients with
NRAS-WT melanoma (Kirchberger et al., 2018). Interestingly, in
patients with NRAS-mutant melanoma, MEK inhibition in
combination with immunotherapy tended to improve survival, but
prospective studies are warranted to confirm this.
The idea that NRAS-driven melanoma might be more sensitive to

immunotherapy may relate to the slightly higher average number of
mutations in these tumors compared to BRAF-driven tumors
(Akbani et al., 2015; Krauthammer et al., 2012). Importantly, a
much greater difference in mutation load exists between other
melanoma genetic subtypes: on average,NF1-driven tumors display
the highest and triple-WT tumors the lowest mutation rates of all
four subtypes (Akbani et al., 2015). Whether these differences are
associated with distinct sensitivities to immune checkpoint
blockade remains to be determined. In this regard, patients with
mucosal melanoma that, generally, belongs to the triple-WT
subgroup and exhibits low mutation rates due to the absence of
UV-induced DNA damage, benefit less from immunotherapy
compared with patients with cutaneous melanoma (D’Angelo
et al., 2017; Hamid et al., 2018; Shoushtari et al., 2016). For
example, their response rate to single-agent PD-1 blockade is 19–
23%, whereas it reaches 40% in patients with cutaneous tumors.
Interestingly, among patients with mucosal melanoma, therapy
response did not correlate with mutation load (Buchbinder et al.,
2021). There remains much to understand about the relationship
between tumor genotype and response to immunotherapy in
melanoma, in order to develop more-efficient treatment regimens
that combine immunotherapy and targeted therapy, especially in
melanoma subtypes with low response rates.

RAS pathway regulators in drug sensitivity or resistance
Despite the remarkable anti-tumor efficacy demonstrated by BRAF
inhibitors in the clinic, the development of drug resistance
considerably limits long-term survival benefits. The identification

of mechanisms of resistance to targeted therapies in melanoma,
thus, became the focus of intense investigation – especially by the
groups of Roger Lo and Levi Garraway – in the hope that interfering
with these mechanisms would lead to the development of improved
therapeutic approaches. Two main strategies were used: the in vitro
generation and characterization of drug-resistant cell lines, and the
comparison of the genetic landscape of sensitive and resistant
tumors.

The generation of BRAF-inhibitor-resistant cells by
pharmacologic exposure in vitro and their analysis identified
NRAS mutations, MAP3K8 overexpression and the activation
of RTKs, such as platelet-derived growth factor receptor beta
(PDGFRB), insulin-like growth factor 1 receptor (IGF1R) or MET
proto-oncogene, receptor tyrosine kinase (MET), as possible
resistance mechanisms through their joint stimulation of the
MAPK and PI3K pathways (Johannessen et al., 2010; Nazarian
et al., 2010; Straussman et al., 2012; Villanueva et al., 2010).
Consistent with a key role of RAS in the orchestration of drug
resistance in melanoma, NF1 was the top hit in a large-scale short
hairpin RNA (shRNA) screen for genes that, when lost, confer
resistance to BRAF inhibition in melanoma cell lines (Whittaker
et al., 2013). The role of NF1 loss-of-function in the reactivation of
the RAS/MAPK pathway upon BRAF inhibition was confirmed in
multiple other melanoma cell lines and in an Nf1-knockout mouse
model (Maertens et al., 2013; Nissan et al., 2014). Interestingly,
cells with NF1 loss-of-function retained sensitivity to MEK or WT
RAF inhibition, suggesting that treatment regimens including a
MEK inhibitor suppress this resistance mechanism, and further
supporting the use of combination therapies with MEK inhibitors in
the clinic. In line with these observations, a recent study from our
group implicated SPRED1 deletions in the resistance to targeted
therapies in BRAF-driven melanoma, demonstrating that loss of
SPRED1 sustains the activity of WT RAS and reactivates the
MAPK pathway in the context of BRAF-inhibition in vitro and in
vivo (Ablain et al., 2021).

Sequencing studies revealed genomic amplifications of mutant
BRAF (Shi et al., 2012), expression of BRAF splicing variants
(Poulikakos et al., 2010) or acquisition of mutations within MEK1
or MEK2 (Van Allen et al., 2014; Wagle et al., 2011, 2014) as
frequent drivers of resistance to BRAF inhibition via the

Table 3. Summary of the clinical features and key genetic mutations of different RASopathies

RASopathy Genes implicated Clinical features

NF1 (neurofibromatosis type 1) Mutations in NF1 resulting in loss of function Café-au-lait spots, iris Lisch nodules, axillary and inguinal
freckling, optic pathway gliomas, multiple neurofibromas
and cardiac malformations

LS (Legius syndrome) Heterozygous inactivating mutations in SPRED1 Multiple café au lait macules, intertriginous freckling, lipomas,
macrocephaly

NS (Noonan syndrome) Mutations in PTPN11, SOS1 and RAF1. NS is less
frequently associated with mutations in KRAS, NRAS,
SHOC2, CBL, BRAF, SOS2, LZTR1, RASA2, RRAS
and RIT1

Craniofacial dysmorphisms, chest deformity, congenital heart
disease, growth and neurocognitive delays

NSML (Noonan syndrome with
multiple lentigines)

Mutations most commonly affecting the PTPN11 gene Lentigines, hypertrophic cardiomyopathy, short stature,
electrocardiographic conduction defects and dysmorphic
facial features, including widely spaced eyes and ptosis

CM-AVM (capillary malformation–
arteriovenous malformation
syndrome)

Heterozygous inactivating mutations in RASA1 Capillary and cardiovascular malformations

CS (Costello syndrome) Heterozygous activating mutations in HRAS Distinctive hand posture and appearance, cardiac anomalies,
severe feeding difficulties and developmental disability

CFC (cardio-facio-cutaneous
syndrome)

Heterozygous mutations in BRAF (75% of cases),
MAP2K1 (MEK1), MAP2K2 (MEK2) and KRAS

Macrocephaly; sparse, brittle and curly hair, sparse eyebrows
and eyelashes; skin abnormalities; heart defects;
intellectual disability
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reactivation of the RAS pathway in melanoma patients.
Interestingly, additional activating mutations in BRAF that
circumvent pharmacologic inhibition were not observed,
contrasting with observations on targeted therapies in other
cancers and suggesting that additional BRAF mutations are either
harder to acquire under treatment pressure or unable to prevent
inhibitor binding. Later analyses of genetic data from multiple
clinical trials of BRAF inhibitors in melanoma found putative
resistance-causing mutations in 58–74% of progressive tumors and
confirmed the reactivation of the RAS/MAPK pathway itself as the
major cause of resistance to targeted therapy (Johnson et al., 2015b;
Shi et al., 2014; Van Allen et al., 2014). Between 63 and 89% of
these alterations affected the RAS pathway through NRAS or KRAS
mutations (in 25–41% of cases), BRAF splice variants (22–28%),
BRAF amplifications (13–32%) or MEK1/2 mutations (4–34%)
(Johnson et al., 2015b; Shi et al., 2014; Van Allen et al., 2014).
Tumors without MAPK pathway mutations harbored alterations in
the PI3K/AKT pathway, including mutations or deletions of PTEN,
mutations of AKT genes, mutations of PIK3CA or PIK3R1, or
amplifications of genes encoding RTKs (Johnson et al., 2015b; Shi
et al., 2014; Van Allen et al., 2014). Although MEK and AKT
inhibitors should overcome these resistance mechanisms, some of
the alterations mentioned above were found in the context of BRAF/
MEK dual inhibition, indicating that, in some modalities, targeting
downstream pathways is not sufficient to halt tumor growth. In this
respect, detailed genomic analysis of melanomas with acquired
resistance to inhibition of both BRAF and MEK demonstrated
amplification of the changes detected in tumors resistant to single-
agent therapy as well as more-frequent combinations of genetic
alterations that affect both MAPK and PI3K pathways (Moriceau
et al., 2015). These results suggest a model whereby the
accumulation of sensitivity-reducing events confers partial drug
tolerance that eventually results in full therapy resistance.
Over the past few years, non-genomic modes of resistance

have emerged. Broad transcriptional changes and the expression
of specific gene signatures have been implicated in acquired resistance
to targeted therapy (Hugo et al., 2015; Johannessen et al., 2013). The
ability of cancer cells to transition between different transcriptional

states, i.e. plasticity, allows them to adapt to environmental conditions,
in particular to drug exposure (Arozarena andWellbrock, 2019). Four
states spanning the melanocyte differentiation trajectory were recently
defined in melanoma – the undifferentiated, neural crest-like,
transitory and melanocytic state (Tsoi et al., 2018). Sensitivity to
targeted therapy appears to correlate with cell differentiation, the more
proliferative melanocytic state being sensitive to MAPK inhibitors,
and the more migratory undifferentiated state being associated with
drug resistance (Konieczkowski et al., 2014). Single-cell RNA
sequencing of minimal residual disease from patient-derived
xenografts that had been treated with both BRAF and MEK
inhibitors has also revealed several transcriptional states, including a
neural crest-like state, associated with drug tolerance (Rambow et al.,
2018). Although the relationship between these transcriptional states
and RAS pathway activity remains unclear, designing pharmaceutical
agents targeting resistant states could greatly improve the clinical
efficacy of current targeted therapies in melanoma.

The role of RAS pathway alterations in the tumor response to
immunotherapies has not yet been fully evaluated but it is
conceivable that the mechanisms of sensitivity or resistance to
immune checkpoint blockade are largely independent of the
activation status of the RAS/MAPK pathway. Yet, by fine-tuning
the level of pathway activity and the proliferation rate of melanoma
cells, RAS pathway regulators might control the differentiation state
of these cells and impact their ability to escape or be recognized
by the immune system. The mechanisms of drug resistance appear
numerous and complex. Although our understanding of their
molecular details has greatly improved over the past 10 years,
this knowledge remains to be translated intomore-efficient therapies.

Recent advances and current approaches to drugging the
RAS pathway
Because of its smooth external structure and tight GDP/GTP-
binding pocket, RAS has long been deemed impossible to target
pharmacologically. To circumvent this difficulty, research has
focused on direct RAS regulators to better understand the molecular
mechanisms of RAS regulation and leverage this knowledge to
develop indirect approaches to block RAS activity.
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inhibitors. RAS proteins are synthesized
in the cytosol, and different covalent
inhibitors of KRASG12C are currently in
clinical trials (1). RAS functioning
requires membrane anchorage, which
can be achieved through farnesylation by
farnesyltransferase (FTase) or
geranylation by
geranylgeranylprenyltransferase
(GGTase). By inhibiting FTase or
GGTase, RAS membrane anchoring is
prevented and RAS function blocked (2).
Inhibition of PTPN11 (3) or SOS1/2 (4)
prevents RAS activation through
upstream signaling.
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Farnesyl transferase inhibitors were developed to prevent RAS
isoprenylation, a post-translational modification essential for its
membrane localization and activity (Hancock et al., 1989; Jackson
et al., 1990) (Fig. 5, Table 4). These inhibitors demonstrated strong
ability to block aberrant RAS activity in vitro and showed promising
efficacy in transgenic mouse models of HRAS-driven tumors (Kohl
et al., 1993, 1995). Farnesyl transferase inhibitors elicited some
anti-tumor responses in patients with multiple myeloma or chronic
myeloid leukemia, although for the most part, these responses were
incomplete and transient (Alsina et al., 2004; Cortes et al., 2003).
One limitation to the efficacy of these inhibitors might come from
geranylation, an alternative post-translational modification, of
KRAS and NRAS (Rowell et al., 1997; Whyte et al., 1997).
Inhibitors of geranylgeranyl prenyltransferase-I have subsequently
been developed and are currently being tested in combination with
farnesyl transferase inhibitors, although these drug combinations
might induce significant toxicities.
Another indirect way to inhibit the functionality of RAS is by

preventing its binding to activators or effectors. Several inhibitors
have been designed to target the RAS activator PTPN11 (Vainonen
et al., 2021) or the interaction between SOS1/2 and RAS (Hillig
et al., 2019; Hofmann et al., 2021) (Fig. 5, Table 4). Preclinical
studies and clinical trials are ongoing to test the efficacy of these
approaches. The nuclear protein serine/threonine kinase 19 (STK19)
was recently identified as a new NRAS kinase (Yin et al., 2019).

STK19 is frequently mutated in melanoma and the most-frequent
mutation, D89N appears to act as a gain-of-function that amplifies
NRAS downstream signaling, promoting melanocyte transformation
in vitro and in vivo. Despite some controversy regarding themutation
annotation of the STK19 gene (Rodríguez-Martínez et al., 2020),
pharmacologic inhibition of STK19 has been suggested to abolish
NRAS-driven oncogenesis (Yin et al., 2019), a result remarkable
enough to warrant further preclinical exploration.

Finally, allosteric inhibitors ofRAS, such asMRTX849, AMG510,
JNJ-74699157 and LY3499446, have recently made significant
progress (Fig. 5, Table 4). Taking advantage of the presence of a new
cysteine (C) residue in the G12C KRAS mutant, molecules that can
covalently bind C residues were screened using a structure-based
approach to identify compounds that could affect RAS conformation
(Ostrem et al., 2013). The top hits disrupted switch I and II structures,
thus decreasing the affinity of KRASG12C for GTP and preventing
interactions with effectors, such as RAF. Additional compounds
similarly favoring the inactive GDP-bound state of the mutant were
developed and shown to have strong anti-tumor activity in KRASG12C

tumor cell lines (Lito et al., 2016; Patricelli et al., 2016). Some of these
allosteric inhibitors were then successfully tested in mouse xenograft
models and in patients (Canon et al., 2019; Janes et al., 2018).
Strikingly, phase I and II clinical trials of these inhibitors recently
reported >30% response rates among patients with KRASG12C-driven
non-small cell lung cancer, with a median duration of response of

Table 4. Inhibitors of RAS

Binding site Mechanism of action Clinical trial
ClinicalTrials.gov
identifier

Indirect inhibitors

BMS-214662 Catalytic domain of
FTase

Decreases RAS farnesylation and
membrane attachment

Several clinical trials in various cancers

GGTI-2418 GGTase Decreases RAS geranylgeranylation
and membrane attachment

Phase I clinical trial for patients with
advanced malignancies

NCT03900442

L-778,123 FTase and GGTase Decreases RAS prenylation and
membrane attachment

Two completed clinical studies treating
patients with recurrent or refractory solid
tumors or lymphomas

NCT00004057
NCT00003430

Bisphosphates/
zoledronic acid

FTase-farnesyl
pyrophosphate
synthase (FPPS)

Decreases farnesyl and
geranylgeranyl lipid synthesis, RAS
lipidation
and membrane localization

Different clinical trials in various cancers

Salirasib Galectins Decreases activated RAS membrane
localization

Phase I clinical trial to treat non-small cell
lung cancer

NCT00531401

TNO155 PTPN11 Increases phosphorylation of RAS
Y32 and decreases effector binding

Phase I clinical trial for adult patients with
advanced solid tumors

NCT03114319

JAB-3068 PTPN11 Increases phosphorylation of RAS
Y32 and decreases effector binding

Three phase I/II clinical trials for adult
patients with advanced solid tumors

NCT04721223
NCT03565003
NCT03518554

RMC-4630 PTPN11 allosteric
site

Increases phosphorylation of RAS
Y32 and decreases effector binding

Phase I clinical trial; dose-finding study for
patients with advanced, relapsed or
refractory solid tumors

NCT03634982

Bryostatin-1 PKC Increases phosphorylation of RAS
S181 and inhibits phosphorylation

Different clinical trials in various cancers

BI-1701963 SOS1 Targets and binds to SOS1,
preventing interaction of SOS1 with
RAS

Phase I clinical trial for patients with
advanced or metastatic solid tumors

NCT04111458

Direct inhibitors

MRTX849
AMG 510
LY3499446

Inhibits KRASG12C Decreases interaction of KRAS with
effectors and activators

Phase I/II clinical trial for patients with
advanced solid tumors comprising a
KRAS G12C mutation

NCT03785249
NCT03600883
NCT04165031

JNJ-74699157
(ARS-3248)

Inhibits KRASG12C Decreases interaction of KRAS with
effectors and activators

Phase I clinical trial for patients with tumors
comprising a KRAS G12C mutation

NCT04006301

*ClinicalTrials.gov
FTase, farnesyl transferase; GGTase, geranylgeranyl prenyltransferase.
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11 months (Hong et al., 2020; Skoulidis et al., 2021). Although not
the most common KRASmutation, G12C is found in 13% of patients
with non-small cell lung cancer. These results open new perspectives
for the design of small molecules targeting RAS in a conformation-
specific manner, although the mutant residue in other RAS mutants –
including NRASQ61R that is most frequently found in melanoma –
might not offer the same opportunities for covalent binding as the C
residue in KRASG12C.

Future avenues and concluding remarks
Forty years after the discovery of the RAS proto-oncogene, much
progress has been made in our understanding of its roles in
normal cell biology and cancer. Key players of the RAS pathway
have been identified and regulatory mechanisms have been
elucidated. These advances have allowed the design of drugs that
target RAS regulators or effectors, some of which have shown
antitumor efficacy in the clinic. However, the example of melanoma
suggests that these approaches are likely to be met with drug
resistance. This has prompted a wave of research into resistance
mechanisms and combinations of drugs targeting the RAS
pathway at different levels. These have shown promise and could
become the strategy of choice in the near future, provided associated
toxicities remain manageable. Yet, there is a need to further
understand protein–protein interactions between RAS and its
regulators to design new compounds capable of interfering with
RAS functions, with the goal to develop orthogonal therapies against
RAS-driven tumors. Recent years have demonstrated that there is
still room to discover important players and new feedback loops
within the pathway, as well as additional roles for RAS pathway
regulators in cancer. Naturally, the hunt for molecules that can
directly target RAS is ongoing and the example of KRASG12C

inhibitors has raised new hopes that RAS is not ‘undruggable’ for
much longer. Although several RASmutants have been documented
in cancer, structure-based design of allosteric inhibitors impeding the
main mutants would represent a tremendous step towards effective
clinical management of patients with RAS-driven cancer.
Additionally, evidence from melanomas indicates that the genetic
plasticity of human tumors as well as their heterogeneity are a source
of drug tolerance and relapse. Different genetic subtypes are likely to
require different treatments and testing more drug combinations in
preclinical models of RAS pathway-dependent tumors could
uncover new therapeutic synergies. Developing models that more
accurately and more completely recapitulate the genetic complexity
of RAS-driven tumors might, thus, constitute one of the greatest
challenges in today’s cancer research.
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