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ABSTRACT 

The anticipation of progression of Alzheimer’s disease (AD) is crucial for evaluations of secondary prevention 

measures thought to modify the disease trajectory. However, it is difficult to forecast the natural progression of 

AD, notably because several functions decline at different ages and different rates in different patients. We 

evaluate here AD Course Map, a statistical model predicting the progression of neuropsychological assessments 

and imaging biomarkers for a patient from current medical and radiological data at early disease stages. We 

tested the method on more than 96,000 cases, with a pool of more than 4,600 patients from four continents. We 

measured the accuracy of the method for selecting participants displaying a progression of clinical endpoints 

during a hypothetical trial. We show that enriching the population with the predicted progressors decreases the 

required sample size by 38% to 50%, depending on trial duration, outcome, and targeted disease stage, from 

asymptomatic individuals at risk of AD to subjects with early and mild AD. We show that the method 

introduces no biases regarding sex or geographic locations and is robust to missing data. It performs best at the 

earliest stages of disease and is therefore highly suitable for use in prevention trials.  
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INTRODUCTION 

 

The cost of drug development is highest, by far, for neurodegenerative diseases, with unparalleled failure rates1. 

In this respect, the controversial approval of aducanumab on June 7, 2021 by the Food and Drug Administration 

(FDA) represents a turning point in Alzheimer's disease (AD) drug development2. This decision raises the 

critical issue of demonstrating the clinical benefit of a compound acting on a key biological process, the 

accumulation of amyloid plaques in the brain3. 

 

It remains unclear why an effective intervention for such a key biological mechanism is only weakly associated 

with lower levels of cognitive decline. It is likely that the core biological processes and their interactions are not 

yet fully understood. Another, non-exclusive explanation is that the issue of who and when to treat must be 

addressed with greater precision to demonstrate clinical efficacy. In 2019, Cummings and coworkers were 

already stressing the need to improve clinical trials, by targeting the right participant with the right biomarker in 

the right trial4. The motivation, here, is simple: it is not possible to show that a candidate therapy slows down 

the degradation of the endpoint if this endpoint is not expected to worsen during the trial. The treatment effect 

size will be larger if one includes participants right before the disease progression would cause a significant 

change of the endpoint without an intervention. Such a target period depends on the endpoint selected to 

demonstrate efficacy.  

 

It is particularly difficult to identify the most appropriate time frame for a disease like AD, which progresses 

over decades, in a non-linear manner, and with different clinical presentations between patients. The thresholds 

currently used for the main biomarkers and clinical endpoints are not sufficiently effective for the selection of 

patient populations with homogeneous progression profiles5. Disease modeling uses computational and 

statistical methods to address this question6–14. These models learn the variability of disease progression from 

observational longitudinal cohort data and can then predict the progression of patients from their historical data. 

They require various clinical or biomarker assessments at one or several time points as input. These techniques 

are beginning to be evaluated for clinical trial design. For example, a retrospective analysis showed that the 

effect size of a treatment could be increased by targeting participants with a predicted type of progression at trial 

entry15. Other studies indicated that predicting the value of endpoints might make it possible to reduce sample 

sizes in clinical trials16,17. 

We propose here a software tool using a disease progression model for participant selection in clinical trials. 

The goal is to enrich the selected population in participants likely to display progression during the trial, a 

concept called prognostic enrichment18 by the FDA and already applied in some AD trials19,20. We will use AD 

Course Map as a disease progression model. It is a non-linear mixed-effect model, which predicts both the 

dynamics of progression and the clinical presentation of the disease21,22. This technique outperformed the 56 

alternative methods for predicting cognitive decline in the framework of the TADPOLE challenge6,23. We will 

compare this model with RNN-AD, which is a recurrent neural network, namely a deep learning method that 

learns temporal dynamic behavior. In June 2020, it ranked 2nd for the prediction of cognitive decline in the 

TADPOLE challenge24. 
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We will first evaluate the ability of the model to predict progression for the main endpoints used as outcomes in 

current clinical trials. We will use five independent data sets with data from more than 4,600 patients spread 

over four continents. We will analyze the systematic biases of such algorithms, their robustness to missing data 

and suitability for generalization across countries, ethnicities and disease stages. Finally, we will simulate 

inclusion procedures for clinical trials by varying several key parameters: the chosen outcome, trial duration, 

and the selection criteria. Finally, we will show that participants predicted to be at risk of the outcome 

worsening constitute a population likely to show a greater and more homogeneous response to treatment. 

 

RESULTS 

Characteristics of the study population 

We used data of 4,687 participants from five longitudinal multicenter cohorts from North America, Australia, 

Japan, and Europe: the Alzheimer’s disease neuroimaging initiative (ADNI)25–31 (N=1,652), the Australian 

imaging, biomarker and lifestyle flagship study of aging (AIBL)32,33 (N=460), the Japanese Alzheimer’s disease 

neuroimaging initiative (J-ADNI)34,35 (N=470), the PharmaCog cohort36,37 (N=111) and the MEMENTO 

cohort38 (N=1,994). Each study enrolled participants attending memory clinics. 

 

Table 1 and 2 summarize the characteristics of each data set. These data sets contain diverse patient profiles 

from different ethnic, genetic and geographic backgrounds, with follow-up visits at different disease stages. For 

all these studies, the neuropsychological examinations were performed in accordance with international 

standards, and the image acquisition procedures were performed in accordance with the protocols established by 

the ADNI consortium. Together, these data sets therefore correspond to a relevant pool of patients for 

simulating inclusion procedures for a typical large multicenter phase III trial. 

Disease progression models learn the timing of changes in biomarker levels during disease progression 

We train disease progression models using the ADNI participants with confirmed pathological amyloid levels as 

the training set (N=866) with baseline and all available follow-up data. We kept the data from the other ADNI 

participants and the members of the four external cohorts as the validation set (N=3,821). The same protocol for 

training and validating the models is used for AD Course Map and RNN-AD. See Methods for details. 

 

The two models include the following endpoints: Mini Mental State Examination (MMSE), Alzheimer’s 

Disease Assessment Scale - cognitive subscale with 13 items (ADAS-Cog13), Clinical Dementia Rating – sum 

of boxes (CDR-SB), volumes of the left and right hippocampus and lateral ventricles, Aβ1–42 and p–tau181 levels 

in the cerebrospinal fluid (CSF), standard uptake value ratio (SUVR) for Amyloid PET and Tau PET scans. See 

Methods for details.  

 

AD Course Map assumes that these endpoints follow a logistic progression curve during disease progression 

with distinct progression rate and age at the inflexion point21,22. It learns how this set of logistic curves need to 
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be adjusted to fit individual data by changing the dynamic of progression and disease presentation (i.e. the 

relative value of the endpoints at a given disease stage).  By contrast, RNN-AD learns how the values of the 

endpoints will change in the next month given the values of the endpoint at a given time-point. The 1-month 

transition is assumed to be a non-linear function (e.g. a neural network) of the current value of the endpoints and 

the current diagnosis. Supplementary Table 1 shows the goodness-of-fit on the training set, consistent with the 

results of our previous studies on AD Course Map6 and RNN-AD24. See Methods for details. 

 

Disease progression models forecast cognitive decline 

The disease progression models predict the subject-specific trajectory of biomarker changes from data collected 

from the subject concerned at one or several visits. The predicted trajectory is used to forecast the values of the 

biomarkers at future time points. Figure 1 illustrates this forecast procedure. 

 

We repeatedly assessed the errors of AD Course Map and RNN-AD for forecasting cognitive endpoints 

(ADAS-Cog13, MMSE and CDR-SB) for participants in the validation set. We blinded the latest visits of the 

participants and tried to predict them from the unblinded data (see Supplementary Figure 1 and Methods for 

details of the procedure). From 44,435 forecasts for ADAS-Cog13 (96,970 for MMSE and 96,849 for CDR-

SB), we determined the absolute difference between predicted and actual results as a function of the 

characteristics of the participants and the information used for forecasting purposes. 

 

Figure 2 shows the distribution of mean absolute errors (MAE) for AD Course Map and RNN-AD adjusted for 

cofounding factors. The reported errors are for the reference participant in the reference forecast design: a 75-

year-old American woman from the ADNI cohort with an average education level, no APOE-ε4 mutations and 

an A+T+N+ status with a questionable dementia (CDR = 0.5 noted C~), for whom we forecast 

neuropsychological assessments in three years’ time, based on two past visits separated by eight months with no 

missing data. AD Course Map yields a mean absolute error of 5.98 (95% CI=[5.44, 6.48]) on a scale of 85 for 

ADAS-Cog13, of 2.54 (95% CI=[2.39, 2.71]) on a scale of 30 for the MMSE, and of 1.86 (95% CI=[1.75, 

1.99]) on a scale of 18 for the CDR-SB.  

 

On all occasions, AD Course Map and RNN-AD yielded significantly smaller errors than two alternative 

methods: no-change prediction (predicting the same value as obtained at the participant’s last visit) and a linear 

mixed-effects model (p<0.01 for both, see Supplementary Table 2). These two alternatives were shown to be 

good predictor of short-term progression, essentially because of the overall slow pace of progression of the 

disease6,23. The deep learning method RNN-AD yields intermediate performance with adjusted mean absolute 

errors of 6.53 (95% CI=[6.02, 7.19]), 2.75 (95% CI=[2.57, 2.92]), and 1.95 (95% CI=[1.81, 2.09]) for the 

prediction of ADAS-Cog13, MMSE and CDR-SB respectively. 

 

We investigated the change in MAE for ADAS-Cog 13 score for different categories of participants and forecast 

designs (Figure 3). For AD Course Map, the number of previous visits considered (1, 2 or 3) did not 

significantly affect forecasting error. By contrast, for every additional year of time to prediction, MAE for 
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ADAS-Cog13 score increased by 0.80 (95% CI=[0.71, 0.93]). Forecasts were not significantly affected by sex 

nor APOE genotype but were slightly improved for participants who are older than average and had longer 

education. On average, the forecasts for the European participants from PharmaCog cohort as well as the 

Japanese participants from the J-ADNI cohort were better than those for the American participants from the 

ADNI cohort, by about 1.1 and 0.6 points respectively. Forecasts were robust to missing CSF or Tau PET data, 

and slightly worsened when MRI or Amyloid PET were missing with differences in MAE of 0.27 (95% 

CI=[0.00, 0.55]) and 0.54 points (95% CI=[0.15, 1.02]) respectively. The model forecasts better at earlier stages 

of the AD continuum than at later clinical stages (Figure 3a). The method was readily generalizable to the 

included participants with suspected non-amyloid pathology (SNAP) and possible concomitant pathological 

non-Alzheimer’s changes. 

 

Similar conclusions were drawn for predictions of MMSE and CDR-SB (see Supplementary Figures 2 and 3). 

AD Course Map performed better on all but one external validation cohort. Errors were robust to changes in the 

available information used to make the prediction, such as the number of unblinded visits and missing data. This 

method did not produce biased forecasts for women. Forecasts for those two endpoints however displayed 

slightly worse results for participants older than average or with an education level that is below the average, 

and for APOE-ε4 carriers. 

Disease progression models select participants displaying progression for trials 

We now use disease progression models to identify the participants likely to experience significant cognitive 

decline during a trial (see Figure 4). The definition of participants displaying progression depends on the 

endpoint used to measure the condition and the duration of the trial. We simulated six clinical trials with 

different primary outcomes, trial durations and inclusion criteria. These designs were inspired by real phase III 

trials (see Table 3).  

 

For each trial, we selected the participants in the validation set who met the inclusion criteria at one of their 

visits (considered as the baseline visit for the simulated trial) and attending a follow-up visit after a period equal 

to the theoretical duration of the trial. We split this population into two equal halves: fast and slow progressors, 

according to whether the outcome considered (e.g. the annual change in endpoint relative to baseline) was above 

or below the population median value. We aimed to identify the participants in these two groups exclusively on 

the basis of their baseline data. 

 

We used the disease progression models to forecast the values of the endpoint at the end of the trial from the 

baseline data for each participant. The predicted outcome was used as a prognostic score. For AD Course Map, 

Pearson correlations with the true outcome range from 28% to 47% depending on the trial, while for RNN-AD 

they range from 13% to 36% (see Supplementary Table 3). Participants with a prognostic score above a given 

threshold were considered to be likely to be fast progressors. We plotted receiver operating characteristics 

(ROC) curves for the six simulated trials (Figure 5). The area under the ROC curve (AUC) of the six simulated 

trials fell within the 65%-80% range for AD Course Map and within the 55%-80% range for RNN-AD (see 

Figure 5). 
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We compared this prognostic enrichment strategy with two alternative methods: selecting participants at random 

(bisector of the ROC curve) as currently done in most trials, or selecting participants based on their APOE 

genotype (gray crosses in Figure 5). All selection methods were significantly better than random selection, 

meaning that disease progression models succeed in identifying the progressors compared to the current practice 

that does make any difference among the participants meeting the inclusion criteria. In all but one case, 

selections with AD Course Map were significantly better than selection on the basis of APOE genotype. RNN-

AD also compares favorably against the two alternatives. Nevertheless, it has significantly worse performance 

than AD Course Map in two out of six tested scenarios, with a drop of 9% and 14% in the ROC AUC. AD 

Course Map shows therefore more robust results than RNN-AD when the trial design is varied. 

 

We analyzed whether our assessment of the risk of progression led to an over- or under-selection of certain 

types of participants relative to the true progressors (see Supplementary Figure 4). Depending on the design, the 

group that was selected using AD Course Map displayed slight enrichment in men or women, and tended to be 

biased towards older participants. The selected participants were often, but not always, enriched in carriers of 

the APOE-e4 variant. The presented disease progression models do not use sociodemographic or genetic factors 

as proxies for the selection of participants displaying progression. They limit therefore the biases of sex, age or 

APOE-e4 carriership, which are the basis of current practices to increase the likelihood that a participant 

progresses during a trial. 

Disease progression models can be used to design more powered clinical trials 

The automatic selection of participants displaying progression makes it possible to implement prognostic 

enrichment strategies in trials (see Figure 4). For each trial design, we simulated a hypothetical treatment 

decreasing the outcome value. We calculated the sample size required to show an effect of this treatment for a 

range of treatment effects (see Methods). We compared the results when all eligible participants were included 

to those obtained when only participants predicted to be fast progressors at baseline were included. 

 

We plotted sample size against treatment effect for all six simulated trials (Figure 6). The selection of 

participants at risk of progression with AD Course Map allowed a significant reduction in sample size relative to 

current inclusion criteria alone, across all scenarios tested. For a treatment effect of 25%, sample size was 

reduced by 50.2% (± 7.1) for participants at risk of the onset of AD, by 40.9% (± 4.9) for a trial targeting 

individuals with preclinical AD and high brain amyloid levels, by between 38.1% (± 1.6) and 45.4% (± 2.0), 

depending on the outcome considered, for subjects with early AD and high levels of brain amyloid, by 44.6% (± 

3.9) for subjects with early AD and high brain levels of tau, and by 43.1% (± 0.8) for participants with mild 

cognitive impairment probably due to AD or mild AD. 

 

For all preclinical and early AD trials, enrichments based on AD Course Map significantly outperformed the 

selection of APOE-ε4 variant carriers only. For mild cognitive impairment due to AD or a mild AD trial, the 

performance of enrichment based on AD Course Map was not significantly different from targeting APOE-ε4 

carriers. AD Course Map achieved a similar decrease in sample size, but without the need to target a specific 
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genetic profile. In this case, we also found that 49.2% (95% CI=[48.6, 49.9]) of the participants would be 

selected by AD Course Map, versus 39.1% (95% CI= [38.7, 39.4]) for heterozygous APOE-ε4 carriers, 

facilitating recruitment with AD Course Map (see Supplementary Table 4). 

 

RNN-AD also allowed significant reduction of the sample size compared to current practice, from 21% to 42% 

depending on the tested scenario. Nevertheless, the reduction was never better than with AD Course Map with 

an increase of 10% and 35% participants to be selected for the two scenarios where RNN-AD yielded a lower 

AUC (see Supplementary Table 5). 

DISCUSSION 

We used disease progression models to forecast cognitive decline across all stages of the AD continuum. Using 

five independent cohorts containing more than 4,600 participants, we show here that AD Course Map provides a 

fair, robust, and generalizable predictive method. It is fair, in that its predictions are not biased with respect to 

sex, and are only marginally affected by level of education and the age of the participant. The method is robust 

to missing CSF or Tau PET biomarkers, but in general better results are achieved when MRI and Amyloid PET 

data are present. The model was trained on data acquired in North America, but it is readily generalizable to 

participants from Europe, Asia, and Oceania, with no loss of performance. It performed better at the earliest 

preclinical stages of the AD continuum than at later disease stages, and is therefore relevant for early-stage 

interventions. 

 

Disease progression models automatically identify the participants already at risk of experiencing cognitive 

decline at baseline in a trial. They can therefore be used to enrich the trial population in participants likely to 

experience a worsening of a given endpoint during the trial. By targeting more homogeneous groups of 

participants displaying progression, AD Course Map makes it possible to decrease sample size significantly, by 

38% up to 50%, at the expense of discarding about half of the screened participants. It shows better and more 

robust performance than the deep learning method RNN-AD. Disease progression models adapt seamlessly to 

various clinical trial designs targeting different disease stages with different outcomes and trial durations. They 

do so without the need to re-train the model for each new trial. In comparison, a recent method based on another 

prognosis score reported sample size reductions of 20% to 28%17. 

 

The main limitation of the method is the data used to monitor disease progression. Cognitive assessment 

displays about 10% inter-rater variability39–41. MRI biomarkers also display a similar degree of variability 

between two scans acquired on the same day for the same participant, and their reliability is further decreased 

by possible variations in the processing pipelines42. Mapping CSF biomarkers from different immunoassays also 

limits their reliability43. These factors limit the accuracy of the method for forecasting disease progression. 

Increasing the reliability of these measurements would improve the performance of the approach described here. 

In the future, disease progression models such as AD Course Map may also benefit from the inclusion of 

promising new biomarkers, such as plasma biomarkers, neurofilament light chain44 or digital biomarkers45. 
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Given these limitations, it is notable that such large sample size reductions can be achieved with data already 

available in routine clinical practice. These findings demonstrate the benefits of companion software tools for 

patient recruitment in trials and for supporting clinicians in the future, enabling them to prescribe the right 

treatment to the right patient at the right time.  
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METHODS 

Participants 

We used the data from five longitudinal multicenter cohorts: the Alzheimer’s disease neuroimaging initiative 

(ADNI)25–31 (N=1,652), the Australian imaging, biomarker and lifestyle flagship study of aging (AIBL)32,33 

(N=460), the Japanese Alzheimer’s disease neuroimaging initiative (J-ADNI)34,35 (N=470), the PharmaCog 

cohort36,37 (N=111) and the MEMENTO cohort38 (N=1,994). 

 

The study protocols were approved by the ethical committees of the university of southern California (ADNI), 

Austin Health, St Vincent’s Health, Hollywook Private Hospital and Edith Cowan University (AIBL), IRCCS 

Istituto Centro San Giovanni di Dio Fatebenefratelli (PharmaCog), Comité de protection des personnes sud-

ouest et outre-mer III (MEMENTO), the National Bioscience Database Center Human Database (J-ADNI). 

Informed consent forms were obtained from research participants. The research has been performed in 

accordance with the Declaration of Helsinki and relevant guidelines and regulations. Participants were not 

compensated for the current study. 

 

The five cohorts are longitudinal observational studies with an average observation period ranging from 2.0 

years for PHARMACOG to 4.8 years for ADNI, with an average number of visits ranging from 3.7 in AIBL to 

6.9 in MEMENTO. We considered all participants with at least one year of follow-up. The socio-demographic, 

genetic, biological and clinical characteristics of the selected participants are reported in Table 1 and 2, as well 

as the proportion of available data in each cohort. 

 

Neuropsychological assessments 

In our experiments, we considered the following neuropsychological assessments: 

- The mini-mental state examination39 (MMSE), 

- The Alzheimer’s disease assessment scale – cognitive subscale with 13 items40,46 (ADAS-Cog13), 

- The clinical dementia rating scale41,47 – sum of the boxes score (CDR-SB). 

Structural magnetic resonance imaging/anatomical imaging biomarkers 

We extracted cortical and subcortical volumes from three-dimensional T1-weighted magnetization-prepared 

rapid gradient-echo imaging (MPRAGE) sequences. 

 

For the ADNI study, scans were acquired in the standardized protocol for morphometric analyses 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). The ADNI MRI core processed raw scans, using 

Gradwarp for the correction of geometric distortion due to gradient nonlinearity48, B1-correction for the 

adjustment of image intensity inhomogeneity26, N3 bias field correction for reducing residual intensity 

inhomogeneity49,50, and geometric scaling for adjusting scanner- and session-specific calibration errors26,51. The 

same MRI protocol was also used in AIBL32, J-ADNI52, PharmaCog36, and MEMENTO38,53. 
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For all studies, cortical reconstruction and volumetric segmentation were performed with the Freesurfer image 

analysis suite (http://surfer.nmr.mgh.harvard.edu/). Version 5.3 was used for J-ADNI, MEMENTO and 

PharmaCog, and version 6.0 for ADNI and AIBL, operated within Clinica for reproducibility purposes54. The 

cohort effect in the following analyses accounts for possible differences due to different versions of the 

software.  

 

We calculated the mean volume of the left and right hippocampus, and the total volume of the lateral ventricles 

(including inferior lateral volume). Hippocampus segmentation with Freesurfer was previously reported to have 

good reproducibility55,56. Both volumes were normalized by estimated total intracranial volume (ICV).  

Cerebrospinal fluid biomarkers 

We used the concentrations in cerebrospinal fluid (CSF) of β-Amyloid 1–42 peptide (Aβ1–42), Tau protein, 

phosphorylated at the threonine 181 residue (p–Tau181), and total tau protein (t–Tau). 

 

ADNI used the automated Elecsys immunoassay (Roche); AIBL, PharmaCog and MEMENTO used 

INNOTEST single-analyte ELISA tests (Innogenetics/Fujirebio NV), and J-ADNI used the multiplex xMAP 

Luminex platform with the INNO-BIA AlzBio3 immuno-assay kit (Innogenetics/Fujirebio NV). 

 

We harmonized the measurements to account for the differences in immuno-assays and participants 

characteristics across cohorts. Within each cohort, we regressed each biomarker against age, APOE genotype, 

and CDR global score with a linear mixed model with random intercept. We then linearly transformed the 

measurements so that the intercept is 0 and the total variance is 1 for all cohorts. Harmonization equations used 

are listed in the Supplementary Table 6 for reproducibility purposes. 

Positron emission tomography/functional imaging biomarkers 

For ADNI participants, we used regional standardized uptake value ratios (SUVR) extracted from Amyloid PET 

scans ([18F]-Florbetapir and [18F]-Florbetaben radiotracers), and, starting from ADNI 3, Tau PET scans ([18F]-

AV-1451 radiotracer). Each PET scan was registered together with the MRI for the subject performed as close 

as possible to the PET scan in terms of time. 

 

For Amyloid PET, we used a cortical summary region consisting of the frontal, anterior/posterior cingulate, 

lateral parietal, and lateral temporal regions; data were normalized with a composite reference region consisting 

of the whole cerebellum, brainstem/pons, and eroded subcortical white matter57–59. These PET SUVR values 

were converted to the centiloid scale (CL)60 using equations from the literature61 listed in the Supplementary 

Table 6. In the AIBL cohort, the processed Amyloid PET SUVR data that correspond to the published centiloid 

conversion equations were not publicly available. In the MEMENTO cohort, Amyloid PET SUVR data are not 

directly comparable with ADNI data and equations for centiloid conversion were not available. Therefore, we 
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used Amyloid PET data on these cohorts only to define the Amyloid status of the participants, using 

pathological thresholds provided by these studies. 

 

For Tau PET, we used a volume-weighted average SUVR value for all anatomical Braak regions of interest (I-

VI)62, normalized against the inferior cerebellum gray matter63. 

A/T/N/C classification 

We classified participants with the A(myloid)/T(au)/N(eurodegeneration) classification64,65, together with a 

C(ogntion)/C(linical) group based on the Clinical Dementia Rating (CDR) global score (see the Supplementary 

Table 7 for all thresholds used). Participant category at a given visit was based on the patient’s all-time worst 

biomarker levels to date. Incomplete A/T/N/C profiles are denoted with a star after any of the biomarkers that 

could not be determined. 

Disease progression models 

We trained and tested two disease progression models: AD Course Map and RNN-AD. AD Course Map is built 

on the principles of a parametric Bayesian non-linear mixed-effects model21,22. RNN-AD is built on the 

principles of recurrent artificial neural networks24,66. The implementation of both models relies on the open-

source software that were made publicly available by their respective authors. 

 

Both models use the same set of endpoints as input: MMSE, CDR-SB, ADAS-Cog13, volume of the left and 

right hippocampus and lateral ventricles, CSF Aβ1–42 and p–tau181 levels, together with cortical-summary SUVR 

on Amyloid PET and Tau PET scans. They consider these endpoints at one or several visits of a participant, 

allowing for possible missing data, and predict the value of all these endpoints at any time-point in the future. 

AD Course Map also takes into account the age of the participant at each visit, while RNN-AD takes into 

account only the duration between two consecutive visits, irrespective of the age of the participant. In addition, 

RNN-AD needs the diagnosis of the participant at the corresponding visit, the diagnosis being cognitively 

normal, mild cognitive impairment or demented, as defined in the ADNI protocol. 

 

AD Course Map assumes that these endpoints follow a logistic progression curve during disease progression 

with distinct progression rate and age at the inflexion point21,22. It learns how this set of logistic curves need to 

be adjusted to fit individual data, by changing the dynamic of progression and disease presentation (i.e. the 

ordering and timing of progression among the endpoints. The shape and position of the reference set of logistic 

curves are the fixed effects, the parameters changing these curves to fit individual data are the random effects. 

The model parameters (fixed effects together with the mean and variance of the random effects) are estimated 

using a training data set containing the repeated measurements of a multitude of participants. After the training 

phase, the model is fit to the measurements of one test participant (outside the training test) at one or several 

visit, using the learnt distribution of the random effects as a regularizer. As a result, the model predicts a 

subject-specific set of logistic curves, which shows the value of each endpoint at any age of the participant. 
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By contrast, RNN-AD does not make any assumption on the life-long pattern of progression of the endpoints. It 

learns instead how the values of the endpoints will change in the next month given the values of the endpoint at 

a given time-point. The 1-month transition is assumed to be a non-linear function of the current value of the 

endpoints and the current diagnosis (e.g. artificial neurons). The parameters of this transition function are 

estimated using a training data set containing the repeated measurements of a multitude of participants. After the 

training phase, the measurements of one test participant (outside the training set) at one or several visits are used 

as input of the model. The model then computes the values of all the endpoints at each month in the future. 

 

AD Course Map can be trained and tested with missing data: the likelihood is optimized using the available data 

only. Model training is robust to missing data6, so we did not perform data imputation. By contrast, RNN-AD 

needs complete data at the baseline visit. We imputed missing data with the mean value of the endpoint in the 

training set, following authors’ recommendations24; missing data at subsequent visits are imputed recurrently 

using model predictions. 

 

Both models also need an internal step of data normalization. For AD Course Map, cognitive assessments were 

normalized to a 0 to +1 scale according to the theoretical minimum and maximum values of each assessment, 0 

representing the theoretical best value (unaffected participants) and +1 the worst possible value. Harmonized 

amyloid PET data are clipped between 0 and 100 and converted to a (0,1) scale. MRI, tau PET, and Harmonized 

CSF data were clipped at the first and last centile, and then linearly mapped to a (0,1) scale. For RNN-AD, 

normalization consists in a z-score transformation estimated from training data. 

 

Regardless of the normalization procedure, the outputs of the models are always converted back to the native 

scale (and unit) of the measurement before being analyzed (see Figure 1). Predicted values are therefore 

comparable with the true, non-normalized data. Forecast errors can be compared across methods that do not use 

the same normalization procedure. 

 

Validation procedure 

We split the data sets in two (see Supplementary Figure 1). We first considered the ADNI participants who were 

amyloid-positive according to CSF or PET data on at least one visit (shown in red in the Supplementary Figure 

1). We then kept the other ADNI participants and all participants from the four other cohorts as an external 

validation set (shown in in blue in the Supplementary Figure 1). 

 

We then split the amyloid positive ADNI participants in 5 random folds and trained AD Course Map and RNN-

AD using all available data of the participants in 4 out of the 5 folds, e.g. the training set. We repeated this 

procedure with another split, so that we ended up with 10 instances of each model. Each participant has been 

counted twice as a test subject in the left-out fold. Therefore, it can be used twice for evaluating prediction tasks 

with two different instances of each model. By contrast, each participant in the external validation set can be 

tested with 10 different instances of each model. In the following, we averaged the prediction made by the 2 

instances of the model for the participants in the test sets, and by the 10 instances for the participants in the 

external validation set. 
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The test subjects did not contribute to any model selection or hyperparameter tuning neither for AD Course Map 

nor for RNN-AD. Therefore, we pooled the forecasts of test subjects with the ones in the external validation set. 

 

Forecasting endpoints 

We aimed to assess the accuracy of each model to forecast the values of the endpoints of a participant in the test 

set or the external validation set. The general principle is to blind the latest data of the participant, use the 

unblinded data as input of the model, and compare the predicted value with the blinded data. 

 

We used a combinatorial procedure to generate prediction tasks, as described in the Supplementary Figure 1. 

Because we have multiple follow-up visits, we assessed several forecast errors for a single participant: we 

blinded the data of the participant except at one to three consecutive visits, we predict the individual trajectory 

using the unblinded data, and forecast the data at the blinded visits after the latest unblinded visit. We required 

that the participants are between 50 and 90 years old and have a CDR global of at most 2 at the latest unblinded 

visit to exclude severely demented participants, and that the blinded visits used to assess the forecast fall 

between 1.4 and 6.6 years after the latest unblinded visit. We computed the forecast error as the absolute 

difference between this value and the value of the endpoint at the follow-up visit concerned. 

Analysis of forecast errors 

We analyzed the distribution of mean absolute errors with a mixed-effects model. We corrected the errors for 

several possible cofounding factors and accounted for the fact that multiple forecasts originated from the same 

participant. In practice, for a given endpoint and a given model, we performed the following procedure 100 

times: 

- We randomly picked a subset of disjointed prediction tasks, namely predictions not sharing any 

common visit (neither the blinded visit to forecast, nor the unblinded visits used to forecast); 

- We fit a multivariate linear mixed-effects model with a random intercept for each individual, using the 

following categorical explanatory variables: A/T/N/C stage at prediction, cohort, number of APOE-ε4 

alleles, sex, level of education, number of unblinded visits, and continuous explanatory variables: 

actual patient’s age at prediction centered on 75 years and normalized by 7.5 years, years to prediction 

centered on three years and normalized by one year, mean time between unblinded visits centered on 

eight months and normalized by three months, percentage of missing data for the unblinded visits per 

modality. 

 

Education level was classified as low if the subject had followed no more than nine years of formal education 

and high if the subject had followed at least 16 years of education, in accordance with the guidelines of the 

international standard classification of education (ISCED) of the United Nations.  
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We derived the mean and empirical confidence interval for the model intercept (the mean absolute error 

adjusted for cofounding factors) and regression coefficients (association between the mean absolute errors and 

each cofounding factor). 

Comparison with alternative methods 

We also compared AD Course Map with two additional alternative methods. The first, the no-change prediction 

or last-observation-carried-forward method, forecasts the future value of an endpoint to be the same as it was at 

the last unblinded visit. The second method, the linear mixed model method, involved generating a linear 

mixed-effects model for each endpoint, regressing endpoint values against the age of the participant at the 

successive visits, with a random intercept and a random slope per subject. The model was fitted to an unseen 

participant with a maximum a posteriori estimator67. We used the same validation procedure for all models: AD 

Course Map, RNN-AD, no-change prediction and the linear mixed model. 

Clinical trial simulation, enrichment evaluation, and sample-size calculation 

We simulated clinical trials in subjects at risk of developing AD or at an early stage of AD, as described in 

Table 3. For each trial, we selected all pairs of visits from all participants in the five data sets satisfying the 

following criteria: 

- The primary endpoint of the trial was assessed at both visits, 

- The patient fulfilled the inclusion criteria and had none of the exclusion criteria of the trial at the 

baseline visit, 

- Visits were separated by the duration of the trial, with a certain tolerance, depending on the trial. 

 

For each pair of visits, the first was considered to be the baseline visit at inclusion and the second was 

considered to be the visit at the end of the trial. We did not take into account possible intermediate visits. 

Supplementary Table 8 summarizes the characteristics of participants included in all the simulated trials. 

 

We first evaluated our prognostic enrichment strategy from a diagnostic test standpoint. For each trial, we 

forecast the value of the primary endpoint at the follow-up visit from the baseline data only, using the procedure 

described above. We calculated the median value of the outcome (i.e. the annual rate of change between 

baseline and follow-up visit). Participants above this threshold were considered to be fast progressors and 

formed the target population to be identified. A threshold for predicted outcomes was used to split the 

population into two groups: one considered at high risk of progression and the other at low risk of progression. 

We let the low-risk vs. high-risk threshold vary and calculated the resulting receiver operator characteristic 

(ROC) curve. On this curve, we identified the point splitting the population into a low-risk and a high-risk group 

of equal sizes, which was used as the operating point. We determined confidence intervals by performing our 

analyses 100 times on half the samples selected at random. Within any given run, any visit of a patient was used 

no more than once. The regions of confidence around ROC curves were constructed graphically as envelopes of 

both sensitivity and specificity confidence intervals along thresholds. 
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We evaluated possible biases in the group at high risk of progression. We used a logistic regression predicting 

selection status from population covariates (age, sex, education, number of APOE-ε4 alleles), cohort, and 

missing baseline modalities, together with the true indicator of fast progression. This last binary predictor was 

included to check for biases emerging in addition to the biases naturally present in the target population. 

 

We then evaluated our prognostic enrichment strategy by calculating statistical power. We used a hypothetical 

individual treatment model: if the outcome actually worsened between baseline and follow-up for the 

participant, we changed the annual rate of change by the treatment effect, e.g. a 20% improvement of the annual 

rate of change. We did not apply a treatment effect if the participant improved between baseline and follow-up. 

For treatment effects ranging from 20% to 30%, we computed effect size (Cohen’s d) and sample size from a 

two-independent sample asymptotic t-test, with a 5% bilateral level of significance and 80% statistical power. 

We compared this sample size for the population selected with the trial inclusion criteria alone, and for the 

subpopulation identified as at high risk of progression. We reported the total sample size for two arms. We did 

not account for the drop-out rate in the calculation, as the goal was to compare statistical power with and 

without enrichment. 

 

In these two experiments, we compared the results obtained with those for a method selecting APOE-e4 carriers 

(heterozygous or homozygous) as participants at high risk of progression. We were unable to use this method 

for the trial targeting participants at risk of the onset of AD since this trial included only APOE-e4 carriers. 

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size. We considered all available data from all the 

cohorts and excluded only the data of the participants with less than one year of follow-up. The experiments 

were not randomized since only observational data were used. The investigators were not blinded to allocation 

during experiments and outcome assessment since only observational data were used. Simulations of clinical 

trials included a random unblinded allocation into treated and control arms with assessment of biases in sex, 

center, level of education and APOE genotype. 

 

DATA AVAILABILITY 

The ADNI and AIBL data used in this study are available in the database of the laboratory of neuroimaging at 

the university of Southern California under accession code at http://adni.loni.usc.edu. 

The J-ADNI data used in this study are available in the NBDC Human Database under accession code at 

http://humandbs.biosciencedbc.jp/en/. 

The PharmaCog data used in this study are available in the NeuGRID2 platform under access code at 

https://www.neugrid2.eu/ (https://doi.org/10.17616/R31NJN1E) 

The MEMENTO data used in this study are available in Dementia Platform UK under accession code at 

https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=MEMENTO 

Raw data and patient-level data that were generated in this study are protected and are not available due to data 

privacy laws and data use agreements. These data can be re-generated using the open-source software Leaspy 
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(see below) by anyone with an authorized access to the above third-party data. The data used to compute the 

statistics in this study are available in a dedicated Zenodo repository68. Source data are provided with this paper. 

CODE AVAILABILITY 

The statistical analysis of the forecast errors and the simulation of clinical trials were performed in Python. We 

used the Leaspy open-source software (https://gitlab.com/icm-institute/aramislab/leaspy) for training and testing 

AD Course Map, and the corresponding open-source software for RNN-AD 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Nguyen2020_RNNA

D. Linear mixed models were trained using the open-source statsmodels package69. The software code can be 

found in a dedicated Zenodo repository68. 
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 ADNI AIBL PHARMACOG J-ADNI MEMENTO 

Number of 

subjects 
1,652 460 111 470 1,994 

Number of 

visits 

6.1 ± 3.0  

[2, 17] 

3.7 ± 0.7  

[2, 4] 

5.1 ± 0.6  

[3, 7] 

5.1 ± 0.8  

[4, 6] 

6.9 ± 1.8  

[2, 9] 

Follow-up 

duration (y) 

4.8 ± 3.1  

[1.4, 15.2] 

4.1 ± 1.0  

[1.5, 4.5] 

2.0 ± 0.3  

[1.5, 3.0] 

2.7 ± 0.5  

[1.5, 3.0] 

3.8 ± 0.7  

[1.4, 5.2] 

Time 

between 

visits (m) 

11.3 ± 6.6  

[1.8, 62.8] 

18.2 ± 2.0  

[18.0, 54.0] 

6.0 ± 0.6 

[6.0, 18.0] 

7.8 ± 2.8  

[6.0, 24.0] 

7.7 ± 3.4  

[1.5, 53.7] 

Age at 

baseline (y) 

73.3 ± 7.0  

[55.1, 91.5] 

71.5 ± 7.1  

[55.3, 92.1] 

69.8 ± 7.4  

[50.5, 84.5] 

71.8 ± 6.7  

[30.0, 85.0] 

70.6 ± 8.6  

[32.5, 92.6] 

Female 771 (46.7 %) 247 (53.7 %) 63 (56.8 %) 247 (52.6 %) 1215 (60.9 %) 

Education level 

≤ 9 years 24 (1.5 %) 75 (16.3 %) 47 (42.3 %) 64 (13.6 %) 355 (17.8 %) 

Between 10 

and 15 years 
525 (31.8 %) 278 (60.4 %) 39 (35.1 %) 255 (54.3 %) 1016 (51.0 %) 

≥ 16 years 1103 (66.8 %) 107 (23.3 %) 25 (22.5 %) 151 (32.1 %) 571 (28.6 %) 

Missing     52 (2.6 %) 

APOE-ε4 copies 

0 917 (55.5 %) 295 (64.1 %) 56 (50.5 %) 251 (53.4 %) 1340 (67.2 %) 

1 588 (35.6 %) 138 (30.0 %) 41 (36.9 %) 176 (37.4 %) 500 (25.1 %) 

2 144 (8.7 %) 27 (5.9 %) 10 (9.0 %) 40 (8.5 %) 66 (3.3 %) 

Missing 3 (0.2 %)  4 (3.6 %) 3 (0.6 %) 88 (4.4 %) 

Diagnosis at baseline 

CU 649 (39.3 %) 365 (79.3 %)  140 (29.8 %) 831 (41.7 %) 

MCI 803 (48.6 %) 59 (12.8 %) 111 (100.0 %) 211 (44.9 %) 1163 (58.3 %) 

Dementia 200 (12.1 %) 36 (7.8 %)  119 (25.3 %)  

A/T/N/C profile (worst for all visits) 

A-T-N-C- 133 (8.1 %) 91 (19.8 %)  24 (5.1 %) 104 (5.2 %) 

A*T*N*C- 45 (2.7 %) 122 (26.5 %)  82 (17.4 %) 129 (6.5 %) 

A+T-N-C- 80 (4.8 %) 48 (10.4 %)  6 (1.3 %) 26 (1.3 %) 

A+T+N-C- 27 (1.6 %) 4 (0.9 %)  1 (0.2 %) 2 (0.1 %) 

A+T+N+C- 47 (2.8 %) 11 (2.4 %)  1 (0.2 %) 24 (1.2 %) 

A*T*N*C~ 80 (4.8 %) 52 (11.3 %) 2 (1.8 %) 95 (20.2 %) 880 (44.1 %) 

A+T+N+C~ 191 (11.6 %) 6 (1.3 %) 35 (31.5 %) 28 (6.0 %) 109 (5.5 %) 

A*T*N*C+ 111 (6.7 %) 49 (10.7 %)  124 (26.4 %) 118 (5.9 %) 
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A+T+N+C+ 300 (18.2 %) 10 (2.2 %) 5 (4.5 %) 45 (9.6 %) 40 (2.0 %) 

A+[T- or N-] 

C[~ or +] 
221 (13.4 %) 13 (2.8 %) 28 (25.2 %) 

15 (3.2 %) 
84 (4.2 %) 

A-T+ * 183 (11.1 %) 26 (5.7 %) 8 (7.2 %) 10 (2.1 %) 56 (2.8 %) 

A-T-N+C- 40 (2.4 %) 13 (2.8 %)  12 (2.6 %) 81 (4.1 %) 

A-T*N* 

C[~ or +] 
194 (11.7 %) 15 (3.3 %) 33 (29.7 %) 

27 (5.7 %) 
341 (17.1 %) 

 

Table 1 – Characteristics of study participants. Format for continuous variables: mean ± standard deviation [lowest, 

highest]. Stars in A(myloid)/T(au)/N(eurodegeneration)/C(linical) classification indicate unknown status (see 

Methods for details). (y) years, (m) months, APOE: Apolipoprotein E, CU: cognitively unimpaired (CDR=0 for 

MEMENTO), MCI: mild cognitive impairment (CDR=0.5 for MEMENTO), CDR: Clinical Dementia Rating. 

 ADNI AIBL PHARMACOG J-ADNI MEMENTO 

CDR  

(global) 

0.4 ± 0.5  

[0.0, 3.0] (96.6 %) 

0.2 ± 0.4  

[0.0, 3.0] (99.6 %) 

0.5 ± 0.1  

[0.0, 1.0] (88.4 %) 

0.5 ± 0.4  

[0.0, 3.0] (99.8 %) 

0.3 ± 0.3  

[0.0, 3.0] (96.9 %) 

CDR  

(sum of 

boxes) 

2.0 ± 2.8  

[0.0, 18.0]  

(96.6 %) 

0.9 ± 2.5  

[0.0, 18.0]  

(99.6 %) 

/ 

2.5 ± 2.6  

[0.0, 18.0]  

(99.8 %) 

0.8 ± 1.6  

[0.0, 18.0]  

(96.4 %) 

MMSE 

26.9 ± 3.9  

[0.0, 30.0]  

(94.9 %) 

27.5 ± 4.1  

[0.0, 30.0]  

(99.8 %) 

26.2 ± 2.7  

[10.0, 30.0] 

25.2 ± 4.1  

[1.0, 30.0]  

(99.8 %) 

27.8 ± 2.7  

[2.0, 30.0]  

(97.9 %) 

ADAS-Cog13 

16.4 ± 11.5  

[0.0, 85.0]  

(94.3 %) 

/ 

20.4 ± 7.7  

[2.7, 50.3]  

(97.1 %) 

19.8 ± 11.3  

[0.0, 68.0]  

(99.5 %) 

/ 

Lateral 

ventricles 

volume  

(% ICV) 

2.63 ± 1.26  

[0.57, 8.64]  

(42.6 %) 

2.48 ± 1.30  

[0.59, 7.44]  

(47.3 %) 

2.58 ± 1.12  

[0.74, 6.75]  

(97.7 %) 

2.65 ± 1.19  

[0.54, 9.79]  

(93.3 %) 

2.25 ± 1.16  

[0.36, 9.32]  

(25.2 %) 

Hippocampus 

volume  

(% ICV) 

0.47 ± 0.07  

[0.23, 0.72]  

(42.6 %) 

0.47 ± 0.06  

[0.26, 0.69]  

(47.4 %) 

0.46 ± 0.10  

[0.17, 0.67]  

(97.7 %) 

0.42 ± 0.09  

[0.16, 0.65]  

(93.3 %) 

0.48 ± 0.08  

[0.19, 0.87]  

(25.2 %) 

Abeta1-42 level 

in  

CSF (§) 

-0.35 ± 1.16  

[-1.97, 6.56]  

(25.6 %) 

0.61 ± 1.15  

[-1.51, 3.56]  

(7.1 %) 

-0.53 ± 1.17  

[-2.68, 2.53]  

(19.4 %) 

-0.23 ± 1.25  

[-2.57, 3.09]  

(12.7 %) 

-0.14 ± 1.10  

[-2.11, 3.16]  

(3.6 %) 

p-Tau181 level 

in CSF (§) 

0.22 ± 1.03  

[-1.19, 7.07]  

-0.34 ± 0.81  

[-1.96, 2.15]  

0.07 ± 1.02  

[-1.13, 4.59]  

0.13 ± 1.16  

[-1.62, 4.04]  

0.02 ± 1.04  

[-1.66, 6.74]  
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(25.6 %) (7.1 %) (19.4 %) (12.7 %) (3.6 %) 

Total Tau 

level in  

CSF (§) 

0.23 ± 1.02  

[-1.44, 6.19]  

(25.6 %) 

-0.89 ± 0.93  

[-1.89, 6.77]  

(7.1 %) 

0.07 ± 0.91  

[-1.02, 4.44]  

(19.4 %) 

/ 

-0.03 ± 1.07  

[-1.17, 5.97]  

(3.6 %) 

Amyloid PET 

(CL) 

36.6 ± 44.4  

[-33.6, 213.2] 

(28.2 %) 

/ (*) / / / (*) 

Tau PET  

(SUVR) 

1.58 ± 0.31  

[1.14, 4.64]  

(9.0 %) 

/ / / / 

Table 2 – Distribution of endpoints for study participants. Data is reported as mean value ± standard deviation 

[lowest, highest] (% available data when some data is missing), or “/” if variable is not available at all. CDR: 

Clinical Dementia Rating, MMSE: Mini Mental State Examination, ADAS-Cog13: Alzheimer’s Disease 

Assessment Scale – cognitive sub-scale (13 items), ICV: Intracranial volume, CSF: Cerebrospinal fluid, (§) in 

harmonized units (see Methods), PET: Positron emission tomography, CL: Centiloid Scale, (*) Amyloid PET data 

for the AIBL and MEMENTO cohorts were used only for the determination of the amyloid status, SUVR: 

Standardized Uptake Value Ratio.  
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Clinical trial 

description Inclusion/exclusion criteria 

Primary outcome 

(annual rate of 

change of ...) 

Trial duration 

window 

Inspiration from 

existing AD trial 

(ClinicalTrials.gov 

identifier) 

Participants at risk 

of AD onset 

- Age [59.9, 76.1] 

- CDR global = 0 

- MMSE ≥ 24 

- 1 risk factor of: 

  > Homozygous APOE-ε4 

  > Heterozygous APOE-ε4  

     & Amyloid + (*) 

 

MMSE 4 years  

± 12 months 

Novartis 

Generation S2 

(NCT03131453) 

Preclinical AD with 

high brain amyloid 

levels 

- Age [54.9, 81.1] 

- CDR global = 0 

- MMSE ≥ 27 

- Amyloid + (*) 

ADAS-Cog13 4 years  

± 12 months 

Eisai  

AHEAD A45 

(NCT04468659) 

Early AD  

with high 

brain amyloid levels 

- Age [49.9, 86.1] 

- CDR global = 0.5 

- MMSE ≥ 24 

- Amyloid + (*) 

- MMSE  

- CDR-SB  
 

1.5 years  

± 6 months 

Biogen  

EMERGE / ENGAGE 

(NCT02477800 & 

NCT02484547) 

Early AD  

with high  

brain tau levels 

- Age [54.9, 81.1] 

- CDR global = 0.5 

- p-Tau + (*) 

ADAS-Cog13 4.5 years  

± 6 months 

Janssen  

Autonomy  

(NCT04619420) 

MCI probably due to 

AD or mild AD 

- Age [54.9, 86.1] 

- CDR global = 0.5 or 1 

- From AD datasets 

MMSE 3 years  

± 9 months 

/ 

 * CSF or PET (worst visit to date)   

 

Table 3 – Description of the simulated trials. Six trials were simulated because we considered two possible 

primary outcomes for the trial targeting early Alzheimer’s disease (AD) with high brain amyloid levels (third 

row). MCI: mild cognitive impairment, AD: Alzheimer’s disease. 
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FIGURES 

 
Figure 1 – Disease progression models forecast the progression of endpoints from historical data of a 

participant. In this simplified example, the model has only 3 endpoints (Amyloid PET, Hippocampus volume 

and mini-mental state examination (MMSE)). The participant has been observed twice at 70 and 71 years old 

(colored crosses). After normalizing the data to a 0-1 scale (0 being the most normal and 1 the maximum 

pathological change), the model predicts the participant-specific progression curves. From these curves, one 

forecasts the values of the three endpoints in 4 years’ time (colored dots). As shown in this example, AD Course 

Map does not require imputation of missing data. In trial simulations, the curves are predicted from the data at a 

single time-point, e.g. the baseline. CL: Centiloid Scale, ICV: Intracranial volume. 

 

INPUT OUTPUT

O
R

IG
IN

A
L

SC
A

LE

Amyloid PET 70 CL / 90 CL

Hippocampus volume / 0.47 % ICV 0.43 % ICV
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Amyloid PET 0.7 / 0.9

Hippocampus volume / 0.5 0.6

MMSE 0.03 0.1 0.4
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Figure 2 – AD Course Map forecasts cognitive decline better than alternative methods. The mean absolute error 

is reported for the reference participant: a 75-year-old American woman from ADNI with an average level of 

education, no APOE-ε4 mutation and a A+T+N+C~ status (i.e. with CDR global of 0.5), for whom we forecast 

neuropsychological assessments in three years’ time, based on two past visits separated by eight months and for 

which all data were available. Box plots represent median value, first and third quartiles; whiskers represent the 

empirical 95% confidence interval. Statistics are computed for n=100 resampling of the validation set (see 

Methods). Source data are provided as a Source Data file. MAE: mean absolute error. 
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Figure 3 – Changes in forecast absolute errors depending on covariates. Results are presented for the forecast of 

ADAS-Cog13 with the AD Course Map. Panel a: changes due to forecast design (4 top rows, in brown), genetic 

and sociodemographic characteristics of the participant (rows 5 to 10, in blue), the cohort of the participant 

(rows 11 and 12, in pink), and missing data (rows 13 to 16, in gray). Panel b: changes due to 

A(myloid)/T(au)/N(eurodegeneration)/C(linical) status of the participant, grouped in: Alzheimer’s continuum at 

the top (8 top rows, in green), possible Alzheimer’s disease and concomitant non-Alzheimer’s pathologic 

change in between (row 9, in orange), and suspected non-Alzheimer’s pathophysiology (SNAP) at the bottom (3 

bottom rows, in gray). Coefficients below zero indicate a lower mean absolute error (MAE) (better forecast) 

than those for the reference participant and design. For example, if the reference participant comes from J-ADNI 

instead of ADNI, the prediction of ADAS-Cog13 is more accurate, resulting in a 0.63 point decrease in MAE 

(95% CI=[0.32, 0.96]). Box plots represent median value, first and third quartiles; whiskers represent the 

empirical 95% confidence interval. Statistics are computed for n=100 resampling of the validation set (see 

Methods). Source data are provided as a Source Data file. MAE: mean absolute error. 
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Figure 4 – Illustration of the prognostic enrichment procedure in a clinical trial. Participants are selected first 

using standard inclusion criteria and undergo a series of exams. A disease progression model, such as AD 

Course Map, then forecasts the progression of each participant’s data and predicts if the participant is likely to 

progress significantly during the trial, as measured by the predicted outcome change, which is the mini-mental 

state examination (MMSE) in this example. The treatment effect (e.g. a 25% reduction of the change of the 

MMSE during trial) leads to a greater effect size, and therefore a smaller sample size, on the group of predicted 

fast progressors compared to the group of predicted slow progressors or the two groups combined. As a result, 

one may demonstrate the treatment efficacy with fewer participants by monitoring only the group of predicted 

fast progressors. 
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Figure 5 – AD Course Map and RNN-AD select participants at risk of experiencing a worsening of the outcome 

during the trial. Receiver operating characteristic (ROC) curves are shown. They demonstrate the performance 

of AD Course Map and RNN-AD in selecting the group of participants with the largest change in primary 

outcome during follow-up. Shaded areas correspond to the empirical 95% confidence interval. The green circle 

and orange triangle on each curve correspond to selections splitting the participants in two equal groups, with 
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bars representing the 95% confidence intervals. The cross in gray gives the specificity and sensitivity when 

APOE-ε4 carriers (with 1 or 2 copies) are selected, with bars indicating the 95% confidence interval (note: the 

first trial includes only APOE-ε4 carriers, and there is, therefore, no gray cross). Statistics are computed for 

n=100 resampling of the validation set (see Methods). Source data are provided as a Source Data file. AUC: 

area under the ROC curve (mean ± standard deviation with 95% confidence interval). 
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Figure 6 – Enrichment based on AD Course Map significantly decreases the sample size for a hypothetical 

treatment effect ranging from 20% to 30%. Reported sample sizes are the total size for two arms. The light 

shaded areas represent the 95% confidence intervals and the dark shaded areas the 50% confidence interval 

around the median value. For all preclinical and early Alzheimer’s disease (AD) trials, enrichment based on AD 

Course Map significantly outperformed the enrichment based on APOE-ε4 carriership. Statistics are computed 

for n=100 resampling of the validation set (see Methods). Source data are provided as a Source Data file. 
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Supplementary Figure 1 Experimental protocol. Ten models were trained on 80% of the amyloid-positive participants from ADNI. 
Models were tested on hold-out amyloid positive ADNI participants, ADNI participants with unknown or negative amyloid status 
and participants from four external cohorts. For each test subject, a series of forecasts was made by partially blinding some of his 
visits. In this example, 10 forecasts are derived from a single participant having four visits. These predictions are split randomly 
into different sets, such that, in each set, the forecasts deriving from a given subject never share common visits. In this example, 
forecast 1 and 2 share a common visit: they are distributed in different sets, whereas forecasts 1 and 10 may be in the same set. 
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Supplementary Figure 2 Forecast of mini-mental state examination (MMSE) with AD Course Map: changes in absolute errors due 
to covariates. Left panel: changes due to forecast design (4 top rows, in brown), genetic and sociodemographic characteristics of 
the participant (rows 5 to 10, in blue), the cohort of the participant (rows 11 to 14, in pink), and missing data (rows 15 to 18, in 
gray). Right panel: changes due to A(myloid)/T(au)/N(eurodegeneration)/C(linical) status of the participant, grouped in: 
Alzheimer’s continuum at the top (8 top rows, in green), possible Alzheimer’s disease and concomitant non-Alzheimer’s pathologic 
change in between (row 9, in orange), suspected non-Alzheimer’s pathophysiology (SNAP) at the bottom (3 bottom row, in gray). 
A positive difference in mean absolute error (MAE) means forecasts are less accurate than for the reference participant 
(A+T+N+C~) and design. Box plots represent median value, first and third quartiles; whiskers represent the empirical 95% 
confidence interval. Statistics are computed for n=100 resampling of the validation set (see Methods). Source data are provided 
as a Source Data file. MAE: mean absolute error. 

  



 

Supplementary Figure 3 Forecast of the clinical dementia rating – sum of boxes (CDR-SB) with AD Course Map: changes in absolute 
errors due to covariates. Left panel: changes due to forecast design (4 top rows, in brown), genetic and sociodemographic 
characteristics of the participant (rows 5 to 10, in blue), the cohort of the participant (rows 11 to 13, in pink), and missing data 
(rows 14 to 17, in gray). Right panel, changes due to A(myloid)/T(au)/N(eurodegeneration)/C(linical) status of the participant, 
grouped in: Alzheimer’s continuum at the top (8 top rows, in green), possible Alzheimer’s disease and concomitant non-
Alzheimer’s pathologic change in between (row 9, in orange), suspected non-Alzheimer’s pathophysiology (SNAP) at the bottom 
(3 bottom row, in gray). A positive difference in mean absolute error (MAE) means forecasts are less accurate than for the 
reference participant (A+T+N+C~) and design. Box plots represent median value, first and third quartiles; whiskers represent the 
empirical 95% confidence interval. Statistics are computed for n=100 resampling of the validation set (see Methods). Source data 
are provided as a Source Data file. MAE: mean absolute error. 

 

  



  Supplementary Figure 4 Analysis of the biases in the population selected by AD Course Map as likely to be progressors for 
the considered outcome. For each panel, the first 4 rows (in blue) correspond to genetic and sociodemographic characteristics 
of the participant; rows 5 to 8 (in gray) correspond to missing data, and the last 4 rows (in pink) correspond to the cohort of 
the participant. Box plots represent median value, first and third quartiles; whiskers represent the empirical 95% confidence 
interval. Statistics are computed for n=100 resampling of the validation set (see Methods). Source data are provided as a 
Source Data file. 



 

Feature AD Course Map RNN-AD 

ADAS-Cog13 4.07 ± 0.20 [3.88, 4.35] 7.71 ± 0.72 [7.07, 8.28] 

MMSE 1.71 ± 0.04 [1.67, 1.74] 3.15 ± 0.23 [2.91, 3.38] 

CDR-SB 0.95 ± 0.11 [0.82, 1.07] 2.31 ± 0.23 [1.99, 2.57] 

Lateral ventricles volume (% ICV) 0.16 ± 0.01 [0.14, 0.17] 0.66 ± 0.13 [0.56, 0.75] 

Hippocampus volume (‰ ICV) 0.12 ± 0.00 [0.12, 0.12] 0.33 ± 0.04 [0.28, 0.37] 

Abeta1-42 level in CSF (§) 0.47 ± 0.02 [0.45, 0.49] 0.37 ± 0.08 [0.29, 0.48] 

p-Tau181 level in CSF (§) 0.69 ± 0.04 [0.65, 0.74] 0.51 ± 0.08 [0.43, 0.62] 

PET Amyloid (CL) 8.13 ± 3.50 [5.46, 13.47] 22.67 ± 1.93 [20.54, 24.40] 

PET Tau (SUVR) 0.24 ± 0.02 [0.22, 0.26] 0.29 ± 0.07 [0.21, 0.35] 

 
Supplementary Table 1 Goodness-of-fit of AD Course Map and RNN-AD. Root mean square errors between the predicted and 
observed endpoint in the training data set. Data is presented as mean ± standard deviation, with empirical 80% confidence interval 
on the n=10 models trained. Source data are provided as a Source Data file. ICV: Intracranial volume. (§) In harmonized units (see 
Methods). CL: Centiloid Scale. SUVR: Standard Uptake Value Ratio. 

 
 
 

Endpoint 

Models compared  
(left – right) 

Mean difference 
in adjusted MAE 

Mean difference 
in adjusted MAE 

(relative) 

P-value 
(empirical for 
n=100 runs) 

ADAS-
Cog13 

AD Course Map 

RNN-AD -0.55 -8.5% 0.07 

Linear mixed model -1.87 -23.9% < 0.01 

No-change prediction -2.87 -32.5% < 0.01 

RNN-AD 
Linear mixed model -1.32 -16.8% < 0.01 

No-change prediction -2.32 -26.2% < 0.01 

Linear mixed model No-change prediction -1.00 -11.3% < 0.01 

MMSE 

AD Course Map 

RNN-AD -0.20 -7.4% 0.01 

Linear mixed model -0.78 -23.4% < 0.01 

No-change prediction -0.99 -28.1% < 0.01 

RNN-AD 
Linear mixed model -0.57 -17.2% < 0.01 

No-change prediction -0.79 -22.3% < 0.01 

Linear mixed model No-change prediction -0.22 -6.2% < 0.01 

CDR-SB 

AD Course Map 

RNN-AD -0.10 -4.9% 0.12 

Linear mixed model -0.50 -21.1% < 0.01 

No-change prediction -0.67 -26.6% < 0.01 

RNN-AD 
Linear mixed model -0.40 -17.0% < 0.01 

No-change prediction -0.58 -22.8% < 0.01 

Linear mixed model No-change prediction -0.18 -7.0% < 0.01 

 
Supplementary Table 2 Comparison of forecast errors across models. The adjusted mean absolute error (MAE) is compared for 
all model pairs. AD Course Map significantly outperforms all alternative forecasting methods but RNN-AD for CDR-SB and ADAS-
Cog13. Statistics are computed for n=100 resampling of the validation set (see Methods). P-value is calculated from the empirical 
distribution of adjusted MAE paired differences (non-parametric two-sided test, p-values under 0.01 could not be estimated); no 
multiple comparison adjustment is performed. Source data are provided as a Source Data file (same data as for the Figure 2). 

 



Trial RNN-AD AD Course Map 

Participants at risk of AD onset (MMSE) 29.3 ± 8.3 [11.5, 41.6] 37.8 ± 7.0 [21.2, 48.1] 

Preclinical AD with high brain amyloid levels (ADAS-Cog13) 12.8 ± 3.1 [7.0, 18.7] 27.7 ± 3.5 [20.8, 34.7] 

Early AD with high brain amyloid levels (CDR-SB) 34.0 ± 1.3 [31.9, 36.8] 35.0 ± 1.2 [33.1, 36.9] 

Early AD with high brain amyloid levels (MMSE) 36.2 ± 1.3 [34.2, 39.1] 38.9 ± 1.4 [36.5, 41.9] 

Early AD with high brain tau levels (ADAS-Cog13) 34.9 ± 3.2 [29.5, 41.4] 47.2 ± 2.7 [42.1, 51.7] 

MCI probably due to AD or mild AD (MMSE) 32.0 ± 1.0 [30.4, 34.1] 44.4 ± 0.8 [42.7, 46.0] 
 

Supplementary Table 3 Pearson correlations (in %) between true outcome and prognosis score, for each simulated trial. Prognosis 
scores derived from AD Course Map always outperform the ones derived from RNN-AD. Data are presented as mean value ± 
standard deviation, with empirical 95% confidence interval. Statistics are computed for n=100 resampling of the validation set 
(see Methods). Source data are provided as a Source Data file.



Trial Target Prevalence 
(%) 

Selection Selected  
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Balanced 
Accuracy (%) 

Precision  
(%) 

NPV  
(%) 

LR+ LR- DOR 

Participants at 
risk of AD onset 

(MMSE) 

Patients with 
MMSE change 
greater than 0 
pt in 4 years 

67.5 ± 2.3 
[63.0, 71.9] 

AD Course Map 50.3 ± 2.3 
[45.8, 55.0] 

65.3 ± 3.2 
[59.2, 71.8] 

80.9 ± 3.6 
[74.6, 87.5] 

73.1 ± 2.7 
[68.1, 77.7] 

87.7 ± 2.4 
[83.7, 92.0] 

52.9 ± 4.1 
[44.7, 61.5] 

3.57 ± 0.80 
[2.41, 5.17] 

0.43 ± 0.05 
[0.34, 0.52] 

8.55 ± 2.66 
[4.66, 14.73] 

RNN-AD 50.6 ± 2.7 
[45.2, 56.3] 

66.0 ± 3.1 
[60.5, 71.9] 

81.4 ± 4.2 
[73.8, 89.5] 

73.7 ± 2.7 
[68.7, 79.4] 

88.1 ± 2.8 
[82.8, 93.6] 

53.6 ± 3.7 
[46.8, 59.4] 

3.78 ± 1.02 
[2.43, 6.43] 

0.42 ± 0.05 
[0.33, 0.51] 

9.32 ± 3.37 
[5.00, 18.39] 

Preclinical AD 
with high brain 
amyloid levels 
(ADAS-Cog13) 

Patients with 
ADAS-Cog13 

change 
greater than 
1.9 pts in 4 

years 

49.8 ± 1.5 
[47.3, 52.9] 

APOE-ε4 carriers 41.4 ± 0.8 
[40.3, 43.0] 

45.6 ± 1.7 
[42.0, 49.0] 

62.7 ± 1.9 
[59.3, 66.1] 

54.2 ± 1.6 
[51.4, 57.4] 

54.8 ± 2.3 
[50.3, 59.0] 

53.8 ± 2.2 
[49.6, 57.6] 

1.23 ± 0.10 
[1.07, 1.43] 

0.87 ± 0.05 
[0.78, 0.95] 

1.43 ± 0.19 
[1.12, 1.84] 

AD Course Map 49.4 ± 1.5 
[45.7, 52.3] 

58.6 ± 2.3 
[54.4, 62.4] 

59.7 ± 2.2 
[55.5, 64.0] 

59.1 ± 1.6 
[55.8, 62.1] 

59.1 ± 2.1 
[54.8, 63.5] 

59.2 ± 2.2 
[55.3, 63.1] 

1.46 ± 0.10 
[1.26, 1.64] 

0.69 ± 0.05 
[0.61, 0.79] 

2.12 ± 0.28 
[1.59, 2.68] 

RNN-AD 49.9 ± 1.5 
[47.2, 53.4] 

53.0 ± 2.2 
[49.1, 57.2] 

53.3 ± 2.6 
[48.1, 57.7] 

53.2 ± 1.9 
[49.2, 56.4] 

53.0 ± 2.8 
[47.6, 58.9] 

53.3 ± 2.0 
[49.5, 57.3] 

1.14 ± 0.09 
[0.97, 1.31] 

0.88 ± 0.07 
[0.78, 1.03] 

1.30 ± 0.20 
[0.94, 1.67] 

Early AD with 
high brain 

amyloid levels 
(CDR-SB) 

Patients with 
CDR-SB change 

greater than 
0.5 pt in 1.5 

years 

51.5 ± 0.8 
[50.3, 53.0] 

APOE-ε4 carriers 62.2 ± 0.4 
[61.5, 63.0] 

66.7 ± 0.7 
[65.5, 68.2] 

42.7 ± 0.9 
[40.9, 44.1] 

54.7 ± 0.7 
[53.3, 55.9] 

55.3 ± 1.0 
[53.7, 57.3] 

54.7 ± 1.1 
[52.7, 57.0] 

1.16 ± 0.03 
[1.11, 1.21] 

0.78 ± 0.03 
[0.73, 0.84] 

1.50 ± 0.09 
[1.33, 1.65] 

AD Course Map 52.3 ± 0.6 
[51.4, 53.5] 

66.2 ± 1.0 
[64.7, 68.0] 

62.4 ± 1.0 
[60.5, 64.4] 

64.3 ± 0.8 
[62.8, 65.9] 

65.1 ± 1.0 
[63.0, 67.1] 

63.5 ± 1.2 
[61.3, 65.8] 

1.76 ± 0.06 
[1.66, 1.87] 

0.54 ± 0.02 
[0.51, 0.58] 

3.26 ± 0.22 
[2.85, 3.73] 

RNN-AD 50.7 ± 0.6 
[49.5, 51.9] 

64.8 ± 1.0 
[62.7, 66.6] 

64.2 ± 1.2 
[61.7, 66.4] 

64.5 ± 0.9 
[62.8, 66.1] 

65.8 ± 1.2 
[63.4, 67.8] 

63.2 ± 1.2 
[60.9, 65.4] 

1.81 ± 0.07 
[1.68, 1.94] 

0.55 ± 0.02 
[0.51, 0.59] 

3.32 ± 0.26 
[2.86, 3.79] 

Early AD with 
high brain 

amyloid levels 
(MMSE) 

Patients with 
MMSE change 
greater than 
1.1 pts in 1.5 

years 

49.6 ± 0.7 
[48.2, 50.8] 

APOE-ε4 carriers 62.4 ± 0.4 
[61.8, 63.2] 

64.7 ± 0.9 
[62.9, 66.6] 

39.9 ± 0.9 
[38.2, 41.4] 

52.3 ± 0.8 
[50.7, 53.9] 

51.4 ± 0.9 
[49.9, 53.3] 

53.5 ± 1.3 
[50.9, 55.9] 

1.08 ± 0.03 
[1.02, 1.13] 

0.89 ± 0.04 
[0.81, 0.96] 

1.22 ± 0.08 
[1.06, 1.40] 

AD Course Map 49.6 ± 0.6 
[48.7, 50.6] 

63.6 ± 0.9 
[62.0, 65.2] 

64.1 ± 1.0 
[62.4, 66.0] 

63.8 ± 0.7 
[62.4, 65.0] 

63.5 ± 1.0 
[61.4, 65.3] 

64.2 ± 1.0 
[62.5, 66.2] 

1.77 ± 0.06 
[1.67, 1.88] 

0.57 ± 0.02 
[0.54, 0.60] 

3.12 ± 0.20 
[2.76, 3.46] 

RNN-AD 50.6 ± 0.7 
[49.2, 52.0] 

63.2 ± 1.0 
[61.1, 65.1] 

61.7 ± 1.1 
[59.3, 63.4] 

62.4 ± 0.8 
[60.7, 63.8] 

61.8 ± 1.1 
[59.6, 63.8] 

63.1 ± 1.1 
[61.2, 65.5] 

1.65 ± 0.06 
[1.52, 1.75] 

0.60 ± 0.02 
[0.56, 0.64] 

2.77 ± 0.19 
[2.39, 3.10] 

Early AD with 
high brain tau 

levels  
(ADAS-Cog13) 

Patients with 
ADAS-Cog13 

change 
greater than 
6.1 pts in 4.5 

years 

50.2 ± 2.0 
[46.5, 53.7] 

APOE-ε4 carriers 57.7 ± 1.9 
[54.5, 61.7] 

70.1 ± 2.6 
[65.4, 74.6] 

54.7 ± 2.3 
[50.4, 58.8] 

62.4 ± 1.7 
[59.0, 65.5] 

60.9 ± 2.6 
[55.5, 65.5] 

64.5 ± 2.5 
[60.3, 69.5] 

1.55 ± 0.10 
[1.37, 1.74] 

0.55 ± 0.05 
[0.46, 0.64] 

2.88 ± 0.43 
[2.12, 3.70] 

AD Course Map 49.3 ± 2.0 
[45.1, 53.3] 

69.5 ± 2.8 
[63.4, 74.5] 

71.0 ± 2.8 
[65.7, 76.5] 

70.3 ± 2.1 
[66.4, 74.2] 

70.7 ± 2.8 
[66.1, 76.6] 

69.8 ± 2.7 
[64.8, 75.1] 

2.42 ± 0.27 
[1.99, 3.09] 

0.43 ± 0.04 
[0.35, 0.52] 

5.74 ± 1.18 
[3.90, 8.40] 

RNN-AD 49.5 ± 2.0 
[46.3, 53.9] 

68.8 ± 2.6 
[64.3, 73.7] 

69.9 ± 2.6 
[65.2, 74.8] 

69.4 ± 1.8 
[66.2, 72.6] 

69.7 ± 2.8 
[65.0, 75.0] 

69.0 ± 2.3 
[64.8, 73.5] 

2.31 ± 0.23 
[1.94, 2.78] 

0.45 ± 0.04 
[0.38, 0.52] 

5.24 ± 0.92 
[3.83, 7.02] 

MCI probably 
due to AD or 

mild AD  
(MMSE) 

Patients with 
MMSE change 
greater than 

0.9 pt in 3 
years 

50.4 ± 0.3 
[49.7, 51.0] 

APOE-ε4 carriers 39.1 ± 0.2 
[38.7, 39.4] 

48.1 ± 0.4 
[47.3, 48.8] 

70.1 ± 0.4 
[69.5, 71.1] 

59.1 ± 0.4 
[58.5, 59.9] 

62.1 ± 0.6 
[61.0, 63.3] 

57.1 ± 0.5 
[56.1, 57.9] 

1.61 ± 0.04 
[1.56, 1.68] 

0.74 ± 0.01 
[0.72, 0.76] 

2.18 ± 0.08 
[2.06, 2.33] 

AD Course Map 49.2 ± 0.3 
[48.6, 49.9] 

63.6 ± 0.6 
[62.4, 64.5] 

65.4 ± 0.5 
[64.3, 66.5] 

64.5 ± 0.4 
[63.6, 65.3] 

65.2 ± 0.5 
[64.2, 66.1] 

63.9 ± 0.6 
[62.7, 65.0] 

1.84 ± 0.04 
[1.77, 1.91] 

0.56 ± 0.01 
[0.54, 0.58] 

3.31 ± 0.13 
[3.06, 3.54] 

RNN-AD 44.7 ± 0.4 
[44.1, 45.4] 

54.6 ± 0.6 
[53.5, 55.6] 

65.4 ± 0.6 
[64.3, 66.5] 

60.0 ± 0.5 
[59.0, 60.8] 

61.6 ± 0.6 
[60.6, 62.6] 

58.6 ± 0.5 
[57.4, 59.6] 

1.58 ± 0.04 
[1.51, 1.64] 

0.69 ± 0.01 
[0.67, 0.72] 

2.28 ± 0.09 
[2.09, 2.44] 

 

Supplementary Table 4 Classification metrics for the identification of fast progressors at entry into a trial. Data are presented as mean value ± SD, with empirical 95% CI. Statistics are computed 
for n=100 resampling of the validation set (see Methods). Source data are provided as a Source Data file. NPV: negative predictive value, LR: likelihood ratio, DOR: diagnostic odds ratio. 



 
Trial APOE-ε4 carriers Selection with RNN-AD Selection with AD Course Map 

Participants at risk of AD onset (MMSE) / -40.6 ± 7.2 [-53.6, -28.0] -50.2 ± 7.1 [-62.3, -33.3] 

Preclinical AD with high brain amyloid levels (ADAS-Cog13) -6.4 ± 5.8 [-16.2, 4.9] -20.5 ± 8.2 [-34.0, -5.6] -40.9 ± 4.9 [-49.0, -30.1] 

Early AD with high brain amyloid levels (CDR-SB) -13.0 ± 1.8 [-16.3, -9.0] -38.1 ± 1.7 [-41.4, -34.3] -38.1 ± 1.6 [-40.9, -35.1] 

Early AD with high brain amyloid levels (MMSE) -5.2 ± 2.3 [-9.4, -0.2] -42.1 ± 2.2 [-45.8, -37.6] -45.4 ± 2.0 [-49.3, -41.3] 

Early AD with high brain tau levels (ADAS-Cog13) -24.5 ± 3.4 [-30.5, -18.0] -41.2 ± 3.9 [-49.5, -34.7] -44.6 ± 3.9 [-52.2, -37.5] 

MCI probably due to AD or mild AD (MMSE) -37.7 ± 0.9 [-39.5, -35.9] -37.3 ± 1.1 [-39.2, -34.6] -43.1 ± 0.8 [-44.7, -41.4] 
 

Supplementary Table 5 Sample size ratio (in %) of enriched trials compared to sample size of trial without enrichment for a theoretical treatment effect of 25%. 
Enrichment with AD Course Map always outperforms enrichment based on alternatives; the corresponding sample size reductions range from 38% to 50%. Data 
are presented as mean value ± standard deviation, with empirical 95% confidence interval. Statistics are computed for n=100 resampling of the validation set (see 
Methods). Source data are provided as a Source Data file (the same data as for the Figure 6).  



 
Biomarker ADNI AIBL J-ADNI MEMENTO PHARMACOG 

Cortical-summary SUVR on 
Amyloid PET (Florbetapir) 

300.66	𝑥
− 	208.84	 /	 /	 /	 /	

Cortical-summary SUVR on 
Amyloid PET (Florbetaben) 

244.20	𝑥		
	−	170.80	 /	 /	 /	 /	

Abeta1-42  
level in CSF 

𝑥	 − 	1256.69	
536.74 	

𝑥	 − 	592.77
238.71 		

𝑥	 − 	396.82
125.04 	

𝑥	 − 	1082.91
365.57 	

𝑥	 − 	816.72
249.11 	

p-Tau181  
level in CSF 

𝑥	 − 	24.17
13.56 	

𝑥	 − 	69.56
23.86 	

𝑥	 − 	52.25
21.08 	

𝑥	 − 	63.41
29.41 	

𝑥	 − 	63.93
34.19 	

Total Tau  
level in CSF 

𝑥	 − 	257.53
122.93 	

𝑥	 − 	530.07
236.23 	 /	 𝑥	 − 	399.06

268.13 	
𝑥	 − 	439.96
338.91 	

 

Supplementary Table 6 Harmonization equations for CSF and Amyloid PET biomarkers when available. The CSF equations result 
from the cohort-wise adjustment model described in Methods section. 

 
 
 

Biomarker  
group 

Biomarker Positivity cutoff 

Amyloid 

Abeta1-42  
level in CSF 

< -0.5 (§) 

Cortical summary SUVR 
 on Amyloid PET 

> 30 CL 

Tau 

p-Tau181  
level in CSF 

> -0.1 (§) 

Cortical summary SUVR  
on Tau PET 

> 1.55 

Neurodegeneration 

Total Tau  
level in CSF 

> 0 (§) 

Normalized  
hippocampus volume 

< 0.47 (% ICV) 

Cognition / Clinical CDR Global 
C– [CDR = 0] 
C~ [CDR = 0.5] 
C+ [CDR ≥ 1] 

 
Supplementary Table 7 Biomarker cutoff points for defining A(myloid)/T(au)/N(eurodegeneration)/C(linical) profiles. For 
biomarker groups with multiple possible biomarkers, we considered the group to be positive if at least one biomarker was positive. 
We grouped very rare A/T/N/C combinations (less than 0.5%) together or under more frequent profiles. (§) Value in harmonized 
units (see Methods). CL: Centiloid Scale. ICV: Intracranial volume. 

 
 
  



Supplementary Table 8 Characteristics of participants included in the six simulated trials. ARC: annual rate of change. N.C.: not 
disclosed. Format for non-constant continuous variables: mean ± standard deviation [95% confidence interval] (% available). 

 
(a) Participants at risk of AD onset (MMSE) 

 
 Pooled ADNI AIBL J-ADNI MEMENTO 

Number of forecasts 197 110 19 5 63 

Number of subjects 69 38 9 5 17 

Number of forecasts per subject 2.9 ± 1.9 [1, 6] 2.9 ± 2.0 [1, 6] 2.1 ± 1.1 [1, 3] 1.0 ± 0.0 [1, 1] 3.7 ± 1.8 [1, 6] 

Trial duration (y) 3.6 ± 0.6 [3.0, 4.8] 3.8 ± 0.6 [3.0, 4.9] 3.4 ± 0.7 [3.0, 4.5] 3.0 ± 0.0 [3.0, 3.0] 3.5 ± 0.4 [3.0, 4.2] 

Age at screening 70.1 ± 4.2 
[61.7, 75.9] 

71.0 ± 3.3 
[65.4, 75.9] 

65.9 ± 3.0 
[62.0, 71.5] 

65.2 ± 4.3 
[60.1, 68.9] 

70.3 ± 5.0 
[61.1, 75.9] 

Female 64.0% 60.9% 57.9% 40.0% 73.0% 

Education level      

≤ 9 years 7.6% 0.9% 15.8%  17.5% 

Between 10 and 15 years 41.6% 35.5% 63.2% 60.0% 44.4% 

≥ 16 years 49.7% 63.6% 21.1% 40.0% 34.9% 

Missing 1.0%    3.2% 

APOE-ε4 copies      

1 73.1% 91.8% 21.1% 60.0% 57.1% 

2 26.9% 8.2% 78.9% 40.0% 42.9% 

A/T/N/C profile at inclusion      

A-T-N-C- 4.1% 1.8%   9.5% 

A*T*N*C- 18.3% 1.8% 78.9% 40.0% 27.0% 

A+T-N-C- 49.2% 55.5% 15.8% 60.0% 47.6% 

A+T+N-C- 12.7% 20.0% 5.3%  3.2% 

A+T+N+C- 15.7% 20.9%   12.7% 

Score distribution at inclusion      

CDR (global) 0 

CDR-SB 0.0 ± 0.1 [0.0, 0.5] 
(97.5 %) 0.0 ± 0.1 [0.0, 0.5] 0.0 ± 0.0 [0.0, 0.0] N.C. 0.1 ± 0.2 [0.0, 0.5] 

MMSE 28.9 ± 1.1 
[26.0, 30.0] 

28.9 ± 1.1 
[27.0, 30.0] 

28.8 ± 1.2 
[26.4, 30.0] 

28.8 ± 1.6 
[26.3, 30.0] 

28.8 ± 1.1 
[26.6, 30.0] 

ADAS-Cog13 
8.2 ± 4.1 

[1.6, 15.7] 
(55.8 %) 

8.2 ± 4.1 
[1.6, 15.7] / N.C. / 

ARC distribution      
Annual rate of change  

CDR-SB 
0.1 ± 0.3 [0.0, 0.9] 

(97.0 %) 
0.2 ± 0.3 [0.0, 1.1] 

(94.5 %) 0.0 ± 0.0 [0.0, 0.0] 0.1 ± 0.2 [0.0, 0.4] 0.1 ± 0.2 [0.0, 0.6] 

Annual rate of change  
MMSE 

-0.1 ± 0.5 
[-1.7, 0.7] 

-0.2 ± 0.6 
[-1.7, 0.7] 

0.1 ± 0.5 
[-1.0, 0.7] 

-0.5 ± 0.8 
[-1.6, 0.3] 

-0.1 ± 0.5 
[-1.5, 0.6] 

Annual rate of change  
ADAS-Cog13 

0.6 ± 1.6 
[-1.3, 4.3] (56.9 %) 

0.6 ± 1.5 
[-1.3, 4.0] (97.3 %) / 0.6 ± 2.4 

[-1.2, 4.3] / 

 
 
 
 
 
 
  



(b) Preclinical AD with high brain amyloid levels (ADAS-Cog13) 

 
 Pooled ADNI J-ADNI 

Number of forecasts 434 426 8 

Number of subjects 126 118 8 

Number of forecasts per subject 3.4 ± 2.9 [1, 12] 3.6 ± 2.9 [1, 12] 1.0 

Trial duration (y) 3.9 ± 0.6 
[3.0, 5.0] 

3.9 ± 0.6 
[3.0, 5.0] 

3.0 ± 0.0 
[3.0, 3.0] 

Age at screening 74.8 ± 4.4 
[65.4, 80.8] 

74.9 ± 4.3 
[65.7, 80.8] 

67.9 ± 5.2 
[61.5, 77.2] 

Female 53.9 % 54.2 % 37.5 % 

Education level    

≤ 9 years 1.6% 1.6%  

Between 10 and 15 years 30.2% 29.8% 50.0% 

≥ 16 years 68.2% 68.5% 50.0% 

APOE-ε4 copies    

0 59.4% 59.6% 50.0% 

1 36.9% 36.6% 50.0% 

2 3.7% 3.8%  

A/T/N/C profile at inclusion  

A+T-N-C- 53.7% 53.3% 75.0% 

A+T+N-C- 15.0% 15.0% 12.5% 

A+T+N+C- 31.3% 31.7% 12.5% 

Score distribution at inclusion    

CDR (global) 0 

CDR-SB 
0.1 ± 0.2 
[0.0, 0.5] 
(98.2 %) 

0.1 ± 0.2 
[0.0, 0.5] N.C. 

MMSE 29.2 ± 0.9 
[27.0, 30.0] 

29.2 ± 0.9 
[27.0, 30.0] 

29.2 ± 0.7 
[28.2, 30.0] 

ADAS-Cog13 
8.3 ± 4.2 

[1.0, 16.8] 
(98.2 %) 

8.3 ± 4.2 
[1.0, 16.8] N.C. 

ARC distribution    

Annual rate of change 
CDR-SB 

0.2 ± 0.3 
[0.0, 1.1] 
(96.5 %) 

0.2 ± 0.3 
[0.0, 1.1] 
(96.5 %) 

0.0 ± 0.0 
[0.0, 0.0] 

Annual rate of change  
MMSE 

-0.2 ± 0.6 
[-1.3, 0.6] 
(99.5 %) 

-0.2 ± 0.6 
[-1.4, 0.6] 
(99.5 %) 

-0.0 ± 0.5 
[-0.9, 0.6] 

Annual rate of change  
ADAS-Cog13 

0.7 ± 1.5 
[-1.5, 3.8] 

0.7 ± 1.5 
[-1.5, 3.9] 

-0.4 ± 1.0 
[-1.4, 1.5] 

 
 
 
 
 
  



(c) Early AD with high brain amyloid levels (MMSE) 

 
 Pooled ADNI AIBL J-ADNI MEMENTO PHARMACOG 

Number of forecasts 3,371 1,872 6 371 709 413 

Number of subjects 895 581 5 66 167 76 

Number of forecasts per subject 3.8 ± 2.6 
[1, 10] 

3.2 ± 2.2 
[1, 8] 

1.2 ± 0.4 
[1, 2] 

5.6 ± 2.8 
[1, 9] 

4.2 ± 3.0 
[1, 11] 

5.4 ± 2.8 
[1, 12] 

Trial duration (y) 1.4 ± 0.4 
[1.0, 2.0] 

1.4 ± 0.4 
[1.0, 2.0] 

1.5 ± 0.0 
[1.5, 1.5] 

1.4 ± 0.4 
[1.0, 2.0] 

1.4 ± 0.3 
[1.0, 2.0] 

1.3 ± 0.4 
[1.0, 2.0] 

Age at screening 73.3 ± 6.7 
[59.5, 84.5] 

74.0 ± 6.7 
[59.7, 84.8] 

76.9 ± 3.8 
[72.2, 82.6] 

72.8 ± 5.6 
[62.0, 83.0] 

73.0 ± 7.0 
[56.3, 83.7] 

71.0 ± 6.3 
[57.2, 82.5] 

Female 45.6% 41.0% 50.0% 46.1% 50.2% 57.9% 

Education level       

≤ 9 years 11.7% 0.8% 50.0% 11.1% 24.0% 40.2% 

Between 10 and 15 years 38.5% 33.1% 16.7% 52.3% 49.6% 32.0% 

≥ 16 years 49.3% 66.1% 33.3% 36.7% 24.3% 27.8% 

Missing 0.4%    2.1%  

APOE-ε4 copies       

0 36.0% 39.2% 50.0% 32.9% 33.0% 29.1% 

1 48.7% 44.7% 33.3% 54.2% 52.3% 55.9% 

2 13.6% 15.8% 16.7% 12.9% 9.3% 12.1% 

Missing 1.7% 0.3%   5.4% 2.9% 

A/T/N/C profile at inclusion       

A+T-N-C~ 17.9% 24.1%  7.0% 9.4% 14.3% 

A+T-N+C~ 12.5% 8.2%  15.1% 16.8% 22.5% 

A+T+N-C~ 10.5% 13.8% 33.3% 8.1% 3.1% 10.2% 

A+T+N+C~ 56.8% 52.8% 33.3% 69.0% 63.5% 53.0% 

A+T*N*C~ 2.3% 1.1% 33.3% 0.8% 7.2%  

Score distribution at inclusion       

CDR (global) 0.5 

CDR-SB 
1.5 ± 1.0 
[0.0, 4.0] 
(76.7 %) 

1.6 ± 1.1 
[0.0, 4.0] 

2.2 ± 1.8 
[0.1, 4.4] N.C. 1.1 ± 0.9 

[0.0, 3.5] / 

MMSE 27.3 ± 1.9 
[24.0, 30.0] 

27.5 ± 1.9 
[24.0, 30.0] 

26.5 ± 1.5 
[25.0, 28.8] 

26.4 ± 1.7 
[24.0, 30.0] 

27.4 ± 1.8 
[24.0, 30.0] 

26.6 ± 1.7 
[24.0, 30.0] 

ADAS-Cog13 
17.2 ± 7.4 
[4.0, 31.3] 
(67.7 %) 

16.6 ± 7.4 
[3.7, 31.0] 
(99.9 %) 

/ N.C. / 
19.7 ± 6.6 
[6.7, 33.9] 
(99.8 %) 

ARC distribution       

Annual rate of change  
CDR-SB 

0.6 ± 1.1 
[-1.0, 3.3] 
(85.8 %) 

0.5 ± 1.1 
[-1.0, 3.1] 
(98.9 %) 

0.5 ± 1.1 
[-0.9, 2.2] 

0.9 ± 1.2 
[-1.0, 3.8] 

0.5 ± 1.1 
[-0.9, 3.4] 
(93.7 %) 

/ 

Annual rate of change  
MMSE 

-0.9 ± 2.0 
[-5.6, 2.0] 

-0.8 ± 2.0 
[-5.5, 2.1] 

-0.8 ± 1.8 
[-3.2, 0.7] 

-1.7 ± 1.9 
[-5.9, 2.0] 

-0.8 ± 1.9 
[-5.3, 1.9] 

-0.7 ± 2.0 
[-6.0, 2.0] 

Annual rate of change  
ADAS-Cog13 

1.8 ± 4.3 
[-5.5, 11.7] 

(77.9 %) 

1.7 ± 4.4 
[-5.8, 12.0] 

(99.0 %) 
/ 2.4 ± 3.7 

[-4.3, 10.0] / 
1.6 ± 3.9 

[-5.1, 11.0] 
(97.1 %) 

 
 
 
 
 
  



(d) Early AD with high brain amyloid levels (CDR-SB) 

 
 Pooled ADNI AIBL J-ADNI MEMENTO 

Number of forecasts 2,934 1,894 6 371 663 

Number of subjects 824 589 5 66 164 

Number of forecasts per subject 3.6 ± 2.5 [1, 9] 3.2 ± 2.3 [1, 9] 1.2 ± 0.4 [1, 2] 5.6 ± 2.8 [1, 9] 4.0 ± 2.9 [1, 10] 

Trial duration (y) 1.4 ± 0.4 
[1.0, 2.0] 

1.4 ± 0.4 
[1.0, 2.0] 

1.5 ± 0.0 
[1.5, 1.5] 

1.4 ± 0.4 
[1.0, 2.0] 

1.4 ± 0.3 
[1.0, 2.0] 

Age at screening 73.7 ± 6.7 
[59.6, 84.6] 

74.1 ± 6.7 
[59.9, 84.9] 

76.9 ± 3.8 
[72.2, 82.6] 

72.8 ± 5.6 
[62.0, 83.0] 

72.9 ± 7.1 
[56.2, 84.0] 

Female 43.0% 40.2% 50.0% 46.1% 49.3% 

Education level      

≤ 9 years 7.7% 0.8% 50.0% 11.1% 25.0% 

Between 10 and 15 years 38.6% 32.9% 16.7% 52.3% 47.2% 

≥ 16 years 53.2% 66.3% 33.3% 36.7% 25.5% 

Missing 0.5%    2.3% 

APOE-ε4 copies      

0 37.0% 38.9% 50.0% 32.9% 33.6% 

1 47.4% 44.8% 33.3% 54.2% 51.3% 

2 14.1% 15.9% 16.7% 12.9% 9.4% 

Missing 1.5% 0.4%   5.7% 

A/T/N/C profile at inclusion  

A+T-N-C~ 18.5% 24.0%  7.0% 9.4% 

A+T-N+C~ 11.0% 7.9%  15.1% 17.5% 

A+T+N-C~ 10.8% 13.9% 33.3% 8.1% 3.3% 

A+T+N+C~ 57.1% 53.0% 33.3% 69.0% 62.3% 

A+T*N*C~ 2.7% 1.3% 33.3% 0.8% 7.5% 

Score distribution at inclusion      

CDR (global) 0.5 

CDR-SB 
1.5 ± 1.0 
[0.0, 4.0] 
(87.4 %) 

1.6 ± 1.1 
[0.0, 4.0] 

2.2 ± 1.8 
[0.1, 4.4] N.C. 1.1 ± 0.9 

[0.0, 3.5] 

MMSE 27.3 ± 1.9 
[24.0, 30.0] 

27.5 ± 1.9 
[24.0, 30.0] 

26.5 ± 1.5 
[25.0, 28.8] 

26.4 ± 1.7 
[24.0, 30.0] 

27.4 ± 1.8 
[24.0, 30.0] 

ADAS-Cog13 
16.7 ± 7.5 
[3.7, 31.2] 
(64.5 %) 

16.7 ± 7.5 
[3.7, 31.2] 
(99.9 %) 

/ N.C. / 

ARC distribution      
Annual rate of change  

CDR-SB 
0.6 ± 1.1 
[-1.0, 3.3] 

0.6 ± 1.1 
[-1.0, 3.3] 

0.5 ± 1.1 
[-0.9, 2.2] 

0.9 ± 1.2 
[-1.0, 3.8] 

0.5 ± 1.1 
[-1.0, 3.6] 

Annual rate of change  
MMSE 

-1.0 ± 2.0 
[-5.5, 2.0] 
(98.1 %) 

-0.8 ± 2.0 
[-5.5, 2.1] 
(97.4 %) 

-0.8 ± 1.8 
[-3.2, 0.7] 

-1.7 ± 1.9 
[-5.9, 2.0] 

-0.9 ± 1.9 
[-5.2, 1.9] 
(98.8 %) 

Annual rate of change  
ADAS-Cog13 

1.8 ± 4.4 
[-5.6, 11.7] 

(75.1 %) 

1.7 ± 4.5 
[-5.7, 12.0] 

(96.7 %) 
/ 2.4 ± 3.7 

[-4.3, 10.0] / 

 
 
  



(e) Early AD with high brain tau levels (ADAS-Cog13) 

 
 ADNI 

Number of forecasts 488 

Number of subjects 170 

Number of forecasts per subject  2.9 ± 2.0 [1, 8] 

Trial duration (y) 4.4 ± 0.3 [4.0, 5.0] 

Age at screening 72.0 ± 5.9 [58.1, 80.5] 

Female 41.6% 

Education level  

≤ 9 years 1.6% 

Between 10 and 15 years 38.5% 

≥ 16 years 59.8% 

APOE-ε4 copies  

0 41.2% 

1 44.7% 

2 14.1% 

A/T/N/C profile at inclusion  

A+T+N-C~ 16.4% 

A+T+N+C~ 53.3% 

A-T+ * 30.3% 

Score distribution at inclusion  

CDR (global) 0.5 

CDR-SB 1.5 ± 1.0 [0.0, 4.0] 

MMSE 27.4 ± 2.2 [22.0, 30.0] 

ADAS-Cog13 15.9 ± 6.8 [4.7, 28.6] 

ARC distribution  
Annual rate of change  

CDR-SB 0.5 ± 0.7 [-0.3, 2.3] (98.4 %) 

Annual rate of change  
MMSE -0.8 ± 1.1 [-3.9, 0.5] 

Annual rate of change  
ADAS-Cog13 2.0 ± 2.8 [-1.6, 9.7] 

 
 
  



(f) MCI probably due to AD or mild AD (MMSE) 

 

 
  

 Pooled ADNI AIBL J-ADNI MEMENTO PHARMACOG 
Number of forecasts 8,570 3,040 165 343 4,996 26 

Number of subjects 2,193 711 102 174 1,192 14 

Number of forecasts per subject 3.9 ± 2.7 
[1, 10] 

4.3 ± 2.9 
[1, 11] 

1.6 ± 0.5 
[1, 2] 

2.0 ± 0.2 
[1, 2] 

4.2 ± 2.7 
[1, 9] 

1.9 ± 1.0 
[1, 3] 

Trial duration (y) 2.9 ± 0.4 
[2.3, 3.6] 

3.0 ± 0.4 
[2.3, 3.6] 

3.0 ± 0.0 
[3.0, 3.0] 

2.8 ± 0.3 
[2.5, 3.0] 

2.9 ± 0.4 
[2.3, 3.6] 

2.6 ± 0.2 
[2.5, 3.0] 

Age at screening 72.6 ± 7.0 
[58.3, 84.7] 

73.6 ± 7.0 
[59.6, 85.0] 

74.2 ± 7.0 
[61.0, 85.2] 

73.5 ± 5.8 
[62.3, 83.2] 

71.9 ± 7.1 
[57.8, 84.5] 

72.3 ± 5.6 
[64.4, 82.2] 

Female 50.7 % 38.5 % 49.1 % 55.1 % 57.9 % 57.7 % 

Education level       

≤ 9 years 14.1 % 1.5 % 23.0 % 12.2 % 21.5 % 53.8 % 

Between 10 and 15 years 46.3 % 33.4 % 53.3 % 60.9 % 52.9 % 30.8 % 

≥ 16 years 37.8 % 65.1 % 23.6 % 26.8 % 22.5 % 15.4 % 

Missing 1.8 %    3.1 %  

APOE-ε4 copies       

0 57.9 % 52.0 % 45.5 % 45.8 % 63.0 % 30.8 % 

1 32.1 % 36.5 % 38.2 % 44.9 % 28.1 % 65.4 % 

2 7.6 % 11.4 % 16.4 % 8.7 % 4.9 % 3.8 % 

Missing 2.4 %   0.6 % 4.0 %  

A/T/N/C profile at inclusion       

A*T*N*C~ 57.6% 20.8% 84.8% 60.6% 79.1%  

A+T+N+C~ 12.7% 23.4%  18.4% 6.2% 34.6% 

A*T*N*C+ 2.0% 2.3% 13.3% 2.6% 1.4%  

A+T+N+C+ 1.3% 3.8%   0.0%  

A+[T- or N-]C[~ or +] 9.6% 21.0% 1.2% 7.6% 2.9% 53.8% 

A-T+ * 4.7% 8.5% 0.6% 2.9% 2.7% 7.7% 

A-T*N*C[~ or +] 11.9% 20.3%  7.9% 7.5% 3.8% 

Score distribution at inclusion       

CDR (global) 0.5 ± 0.1 
[0.5, 1.0] 

0.5 ± 0.1 
[0.5, 1.0] 

0.6 ± 0.2 
[0.5, 1.0] 

0.5 ± 0.1 
[0.5, 1.0] 

0.5 ± 0.1 
[0.5, 0.5] 

0.5 ± 0.0 
[0.5, 0.5] 

CDR-SB 
1.4 ± 1.2 
[0.5, 5.0] 
(95.7 %) 

1.9 ± 1.4 
[0.5, 5.5] 

2.0 ± 1.8 
[0.5, 6.0] 
(99.4 %) 

N.C. 1.1 ± 0.9 
[0.5, 4.0] / 

MMSE 27.3 ± 2.5 
[21.0, 30.0] 

27.2 ± 2.7 
[21.0, 30.0] 

25.5 ± 3.7 
[18.0, 30.0] 

26.1 ± 2.2 
[21.0, 30.0] 

27.5 ± 2.2 
[22.0, 30.0] 

27.4 ± 1.8 
[24.0, 30.0] 

ADAS-Cog13 
16.5 ± 8.2 
[3.3, 34.0] 
(35.7 %) 

16.4 ± 8.2 
[3.3, 34.0] 
(99.8 %) 

/ N.C. / 19.6 ± 4.1 
[11.3, 25.8] 

ARC distribution       

Annual rate of change 
CDR-SB 

0.4 ± 0.9 
[-0.5, 2.9] 
(95.9 %) 

0.5 ± 0.9 
[-0.5, 3.0] 
(98.2 %) 

1.0 ± 1.2 
[-0.3, 4.0] 
(99.4 %) 

1.1 ± 1.2 
[-0.2, 4.3] 
(98.3 %) 

0.2 ± 0.8 
[-0.6, 2.6] 
(94.7 %) 

/ 

Annual rate of change 
MMSE 

-0.5 ± 1.3 
[-4.0, 1.2] 

-0.7 ± 1.4 
[-4.4, 1.2] 

-1.3 ± 1.9 
[-6.0, 1.0] 

-1.3 ± 1.5 
[-5.5, 0.9] 

-0.4 ± 1.1 
[-3.5, 1.2] 

-0.5 ± 0.8 
[-1.6, 1.2] 

Annual rate of change 
ADAS-Cog13 

1.8 ± 3.1 
[-2.3, 10.3] 

(39.0 %) 

1.7 ± 3.1 
[-2.4, 10.4] 

(97.9 %) 
/ 2.7 ± 2.9 

[-1.7, 9.8] / 0.6 ± 1.7 
[-1.9, 3.3] 



Supplementary Table 9 The MEMENTO study group 
 

Name Degree Location Role 

Michèle Allard MD, PhD Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Xavier 
Arnozan, F-33000, Bordeaux, France Co-investigator 

Sandrine 
Andrieu MD, PhD Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital La Grave-

Casselardit, F-31000, Toulouse, France Co-investigator 

Pierre Anthony MD, PhD Memory Resource and Research Centre of Colmar, Hôpitaux Civils de Colmar, F-68000, 
Colmar, France Co-investigator 

Christine Astier MD Memory Resource and Research Centre of Strasbourg, Hôpitaux Universitaires de 
Strasbourg, F-67000, Strasbourg, France Co-investigator 

Alexandre 
Augier MD, PhD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-

93009, Bobigny, France Co-investigator 

Nicolas Auguste MD Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital de la 
Charité, F-42000, Saint-Etienne, France Co-investigator 

Sophie 
Auriacombe MD, PhD Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Pellegrin, F-

33000, Bordeaux, France Co-investigator 

John Avet MD, PhD Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital 
Nord, F-42000, Saint-Etienne, France Co-investigator 

Olivier Bailon MD, PhD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-
93009, Bobigny, France Co-investigator 

Fabrice-Guy 
Barral MD Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital 

Nord, F-42000, Saint-Etienne, France Co-investigator 

Jean Barré MD Memory Resource and Research Centre of Angers, CHU d’Angers, F-49000, Angers Co-investigator 
Annick 

Barthelaix MD, PhD Memory Resource and Research Centre of Angers, CHU d’Angers, F-49000, Angers Co-investigator 

Catherine Bayle MD Memory Resource and Research Centre of Paris Broca, AP-HP, Paris, France Co-investigator 

Olivier Beauchet  Memory Resource and Research Centre of Angers, CHU d’Angers, F-49000, Angers Co-investigator 

Catherine Belin MD, PhD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-
93009, Bobigny, France Co-investigator 

Samia Belkacem MD 

Institute of Memory and Alzheimer's Disease (IM2A), Centre for NeuroImaging Research 
(CENIR), Brain and Spine Institute (ICM), UMR S 1127, Department of Neurology, AP-HP, 
Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, 
Paris, France 

Co-investigator 

Douraied Ben 
Salem MD, PhD Memory Resource and Research Centre of Brest, CHRU de Brest, F-29000, Brest, France Co-investigator 

Karim Bennys MD Memory Resource and Research Centre of Montpellier, CHU de Montpellier, Hôpital Gui de 
Chauliac, F-34000, Montpellier, France Co-investigator 

Géraldine Bera MD 
Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm 
U1146, CNRS UMR 7371, France NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Paris, 
France 

Co-investigator 

Eric Berger MD Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, 
Hôpital Saint-Jacques, F-25000, Besançon, France Co-investigator 

Marc G Berger MD, PhD Memory Resource and Research Centre of Clermont-Ferrand, CHU de Clermont-Ferrand, F-
63000, Clermont-Ferrand, France Co-investigator 

Emilie Bergouin MD Memory Resource and Research Centre of Dijon, CHU Dijon Bourgogne, Hôpital du Bocage, 
Hôpital de Champmaillot, F-21000, Dijon, France Co-investigator 

François Bertin-
Hugault MD Memory Resource and Research Centre of Lyon, Hospices Civils de Lyon, Hôpital des 

Charpennes, F-69000, Lyon, France Co-investigator 

Guillaume 
Bertrand MD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-

93009, Bobigny, France Co-investigator 

François-Xavier 
Bertrand MD, PhD Memory Resource and Research Centre of Nantes, CHU de Nantes, F-44000, Nantes, France Co-investigator 

Catherine Beze MD Memory Resource and Research Centre of Center Region, CHRU de Tours, Hôpital 
Bretonneau, F-37000, Tours, France Co-investigator 

Valérie Boilet  Coordinating Centre, Inserm CIC-1401 Clinical Epidemiology, CHU de Bordeaux, F-33000, 
Bordeaux, France Co-investigator 

Stéphanie 
Bombois MD, PhD Memory Resource and Research Centre of Lille, CHRU de Lille, Hôpital Roger Salengro, F-

59000, Lille, France Co-investigator 

Alain Bonafé MD, PhD Memory Resource and Research Centre of Montpellier, CHU de Montpellier, Montpellier, 
France Co-investigator 

Yasmina Boudali MD Memory Resource and Research Centre of Paris Broca, AP-HP, Paris, France Co-investigator 
Hatem 

Bouhladour MD, PhD Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, 
Hôpital Saint-Jacques, F-25000, Besançon, France Co-investigator 

Clémence Boully MD Memory Resource and Research Centre of Paris Broca, AP-HP, Paris, France Co-investigator 



Isabelle 
Bourdel-

Marchasson 
MD, PhD Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Xavier 

Arnozan, F-33000, Bordeaux, France Co-investigator 

Vincent 
Bouteloup PharmD Coordinating Centre, Inserm CIC-1401 Clinical Epidemiology, CHU de Bordeaux, F-33000, 

Bordeaux, France Co-investigator 

Claire Boutet MD 

Institute of Memory and Alzheimer's Disease (IM2A), Centre for NeuroImaging Research 
(CENIR), Brain and Spine Institute (ICM), UMR S 1127, Department of Neurology, AP-HP, 
Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, 
Paris, France 

Co-investigator 

Serge Bracard MD, PhD Memory Resource and Research Centre of Nancy, CHU de Nancy, F-54000, Nancy, France Co-investigator 
Antoine 

Brangier MD Memory Resource and Research Centre of Angers, CHU d’Angers, F-49000, Angers Co-investigator 

Pierre-Yves 
Brillet MD, PhD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-

93009, Bobigny, France Co-investigator 

Laure Caillard MD Memory Resource and Research Centre of Paris Broca, AP-HP, Paris, France Co-investigator 

Fabienne Calvas MD Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital Purpan, F-
31000, Toulouse, France Co-investigator 

Agnès Camus MD Memory Resource and Research Centre of Dijon, CHU Dijon Bourgogne, Hôpital du Bocage, 
Hôpital de Champmaillot, F-21000, Dijon, France Co-investigator 

Vincent Camus MD, PhD Memory Resource and Research Centre of Center Region, CHRU de Tours, Hôpital 
Bretonneau, F-37000, Tours, France Co-investigator 

Sandrine 
Canaple MD Memory Resource and Research of Amiens, CHU Amiens Picardie, F-80000, Amiens, France Co-investigator 

Antoine 
Carpentier MD, PhD Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-

93009, Bobigny, France Co-investigator 

Pascaline 
Cassagnaud MD Memory Resource and Research Centre of Lille, CHRU de Lille, Hôpital Roger Salengro, F-

59000, Lille, France Co-investigator 

Françoise Cattin MD Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, 
Hôpital Saint-Jacques, F-25000, Besançon, France Co-investigator 

Ludivine 
Chamard MD Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, 

Hôpital Saint-Jacques, F-25000, Besançon, France Co-investigator 

Stéphane 
Chanalet MD Memory Resource and Research Centre of Nice, CHU de Nice, Hôpital Pasteur, F-06100, 

Nice, France Co-investigator 

Mathieu 
Chastan MD Memory Resource and Research Centre of Rouen, CLCC Henri Becquerel, Rouen, France Co-investigator 

Sophie 
Chauvelier MD Memory Resource and Research Centre of Paris Broca, AP-HP, Paris, France Co-investigator 
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