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A GOLDBERG-SACHS THEOREM AND THE GRAVITATIONAL MONOPOLES

Under certain technical assumptions we proved the following in Theorem (4.6): W + is degenerate for a compact Hermitian integral Gravitational monopole if and only if the integral Gravitational monopole is Kähler.

Introduction

In physics, particularly in the theory of gravitational waves (in the Lorentzian signature) the Petrov classifications of the Weyl curvature tensor is fundamental. Following this lead, Goldberg and Sachs in [cf.2] formulated their theorem Theorem 1.1. A vacuum metric R ab = 0, is algebraically special if and only if it contains shear-free null geodesic congruence; the tangent vectors to the congruence obey

(1.1) k [a W b]ijc k i k j = 0.
Here W abcd is the Weyl curvature tensor. A gravitational field is called "algebraically special (in the sense of the Petrov classification)" if there is a vector k ′a ̸ = 0 such that

(1.2) k ′a k ′c W abc[d k ′ e] = 0, k ′a k ′ a = 0.
There had been many attempts to find a Riemannian analogue of the original Goldberg-Sachs theorem (1.1), for say in [cf.3] they proved the following, Theorem 1.2. For a Hermitian manifold of real dimension 4 the self-dual part of the Weyl tensor W + is degenerate (that is at least two of its three eigenvalues are equal) if and only if the co-differential δW + satisfies (δW + )(X, Y, Z) ≡ 0 forall vector fields X, Y, Z of type (1,0), equivalently the (0, 2)-component (δW + ) -of δW + vanishes identically. If M is compact then both conditions are equivalent to locally conformally Kähler.

It is globally conformally Kähler if the first Betti number is even.

We shall use their results and prove the following theorem under the technical assumptions of Theorem (4.2) [cf.1]: Theorem 1.3. W + is degenerate for a compact Hermitian integral Gravitational monopole if and only if the integral Gravitational monopole is Kähler.

Technical Details

Let (M, J, g) be a Hermitian surface, i.e., a Hermitian manifold of real dimension four with complex structure J and Riemannian metric g such that g(JX, JY ) = g(X, Y ) for all vector fields X, Y . Let us denote by Ω 2-form on T * M defined by Ω(X, Y ) = g(JX, Y ). As J determines the orientation of M , the volume form dV = 1 2 Ω ∧ Ω. Now Ω satisfies dΩ = ω ∧ Ω with ω = -δΩ • J the Lee form of M . If ω = 0, then dΩ = 0, hence closed. Since Ω is non-degenerate as dV = 1 2 Ω ∧ Ω, we conclude Ω is Kähler. The converse follows immediately. Hence M is a Kähler surface if and only if ω = 0. M is locally conformally Kähler if and only if dω = 0; conformally Kähler if and only if ω = df for some smooth function f on M (with e -f g is Kähler metric).

Let ∇ be a Levi-Civita connection on M , R its curvature, ρ the Ricci tensor, and s the scalar curvature with respect to the metric g. The following notions are employed

R(X, Y )Z = [∇ X , ∇ Y ]Z -∇ [X,Y ] Z, ρ(X, Y ) = Tr(Z → R(Z, X)Y ), s = Tr ρ. (2.1)
The * -Ricci tensor ρ * and the * -scalar curvature s * of M is defined in the following way

(2.2) ρ * (X, Y ) = Tr(Z → R(X, JZ)JY ), s * = Tr ρ * .
The first Bianchi identity however implies that

(2.3) ρ * (X, Y ) = Tr(Z → 1 2 R(X, JY )JZ).
We showed in [cf.1] that for any Hermitian surface the following identity is true between the Ricci tensors

(2.4) ρ(X, Y ) -ρ * (X, Y ) = 1 2 (L(JX, JY ) -L(X, Y )) + s -s * 4 g(X, Y )
where

(2.5) L = ∇ω + 1 2 ω ⊗ ω.
More particularly

(2.6) ρ(X, Y ) + ρ(JX, JY ) -ρ * (X, Y ) -ρ * (JX, JY ) = s -s * 2 g(X, Y ).
The trace of (2.6) gives

(2.7) s -s * = 2δω + |ω| 2 .
Let us define 

Gravitational Monopoles

In [cf.4] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fibre at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomprphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c :

T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s. Definition 3.1. The twisted Dirac operator associated to (E, ∇ E ) is the operator, (3.1) / ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j ,
or, c (W + g ) ijkl e i ∧ e j = 1 4 ⟨e k • e l ψ, ψ⟩.

(3.

2)

The Weitzenböck's formula [START_REF] Bavnbek | Elliptic Boundary Problems for Dirac Operators[END_REF]: the decomposition of the Laplace-Beltrami operator as a generalized Laplacian is, with the left-Clifford multiplication ϵ l = ext l -int l , and corresponding right Clifford action ϵ r ,

(3.3) (d + d * ) 2 = ∆ ∧T * X - ijkl R ijkl ϵ i l ϵ j l ϵ k r ϵ l r + 1 4 s.
We keep in mind the Seiberg-Witten analysis, and analogously define and get the following definition of Gravitational-Monopole functional, Definition 3.2. The Gravitational-Monopole functional of a pair (ψ, g) is given by,

S(g, ψ) = X | / ∇ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g i.e., S(g, ψ) = X |(d + d * )ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g . (3.4) 
Proposition 1.

(3.5) S(g, ψ) = X |∇ψ| 2 + |W + | 2 + s 4 |ψ| 2 + 1 8 |ψ| 4 d(vol) g Proposition 2.
As a direct consequence of (1), if the scalar curvature of X is non-negative, all solutions of (3.2) have ψ ≡ 0.

The main Theorems

In the case of the Hermitian surface, it can be shown as an extension of the Lichnerowicz type argument by using (2) that s, s * ≤ 0. We impose s -s * ≤ 0 therefore M χ ≤ 0. We now have the following definition Definition 4.1. We call a Gravitational monopole integral Gravitational monopole if its scalar curvature defect is zero or a negative integer.

Therefore we have the following theorem after Theorem (2.1) (Theorem (4.2) is the main content of [cf.1]) Theorem 4.2. A Compact complex Hermitian surface which is also an integral Gravitational monopole is also a Kähler surface.

We have the Goldberg-Sachs theorem [cf.3] Theorem 4.3. For a Hermitian manifold of real dimension 4 the self-dual part of the Weyl tensor W + is degenerate (that is at least two of its three eigenvalues are equal) if and only if the co-differential δW + satisfies (δW + )(X, Y, Z) ≡ 0 forall vector fields X, Y, Z of type (1,0), equivalently the (0, 2)-component (δW + ) -of δW + vanishes identically. If M is compact then both conditions are equivalent to locally conformally Kähler. It is globally conformally Kähler if the first Betti number is even.

In particular Theorem 4.4. W + is degenerate for a complex compact Hermitian manifold M if and only if it is locally conformally Kähler.

The Theorem (4.2) says Theorem 4.5. A Compact complex Hermitian surface which is also an integral Gravitational monopole is also a Kähler surface. Now combining Theorem (4.4) and Theorem (4.5) (under the same condition as Theorem (4.2), that is χ ≤ 0 and integral) Theorem 4.6. W + is degenerate for a compact Hermitian integral Gravitational monopole if and only if the integral Gravitational monopole is Kähler.
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 21 .8) χ := s -s * χ is called the scalar curvature defect of M . The following theorem is known [cf.Theorem 2.1. A compact Hermitian surface with a nonpositive integral scalar curvature defect, namely (2.9) M χ ∈ Z, and, M χ ≤ 0, is a Kähler surface.