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HIGHLIGHTS 

 

• The EMT-inducer ZEB1 modulates the expression of CD70, a regulatory ligand from the 

tumor necrosis factor ligand family.  

• CD70 expression is enriched in pulmonary sarcomatoid carcinomas, a rare lung cancer 

subtype that is often associated with poor prognosis and resistance to systemic 

therapies.  

• In pulmonary sarcomatoid carcinomas, CD70 expression is associated with the 

acquisition of features of an immunosuppressive environment.  
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ABSTRACT 
 

Introduction: Epithelial-to-mesenchymal transition (EMT) is associated with tumor 

aggressiveness, drug resistance and poor survival in non-small cell lung cancer (NSCLC) and 

other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with 

NSCLCs that display a mesenchymal phenotype (mNSCLC), could help defining subgroups of 

patients who may benefit from treatment strategies using immunotherapy.   

Methods: We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, 

CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact 

of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA 

(n=1,018) and a dataset from MD Anderson Cancer Center (n=275) were analyzed. 

Independent validation was performed by immunohistochemistry and targeted-RNA sequencing 

in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas 

(SC, n=55).   

Results: We uncover that expression of CD70, a regulatory ligand from the tumor necrosis 

factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer 

ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 

overexpression was also evidenced in mNSCLC patient tumor samples and was particularly 

enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 

expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-

cell exhaustion markers.   

Conclusion: Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune-

escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis 

not only by increasing cancer cell plasticity, but also by reprogramming the immune response 

in the local tumor microenvironment.  
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INTRODUCTION 

 

Recent advances in the modulation of immune checkpoints (ICPs) or their ligands (ICPLs) have 

resulted in durable tumor regressions in different cancer types1–5. In non-small cell lung cancer 

(NSCLC), therapeutic blockade of programmed cell death 1 (PD-1), programmed death ligand-

1 (PD-L1), and cytotoxic T lymphocyte–associated protein 4 (CTLA-4) have demonstrated 

clinically meaningful antitumor activity in cases that do not harbor a targetable genomic 

alteration, even in heavily pre-treated patients.  

Epithelial-to-mesenchymal transition (EMT) is a fundamental embryonic process during which 

polarized epithelial cells acquire a more spindle-like mesenchymal morphology. This process is 

associated with increased cancer cell plasticity, invasiveness, resistance to therapy and poor 

prognosis in multiple cancers, including NSCLC 6–9. Generally, NSCLC displaying a 

mesenchymal phenotype (mNSCLC) are associated with an immunosuppressive 

microenvironment characterized by deregulated expression of immunoproteasome subunits, 

intratumoral CD8+ T-cell suppression (i.e. through the regulation of PD-L1) and higher levels of 

tumor infiltration by CD4+FOXP3+ regulatory T cells (Tregs) 10–13.   

Activation of EMT is orchestrated by a network of EMT-inducing transcription factors (EMT-TFs) 

that interact with epigenetic regulators to control the expression of proteins involved in cell 

polarity, cell–cell contact, cytoskeleton structure and extracellular matrix degradation14. The 

Zinc-finger E-box-binding Homeobox-1 (ZEB1) is a transcription factor that promotes EMT. 

Indeed, ZEB1-induced EMT is a critical event in lung cancer progression 15 and is also 

implicated in the regulation of the microRNA-200-dependent expression of PD-L1 on lung 

cancer cells 13.  

CD70 is a type-II transmembrane glycoprotein that functions as the regulatory ligand of CD27, 

a costimulatory receptor of the tumor necrosis factor (TNF) superfamily. CD70 is expressed 

on activated immune cells, including a broad range of T cells (naïve, αβ, γδ, and memory T 

cells), B cells, dendritic cells and NK cells 16,17. Interestingly, aberrant CD70 expression has 
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been described in solid tumors and lymphomas and is reported to induce local immune-

suppression in glioblastoma and renal cell carcinoma16,18.  

Here, we demonstrate that modulation of ZEB1 impacts the expression of CD70 in 

mesenchymal in vitro models of NSCLC. Further, we provide evidence that CD70 is upregulated 

in mNSCLC patient samples and is associated with an immunosuppressive tumor 

microenvironment. This finding is of particular importance in pulmonary sarcomatoid 

carcinomas, a lung cancer subtype with mesenchymal morphology, that is often associated with 

poor prognosis and resistance to chemotherapy 19,20, and that currently represents a relevant 

clinical challenge. Overall, our results highlight a novel concept that might have a direct impact 

on the development and use of immunotherapeutic strategies for EMT-driven tumors. 

 

METHODS 

 

In silico analysis 

Five independent datasets of NSCLC or human bronchial epithelial cell lines, with available 

gene expression data, were mined from public databases. Four sets were downloaded from 

Gene Expression Omnibus: 1- a set of 130 NSCLC cell lines included in the Cancer Cell Line 

Encyclopedia (GSE36133); 2- a set of 112 NSCLC and 30 immortalized human bronchial 

epithelial cells (HBEC); 3- a set of 275 lung tumors (GSE41271) including 183 lung 

adenocarcinomas (ADC), 80 lung squamous-cell carcinomas (SqCC), 4 pulmonary sarcomatoid 

carcinomas (SC) and 8 other lung tumors (3 large cell carcinomas, 2 adenosquamous, 1 with 

both small-cell and non-small-cell subtypes and 1 undifferentiated); and 4- a set of a HBEC 

genetically manipulated to overexpress ZEB1 (HBECZEB1) and its corresponding isogenic cells 

(HBECpMSCV) (GSE77925). Gene expression profiles of 517 lung ADC as well as 501 lung SqCC 

were downloaded from the Cancer Genome Atlas (TCGA) using the TCGA2STAT R package. 

Normalization of each dataset is described in Supplementary Methods.   
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Western-blot analysis  

Cells from subconfluent cultures were lysed and proteins were extracted by Laemmli lysis 

buffer. Antibodies included mouse monoclonal E-Cadherin clone 36 (1:1000) from BD 

Biosciences (San Jose, CA, USA), mouse monoclonal anti-vimentin clone v9 (1:500) from 

Dako-Agilent, (Carpinteria, CA, USA), rabbit polyclonal anti-ZEB1 clone H-102 (1:500) from 

Santa-Cruz Biotechnology(Dallas, TX, USA), mouse monoclonal anti-TWIST1 clone 

TWIST2C1a (1:50), rabbit monoclonal anti-actin clone EPR16769 (1:5000) and rabbit polyclonal 

anti-SNAIL+SLUG (1:1000) all from Abcam (Cambridge, UK) and anti-mouse and anti-rabbit 

HRP-secondary antibodies (1:3000) from Cell Signaling Technology. Actin immunostaining was 

revealed by ECL (Amersham) and the other protein immunostaining by ECL Clarity 

(Amersham).  

 

Gene reporter assays 

2x106 HEK293T cells were transfected by calcium phosphate precipitation with total lentiviral 

expression vectors (pCMVdeltaR8.91, phCMVG-VSVG and HPRM39432-LvPG04). The  pEZX-

LvPG04 contains the Gaussia luciferase reporter gene under control of the CD70 promoter 

(promoter Length: 1497 bp; sequence length upstream of TSS: 1363 bp; sequence length 

downstream of TSS: 133 bp) and SeAP as an internal control. Forty-eight hours after 

transfection, the supernatant was collected, filtered, supplemented with 5μg/ml polybrene 

(Sigma) and combined with 200,000 target cells (PC9 empty vector or PC9 ZEB1 expressing 

cells) for 5 h. At 72 h after infection, cells were treated with doxycycline (Sigma) was added in 

the cell medium at concentration of 1µg/ml for 48 h, supernatants were collected and subjected 

to the Secrete-Pair Dual Luminescence Assay (GeneCopoeia), according to the manufacturer's 

instructions. 

 

CRISPR/Cas 9 assay 

Cells transduction. HCC44 cells were infected with an all-in-one lentivirus expressing in the 

same plasmid the nuclease Cas9 and the sgRNA ZEB1. One target against ZEB1 gene was 
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used for this nuclease system. To produce all-in-one sgRNA ZEB1 or control lentiviral particles, 

2x106 HEK293T cells were transfected by Genejuice precipitation with 13.02µg of total lentiviral 

expression vectors [5.1µg of pCMVdeltaR8.91, 1.32µg phCMVG-VSVG and 6.6µg pLenti-U6-

human (target1) ZEB1 sgRNA-SFFV-Cas9 nuclease-2A-Puro (#K2671006, Applied Biological 

Materials) or pLenti-U6-Scrambled sgRNA-SFFV-Cas9 nuclease-2A-Puro (#K010, Applied 

Biological Materials)]. The pCMVdeltaR8.91 and phCMVG-VSVG vectors are gifts of Didier 

Nègre (International Center for Infectiology Research, Inserm U1111 - CNRS UMR5308 - ENS 

de Lyon - UCB Lyon1, EVIR Team, Lyon, France). 48 hours post-transfection, the supernatant 

was collected, filtered, supplemented with 5 µg/ml of polybrene (Sigma) and combined with the 

targeted cells for 6 hours. 48 hours following the infection cells were selected with puromycin 

(1 mg/ml). After transduction and antibiotic selection cells were cultured in limit dilution 

conditions to obtain single cells and then clonal populations. 

ZEB1 CRISPR Genomic Cleavage Detection. Confirmation of successful ZEB1 gene editing 

was obtained with the CRISPR Genomic Cleavage Detection Kit (#G932, Applied Biological 

Materials). CRISPR edited samples were used as a template in PCR reactions targeting the 

ZEB1 specific region of interest. The products were then denatured and reannealed to produce 

mismatches within the double strand. A detection enzyme was able to recognize such 

mismatches and cleaves the strands to produce band sizes that are distinguishable upon gel 

analysis. 

 

Immunohistochemistry analysis 

For immunohistochemical analyses (IHC), we used a cohort of 154 formalin-fixed paraffin-

embedded (FFPE) lung cancer specimens that included 52 ADC and 47 SqCC and 55 SC that 

were collected from patients who underwent surgical resection in the Department of Thoracic 

Surgery at Grenoble University Hospital or at the Nice University Hospital. All cases were well 

characterized in terms of clinical and pathological features. The Ethics Committees from each 

institution approved this study. 
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IHC staining was performed using an automated immunostainer (Benchmark Ultra, Roche, 

Meylan, France) on full tumor sections from FFPE blocks using antibodies against CD70 

Abcam, ab133398), ZEB1 (BETHYL Laboratories, IHC-00419), CD3 (Roche Diagnostics, 

5278422001), CD8 (Roche Diagnostics, 5937248001) and FOXP3 (Abcam, ab99963).  

Microscopic quantification of expression was used to calculate the H- score (% of positive cells 

x intensity ranging from 1 to 3). Expression scores were based on the whole section 

examination, by an expert thoracic pathologist (SL). The number of cells per mm2 expressing 

CD3, CD8 and FOXP3 were also quantified using the Cytonuclear IHC module of the HALO 

Image analysis Platform (Indica Labs, USA). 

 

Bioinformatics and Statistical analyses 

Bioinformatics analyses were performed using the Array Studio software (Omicsoft Corporation, 

Research Triangle Park, NC, USA) and the R language. Raw data from affymetrix microarrays 

were processed using quantile normalization and the robust multi-array average (RMA) 

algorithm and were log2 transformed 21. For samples from TCGA, we downloaded normalized 

read counts (RPKM) that we then log2 transformed.  

Unsupervised hierarchical cluster analysis of CCLE cell lines with ICPLs was performed using 

the Pearson correlation coefficient and Ward linkage method. In each dataset included in the 

study, gene expression levels of CD70 and EMT-TFs: ZEB1/ZEB2, SNAI1/SLUG, 

TWIST1/TWIST2 were extracted. Using the single-sample Gene Set Enrichment Analysis 

(ssGSEA) tool 21–23, we computed in each sample an enrichment score (ES) of a previously 

published pancancer EMT signature 11, including 52  and 25 genes overexpressed and 

underexpressed respectively in mesenchymal compared to epithelial samples. Using this tool, 

the gene expression values for a given sample were rank-normalized, and an ES was produced 

using the empirical cumulative distribution functions of the genes in the gene signature and the 

remaining genes. The EMT score was computed as the following: ESUP genes – ESDN genes. 

Thus, consistently with previous description of the signature, samples with a negative score 

were classified “epithelial” whereas a positive score defined “mesenchymal” samples. Summary 
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statistics, including median and range values, were used to describe the distribution of genes 

in different datasets. In the CCLE dataset, groups were compared using the Kruskal-Wallis test. 

In both cases, a q-value was computed to take into account multiple comparisons.  

Statistical analyses were conducted using GraphPad Prism version 7.0 (GraphPad). An 

unpaired t test was used for comparisons between two-group means, where the data could be 

assumed to have been sampled from populations with normal (or approximately normal) 

distributions. All P values were two tailed, and for all analyses, P < 0.05 was considered 

statistically significant. To assess significant correlations between CD70, the EMT-related 

transcription factors of the EMT-pancancer signature, a Spearman’s correlation was performed. 

 

 

RESULTS 

 

CD70 expression is elevated in mesenchymal non-small cell lung cancer cell lines 

Gene expression levels of 12 immune-checkpoint ligands (ICPLs) were evaluated across 130 

NSCLC cell lines from the cancer cell line encyclopedia (CCLE) and subjected to unsupervised 

clustering analysis (Fig. 1a). Three prominent broad clusters were observed on the basis of 

significantly high ICPL expression and included CD70 (TNFSF7), CD274 (PD-L1) and VTCN1 

(B7H4). Since increased expression of immune checkpoints and other druggable immune 

targets has been correlated with EMT in a variety of human cancers 11; we determined whether 

the pattern of ICPLs expression we observed was associated with the acquisition of 

mesenchymal properties in NSCLC cell lines.  

Assessment of the epithelial or mesenchymal status of these cell lines was performed with the 

single sample Gene Set Enrichment Analysis (ssGSEA) tool, using a patient-derived EMT 

signature reported previously 11. Using this signature, mesenchymal cells are defined by an 

EMT score > 0. We observed that mesenchymal cells (n=32) expressed significantly higher 

levels of CD70 when compared to epithelial NSCLC cell lines (n=98; Mann Whitney Test P < 

0.0001, Fig. 1b). TNFSF4 (OX40L) was also increased in mesenchymal NSCLC cell lines 
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(Supplementary Figure 1A, Mann Whitney Test P < 0.0001). CD274 was not differentially 

expressed between epithelial and mesenchymal NSCLC cell lines, and expression of VTCN1 

was enriched in epithelial cells (Supplementary Figure 1A). Increased CD70 expression was 

also confirmed in a set of 112 non-overlapping cell lines (55 epithelial and 57 mesenchymal) 

from the GSE32036 dataset (Supplementary Figure 1B).  

To confirm that mesenchymal cell lines harbor increased levels of CD70, the EMT status of 4 

selected NSCLC cell lines was evaluated through the analysis of the protein levels of known 

epithelial and mesenchymal markers. Consistently with microarray data (Fig. 1a), H3255 and 

H441 cells presented an epithelial phenotype while HCC44 and H23 were mesenchymal (Fig. 

1c). To assess whether CD70 was associated with the mesenchymal status in these cell lines, 

we analyzed CD70 protein expression by flow cytometry. In line with the in silico data, our results 

evidenced higher CD70 expression in the mesenchymal HCC44 and H23 cell lines (MFI of 23.8 

and 28.9, respectively) compared to cell lines with epithelial phenotype (MFI of 3.8 and 3.9, 

respectively, Fig. 1d,e). Further, gene reporter assays demonstrated that the activity of the 

human CD70 promoter was increased in the HCC44 cell line (mesenchymal) when compared 

to the H3255 (epithelial) (Supplementary Figure 1C). 

Analysis of publicly available data in the GEO database on the time-dependent global gene 

expression during TGFβ-induced EMT (GSE17708) yielded concurrent findings of increased 

CD70 expression in the A549 NSCLC cell line (intermediate mesenchymal) after 72 hours of 

treatment with TGF-β (Supplementary Figure 1D). Finally, a slight increase in CD70 

expression was observed in a model of acquired resistance to erlotinib, derived from the 

HCC4006 NSCLC cells, that undergo EMT in a TGF-β-independent fashion 24,25 

(Supplementary Figure 1E,F).  

Collectively, these results suggest that CD70 is highly expressed in mesenchymal NSCLC cell 

line models.  

 

 

Modulation of ZEB1 expression in vitro impacts CD70 expression  
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The transcription factor ZEB1 is a master inducer of EMT and invasiveness, tumor initiation and 

cancer cell plasticity 14. ZEB1 drives drug adaptation and phenotypic resistance to MAPK 

inhibitors in melanoma 9 and EMT-related acquired resistance to EGFR inhibitors in lung 

adenocarcinomas 25. Moreover, ZEB1 expression has been shown to be an early, critical event 

in lung cancer pathogenesis 26. Based on these observations we hypothesized that ZEB1 

modulation in vitro played a role in CD70 expression.  

We used publicly available transcriptome sequencing data from an in vitro model of pre-

neoplastic human bronchial epithelial cells (HBECs) that were genetically manipulated to 

overexpress ZEB1 (HBECZEB1) 26. We evaluated the EMT score 11  for the HBECZEB1 cells as 

well as for their corresponding isogenic cells (HBECpMSCV), as indicated previously 11. We 

confirmed that HBECpMSCV cells were “epithelial” and that expression of ZEB1 in the HBECZEB1 

cells resulted in a shift towards a “mesenchymal” score (Fig. 2a). Interestingly, we found that 

CD70 was the 9th most differentially expressed gene in HBECZEB1 when compared with the 

HBECpMSCV (Fig. 2b), after genes involved in histone hyperacetylation, metabolism of 

corticosteroids, cell differentiation, cell adhesion, migration, angiogenesis, tissue 

morphogenesis and growth suppression.  

In order to study the effect of ZEB1 modulation on the expression of CD70 in vitro, we generated 

a CRISPR/Cas9-mediated knockdown of ZEB1 in HCC44 cells (lung cancer, mesenchymal) 

(Supplementary Figure 2). ZEB1 knockdown resulted in a strong decrease in ZEB1 expression 

and up-regulation of E-cadherin, a known epithelial marker, in the three HCC44 sgZEB1 clones, 

when compared to the control (Fig. 2c). In line with our in silico observations, CD70 expression 

was down regulated in the sgZEB1 clones #1 and #2 (MFI of 15.2 and 28.2, respectively) 

compared to the control MFI of 42.7, Fig. 2d). In sgZEB1 clone #3 the change in CD70 

expression, when compared to control, was not significant (Fig. 2d). As an orthogonal 

experiment, we used a lentiviral system to overexpress ZEB1 in the epithelial PC9 lung cancer 

cell line. In this model, ZEB1 overexpression was observed at the mRNA and protein levels 

were observed, when compared to control, and was coupled with an increase of the 

mesenchymal marker, vimentin (Fig. 2e). Further, increased ZEB1 expression resulted in the 
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activation of the human CD70 promoter (Fig. 2f) and a subsequent increase in CD70 mRNA 

expression (Fig. 2g), when compared to control PC9 cells.  

Overall, these observations demonstrate that ZEB1 regulates the expression of CD70 in NSCLC 

in vitro.  

 

Inhibition of CD70 expression in vitro 

To investigate the impact of modulating CD70 expression in mNSCLC in vitro, we assessed the 

expression of EMT-related factors, as well as the transcriptional changes and their predicted 

networks after silencing CD70 (siRNA) in CD70HIGH mesenchymal lung cancer cell lines. CD70 

knock-down resulted in increased expression of Zeb1 in HCC44 cells, which was not observed 

in H23 cells (Fig. 3a). The expression of vimentin was not altered upon CD70 silencing.  

Differential gene expression analyses in HCC44 cells evidenced 118 upregulated and 158 

downregulated genes upon CD70 knockdown in HCC44 cells (Log2FC > 0, adjusted p-value > 

0.05). CD70 deregulation, in both HCC44 and H23 cells, was associated with decreased 

expression of Gasdermin B (GSDMB), which is implicated in the regulation of apoptosis in 

epithelial cells and constitutes a key downstream mediator of granzyme-mediated cell death. 

Following CD70 knockdown, HCC44 cells displayed increased expression of TNFSF10 (TNF 

ligand superfamily member 10), involved in cancer cell apoptosis by binding to and activating 

signaling by trimeric death receptors; and VCAM1 (Vascular Cell Adhesion Molecule 1) which 

mediates leukocyte-endothelial cell adhesion and signal transduction.  

Top modulated pathways showed that silencing CD70 in HCC44 cells results in enrichment of 

cellular programs associated with DNA repair, DNA replication, glycolysis, TNF-alpha signaling 

and angiogenesis (Fig. 3b), while transcriptomic signatures of regulation of double-strand break 

repair were diminished. Intriguingly, and in line with the ZEB1 protein expression pattern 

observed previously (Fig. 3a), CD70 silencing was associated with an enrichment of an EMT 

signature in HCC44 cells, potentially suggesting a feedback loop and reciprocal regulation 

between CD70 and ZEB1 in this model.  
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While these data are limited, they suggest that CD70 might be implicated in molecular 

processes associated to granzyme-mediated cell death, DNA repair, angiogenesis and 

glycolysis, in mesenchymal lung cancer models.  

 

Increased CD70 expression is observed in mesenchymal lung carcinomas 

To study the expression of CD70 in "epithelial" and "mesenchymal" NSCLC, mRNA expression 

data from the lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) TCGA 

datasets were analyzed. The EMT status was assessed according to the EMT pan-cancer 

signature reported previously 11. Consistent with our findings in cell lines, we evidenced 

significantly higher levels of CD70 mRNA expression in mesenchymal tumors as compared with 

epithelial tumors in both lung ADC (Mann Whitney Test P<0.0001, Fig. 4a) and lung SqCC 

(Mann Whitney Test P<0.0001, Fig. 4b). In line with these results, we evidenced a significant 

correlation between CD70 and the expression levels of the EMT transcription factors ZEB1/2, 

TWIST1/2 and SNAI1 (Supplementary Table S1). Moreover, the expression of CDH1, an 

epithelial marker, negatively correlated with CD70 mRNA expression in these datasets 

(Supplementary Table S1).  

The significant increase in CD70 expression observed in mesenchymal lung ADC was validated 

in an independent dataset (GSE41271) (Mann Whitney Test P<0.0001, Fig. 4c), where we also 

observed a non-significant trend towards higher CD70 expression in mesenchymal SqCC when 

compared with epithelial SqCC (Mann Whitney Test P=0.064, Fig. 4c). Interestingly, in this 

dataset, CD70 expression was particularly higher in the group of pulmonary sarcomatoid 

carcinomas (n=4) when compared to other mesenchymal NSCLC (P<0.01, Fig. 4c). Further, 

CD70 expression proved to be enriched in lung tumors when compared to normal pulmonary 

tissue in three independent datasets (Fig. 4d).  

Taken together, our data suggests that mesenchymal lung tumors, and in particular pulmonary 

sarcomatoid carcinomas, show increased levels of CD70 mRNA expression compared epithelial 

lung tumors. 
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Increased CD70 expression in pulmonary sarcomatoid carcinomas is associated with the 

presence of cancer cells with a mesenchymal phenotype  

Sarcomatoid carcinomas of the lung are rare tumors with an incidence estimated between 2% 

to 3% of all lung malignancies 27–29. These tumors are characterized by the presence of spindle 

cell elements (spindle cell sarcomatoid carcinomas) or giant cells (giant cell sarcomatoid 

carcinomas) or a mix of spindle and giant cells. Among sarcomatoid carcinomas, pleomorphic 

carcinomas are characterized by a mix of “differentiated” components such as adenocarcinoma, 

squamous cell or large cell carcinoma, with either spindle cell or giant cell carcinomas 29,30.   

We studied a series of in 154 formalin-fixed paraffin-embedded (FFPE) lung cancer specimens 

that included 52 ADC, 47 SqCC and a large cohort of 55 pulmonary sarcomatoid carcinomas 

(SC), all for which we had full tumor sections of high quality for immunohistochemical analysis. 

All tumors were thoroughly analyzed, and the histological features of pulmonary SC were 

confirmed by an expert pathologist, according to the 2015 WHO classification.  

Immunohistochemical staining and scoring of ZEB1 expression in tumor cells showed 

significantly increased expression levels of ZEB1 in SC tumors as compared to ADC or SqCC 

(Fig. 5a). In the latter, nuclear ZEB1 staining was mainly restricted to stromal fibroblasts and 

endothelial cells (Fig. 5a).  Using targeted RNA sequencing of 2,559 genes, we calculated the 

transcriptional EMT signature in a subset of these samples (51 ADC, 44 SqCC and 40 SC), for 

which sequencing analyses were possible. Although the overlap between the gene lists of the 

EMT pancancer signature 11 and the panel used for targeted RNA sequencing was 38.5%, the 

EMT signatures calculated with these gene lists were highly and significantly correlated in the 

CCLE NSCLC (r=0.986, P <0.0001), ADC TCGA (r=0.981, P <0.0001) and SqCC TCGA 

datasets (r=0,892, P <0.0001) (Supplementary Figure 3A). Using this signature, we observed 

that, in line with the immunohistochemistry results obtained for ZEB1 (Fig. 5a), pulmonary 

spindle-cell SC presented higher EMT signature scores than lung ADC or lung SqCC (P < 

0.0001, Fig. 5b), thus confirming the mesenchymal nature of these tumors.  

Our in silico analyses previously evidenced increased levels of CD70 mRNA expression in 

“mesenchymal”-like NSCLC (Figs. 5a-c). Consistent with these results, we found that CD70 
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mRNA expression presented the strongest positive and significant correlation with EMT (r = 

0.560, P < 0.0001) among the ICP(L)s included in the targeted RNA-sequencing panel used, 

followed by PDCD1LG2 (PD-L2), CD276 (B7H3) and HAVCR2 (TIM3) (Supplementary Figure 

3B, Supplementary Table S2). Noteworthy CD70 mRNA expression was also positively and 

significantly correlated with ZEB1 expression and other EMT-transcription factors, as well as 

negatively correlated with CDH1 expression (Fig. 5c, Supplementary Table S3).  

Concordantly, immunohistochemical analyses revealed a significantly higher proportion of 

cases expressing CD70 among SC (68%), as compared to lung ADC (56%) or lung SqCC (47%) 

(P=0.010, Fig. 5d). Of note CD70 staining was localized in the membrane and was restricted to 

tumor cells (Fig. 5d).  

Then, we analyzed a small cohort of pleomorphic SC (P, n=11). Detailed pathology review of 

these samples allowed us to perform targeted RNA sequencing in the spindle cell (SP) and 

epithelial (E) components separately. We observed that the SP component was significantly 

more “mesenchymal”-like than the paired epithelial component (P = 0.009, Fig. 5e), which was 

consistent with the immunohistochemistry analyses that showed that, in 10 out of 11 samples, 

ZEB1 expression was significantly enriched in the SP component when compared to the paired 

epithelial (E) component (Fig. 5f). Interestingly, a similar pattern was observed for the 

expression of CD70, in 9 out of 11 samples (Fig. 5g). 

Although co-localization of the ZEB1 and CD70 signals was not performed, as double staining 

methodology was not used, our results suggest that CD70 is frequently expressed in pulmonary 

SC and is particularly enriched in the mesenchymal elements present in carcinomas that belong 

to the pleomorphic subclass. 

 

CD70 expression is associated with traits of an immunosuppressive microenvironment 

in pulmonary sarcomatoid carcinomas   

To determine whether the increased CD70 expression observed in pulmonary SC was coupled 

with an immunosuppressive tumor microenvironment, full tumor sections were stained and 

automatically quantified for CD3 and CD8 expression. This analysis revealed that pulmonary 
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SC expressing high CD70 levels displayed significantly decreased infiltration by CD3+T-cells 

(Fig. 6a,c) and CD8+Tcells (Fig. 6b,c). No significant differences in CD3 and CD8 expression 

were observed in ADC and SqCC, according to their CD70 status (Supplementary Fig. 5a,b).  

The constitutive expression of CD70 by tumor cells may facilitate evasion of the immune system 

by three mechanisms: i) skewing T cells towards T cell exhaustion, ii) increasing the amount of 

suppressive regulatory T cells (Tregs) or iii) inducing T cell apoptosis 31–33. Using the targeted 

transcriptome data derived from the overall cohort of ADC, SqCC and SC cases, we evaluated 

the expression of genes coding for the inhibitory receptors PD1 (PDCD1), LAG3 and TIM3 

(HAVCR2), known to be involved in T-cell exhaustion 34 and  evidenced a positive and significant 

correlation of CD70 with the three markers (Fig. 6d, Supplementary Table S4). The expression 

of FOXP3, an established marker of Tregs, was positively and significantly correlated with CD70 

at the mRNA level in the overall cohort (Fig. 6e). However, these observations were not 

validated by immunohistochemistry analyses of FOXP3 protein expression (Supplementary 

Figures 4,5c). We observed, though, a non-significant trend towards increased FOXP3 protein 

in CD70HIGH ADC (Supplementary Figure 5d).  

To gain further insights into the tumor microenvironment of CD70-positive tumors, we assessed 

immune population infiltration scores, as defined by MCP-counter 35. This approach revealed a 

positive and significant association between CD70 expression and infiltration by NK cells in 

pulmonary SC (Fig. 6f); while in ADC and SqCC, NK cells infiltrate was less abundant in 

CD70HIGH tumors (Supplementary Fig. 5e). This immune infiltrate deconvolution analysis also 

showed that CD70HIGH pulmonary sarcomatoids present a week proportion of neutrophils (Fig. 

6f). Assessment of a potential NK cell-associated exhausted phenotype in CD70HIGH tumors 

was hindered by the fact that the genes coding for NKG2D, CD16/Fc gamma RIII, CD94-

NKG2C, NKp30, NKp44, NKp46, or NKp80, specific activating receptors of NK cells, were not 

present in the targeted-transcriptome panel.  

Taken together, our data provide evidence that CD70HIGH pulmonary SC display features of an 

immunosuppressive microenvironment as evidenced by decreased CD3+ and CD8+ T-cell 
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infiltration. CD70HIGH lung tumors are also characterized by enhanced mRNA expression of 

markers of T cell exhaustion.  

 

 

DISCUSSION 
 

Herein, we provide evidence that EMT promotes immune escape by inducing CD70 expression 

in lung cancer mesenchymal cell lines and patient samples. Notably, we found that the 

modulation of ZEB1 impacts CD70 expression and results in an increased activity of the human 

CD70 promoter in vitro. Moreover, our results reveal that CD70 expression is particularly 

enriched in pulmonary sarcomatoid carcinomas, a rare subtype of highly aggressive and poorly 

differentiated NSCLC, chemoresistant to platinum-based standard regimens and with a 

particularly poor prognosis 28,36,37.  

CD70 is a type-II transmembrane glycoprotein that belongs to the tumor necrosis factor (TNF) 

superfamily 31. In adoptive cell transfer models, mechanistic analyses revealed that IFN-γ 

induces CD70 expression on T cells, and that CD70 limits T cell expansion via caspase-

dependent T cell apoptosis and upregulation of inhibitory immune checkpoint molecules 38. 

More recently, it was demonstrated that CD70 regulates migration and invasion of mesothelial 

and mesothelioma cells and that CD70 worsens the prognosis of mesothelioma transplanted 

mice via enhanced invasiveness and immune evasion 39. Finally, in solid tumors, the 

CD70/CD27 pathway has been shown to induce T cell apoptosis and exhaustion and is 

associated with increased tumor aggressiveness 31,33.   

To better understand the cellular pathways and programs involving CD70, we modulated the 

expression of CD70 (siRNA) in mesenchymal lung cancer cell lines. CD70 knockdown was 

associated with the enrichment of transcriptomic signatures related to angiogenesis and WNT 

β-catenin signaling. Conversely, CD70 is reported to have a regulatory role in hypoxia in 

glioblastoma 40,41 and to induce Wnt pathway activation upon ligation of CD27 in leukemia stem 

cells 42, thus likely indicating that CD70 involvement in these cellular processes might be cell-
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type dependent. Unlike H23 cells, CD70 inhibition resulted in increased ZEB1 expression and 

enrichment of the epithelial-to-mesenchymal signature in HCC44 cells. A recent study showed 

that CD70 silencing depressed pathways related to EMT signaling in glioblastoma cell lines 40. 

These results potentially suggest that, in some in vitro models, CD70 might impact the 

expression of ZEB1 via a regulatory feedback loop. The relevance of these observations in vivo 

or in patients remains to be determined.  

Common mechanisms regulate EMT induction and tumor immune escape 10,13,43,44.  Indeed 

ZEB1, a key driver of EMT in lung cancer 15, is known to relieve miR-200 repression of PD-L1 

on lung tumor cells, leading to CD8+ T-cell immunosuppression and lung cancer metastasis 13. 

In line with these observations, an increase in tumor-infiltrating CD4+FOXP3+ Tregs was 

reported in patients with "mesenchymal" lung adenocarcinoma in contrast to those with an 

"epithelial" phenotype 10. Chen et al. previously demonstrated the molecular link between EMT 

and intratumoral CD8+ T cell suppression in vivo and in vitro13.  In another study, a high EMT 

transcriptional score was associated with lower CD4 T cell infiltration in lung ADC, lower 

intratumor CD4+/CD8+ T cell ratio in lung SqCC, as well as higher infiltration by activated B cells 

and Tregs in both lung ADC and SqCC 44. Furthermore increased TGFβ, a known EMT inducer, 

in the tumor microenvironment was reported to be a primary mechanism of immune evasion by 

promoting T-cell exclusion, in metastatic colorectal cancer 45.   

In our study, immunohistochemical analysis of a large cohort of pulmonary SC revealed that 

increased CD70 expression is coupled with a decreased CD3+ and CD8+ T cell infiltrate. 

Interestingly, targeted-transcriptome analyses evidenced that CD70 expression is associated 

with increased expression of T cell exhaustion markers, at mRNA level. Therefore, the 

association of EMT and CD70 in lung tumors may denote an important role of this interaction in 

immune escape. In these tumors, EMT might therefore promote cancer growth and metastasis 

not only by increasing the plasticity of cancer cells, but also by reprogramming the immune 

response in the local tumor microenvironment.  

CD70 expression in tumor cells has been suggested to enhance immune evasion and 

accelerate tumor growth through several distinct mechanisms, including expansion of FOXP3+ 
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regulatory T-cells (Tregs) 46, as demonstrated in non-Hodgkin lymphoma 47, glioblastoma 33 and, 

more recently, in malignant pleural mesothelioma 39. In contrast with these reports, we did not 

observe increased FOXP3 protein expression in CD70HIGH lung tumors, despite having found a 

positive correlation between CD70 and FOXP3 in these samples, at the mRNA level.  

Neutrophils are the most abundant immune cell population in the NSCLC tumor 

microenvironment 48. Neutrophils have the capacity to sustain EMT, inhibiting metastasis 

initiation 49. Contrastingly, a recent study revealed that neutrophils induce expression of zinc-

finger protein SNAI1 and promote EMT in cancer cells, fostering the invasion and further 

recruitment of neutrophils in a mouse model of lung cancer 50. Neutrophils can also foster 

anticancer responses, as illustrated by the identification of neutrophils with an antigen-

presenting cell-like phenotype, which trigger antitumor T cell responses in human lung cancer 

49,51. Deconvolution analysis indicated that CD70HIGH pulmonary SC present a low intratumoural 

neutrophil content. Supplementary validation using flow cytometry and immunohistochemistry 

staining for CD66b will allow to comprehensively profile the neutrophil content and function 

present in these tumors.  

Increased CD70 expression was associated with enhanced NK cell infiltrate in pulmonary SC, 

as evaluated using RNA sequencing data. Al Sayed et al., demonstrated a critical role for CD70 

signaling in the capacity of NK cells to eliminate lymphoma cells 52. More recently, Riether et 

al., provided evidence that cusatuzumab, a first-in-class, high-affinity anti-CD70 monoclonal 

antibody, further reduced leukemia engraftment and leukemia stem cells numbers in the bone 

marrow and spleen in the presence of NK cells (derived from the buffy coats of healthy donors), 

compared to anti-CD70 alone 53. Further investigation is warranted to validate the enriched NK 

cells infiltration in CD70HIGH lung tumors, and to assess their contribution to the immune 

phenotype of these tumors. 

CD70 expression on tumor cells has been suggested  to contribute to tumor cell immune 

evasion of tumor cells through T-cell apoptosis 33,54,55, Treg expansion 32,56 and T-cell exhaustion 

57. In the context of our observations and based on prior reports 58–60, we hypothesize that 
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persistent delivery of costimulatory signals via CD27-CD70 interactions in memory T-memory 

cells can participate to their exhaustion.  

Cusatuzumab has shown potent cytotoxic effects on CD70+ NSCLC cell lines 61. The dose-

escalation phase I trial provided evidence of good tolerability of cusatuzumab and antitumor 

activity in heavily-treated patients with advanced CD70-positive tumors 62. Recent data from 

the  phase 1 dose escalation part of the ongoing phase 1/2 clinical trial (NCT03030612) 

evaluating cusatuzumab in combination with azacytidine in acute myeloid leukemia (AML) 

reported that combination treatment is highly active in previously untreated patients with AML 

and unfit for intensive chemotherapy (median time to response: 3.3 months; median PFS not 

reached) 63. Interestingly, in this setting, cusatuzumab eliminated CD70-expressing leukemia 

stem cells resulting in deep and durable remissions 63.  

We performed preliminary analyses using an ex vivo culture system, in which serial sections of 

patient-derived lung cancer fresh tumors were cultured either in the presence or in the absence 

of cusatuzumab (Supplementary Data and Supplementary Fig. 6). In a CD70HIGH lung 

adenocarcinoma sample, anti-CD70 treatment had a cytotoxic effect and resulted in the 

retention of CD3+ tumor-infiltrating lymphocytes and an increase in the concentration of soluble 

IFN-γ and Granzyme A, compared to control, indicative of a partial reversion of the 

immunosuppressive phenotype initially present in the treatment-naïve sample (Supplementary 

Data and Supplementary Figs. a – d). We observed that the magnitude of these effects was 

minor, upon cusatuzumab treatment, in a second lung adenocarcinoma sample that displayed 

a lower intensity of CD70 positivity (Supplementary Data and Supplementary Fig. e - h). 

Further confirmation of these observations is needed in a larger number of samples and, 

notably, in ZEB1HIGH/CD70HIGH NSCLC or in pulmonary sarcomatoid carcinomas.  

Research focusing on the molecular events that that underline the development of pulmonary 

sarcomatoid tumors is scarce and thus has prevented the development of specific treatment 

strategies 20,64. Since pulmonary SC are characterized by a higher rate of resistance to 

conventional chemotherapy than other NSCLCs 36,65,66, these tumors currently represent a 

relevant clinical challenge. 
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Loss of the epithelial-associated transcription factor OVOL2 characterizes the transition to 

sarcomatoid phenotype via the EMT-TFs TWIST and ZEB, and the expression of the membrane 

kinase DDR2. In this context, dasatinib was reported to restrain cell proliferation in vitro and to 

revert the sarcomatoid-associated phenotype 67.  A report on the efficacy of anti-PD(L)-1 

immunotherapy in pulmonary SC showed that patients present an ORR of 40.5% and an OS of 

12.7 months, suggesting that patients with pulmonary SC are likely to be very good candidates 

for immune checkpoint inhibitor therapy 68.  

Genetic characterization of pulmonary SC revealed that high mutational burden and that 

mutations in KRAS are associated with poor prognosis and decreased patient survival 69. 

Moreover, MET exon 14 alterations are enriched in pulmonary SC compared to other NSCLC 

tumors. We evidenced that combined MET and PIK3CA pharmacological inhibition induces 

early activation of CD70, coupled with increased ZEB1 expression in a lung cancer 

mesenchymal cell line (Supplementary Data and Supplementary Fig. 7a). In chronic 

myelogenous leukemia BCR-ABL1-targeted therapy was reported to induce the expression of 

CD70 in leukemia stem cells by down-regulating microRNA-29, resulting in reduced CD70 

promoter DNA methylation. As a consequence, CD70 triggered CD27 signaling and 

compensatory Wnt pathway activation 53. The relevance of our observations in patient-derived 

models and the biological consequences of CD70 activation in early response to targeted 

therapy in mesenchymal lung tumors, warrants further investigation. 

This study provides evidence of CD70 overexpression in a subgroup of patients with pulmonary 

SC, together with preliminary proof of CD70 activation in early response to combined 

MET/PIK3CA targeted therapy in lung cancer mesenchymal model. These results suggest that 

CD70 might be a potential pathway to explore for therapeutically targeting lung mesenchymal 

tumors, in particular pulmonary SC, with immunotherapy. Cusatuzumab, which blocks 

CD70/CD27 signaling by binding to human CD70, has shown promising activity in advanced 

solid tumors 62,70, glioblastoma 40, acute myeloid leukemia 63 and  refractory cutaneous T- cell 

lymphoma 71. In addition, a phase 1, dose-escalation study (NCT00944905) to define the safety 

profile of MDX-1203, an anti-CD70 drug conjugate, was recently completed in subjects with 
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CD70-positive advanced or recurrent clear cell renal cell carcinoma or B-Cell Non-Hodgkin’s 

Lymphoma. CD70 expression on cancer cells is an attractive candidate for targeted 

immunotherapy due to its limited expression on non-malignant cells; an observation that was 

confirmed in our study. Therefore, targeting CD70 in CD70-expressing tumors might potentially 

offer treatment perspectives for mesenchymal lung cancers.  
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FIGURE LEGENDS 

 

Figure 1. CD70 expression is associated with a mesenchymal status in NSCLC cell lines. 

A) Unsupervised clustering of ICPL expression in 130 NSCLC cell lines from the CCLE 

according to the EMT pan-cancer score11. EMT pan-cancer status, E (pink) or M (blue). EMT 

pan-cancer score, low (yellow) or high (red). B) CD70 gene expression between epithelial and 

mesenchymal NSCLC cell lines from the CCLE. Significance was determined with Mann–

Whitney U test. C) Protein expression of ZEB1, E-cadherin, Vimentin, SNAIL, TWIST1 and 

alpha-tubulin in two epithelial (H3255 and H441) and two mesenchymal (HCC44 and H23) 

NSCLC cell lines. Whole-cell lysates were analyzed by immunoblotting. Graphical 

representation (D) and quantification (E) of the expression levels of CD70, as expressed in 

median fluorescent intensity (MFI) values, in selected NSCLC cell lines, evaluated by flow 

cytometry. Data are represented as mean ± s.d. (n=3 independent experiments). Significance 

was determined using an unpaired t test. * P < 0.05; ** P < 0.01; *** P < 0.001. 

 
Figure 2. In vitro modulation of ZEB1 impacts CD70 expression. A. Assessment of EMT-

pancancer signature score11 in CDK4/TERT-immortalized human bronchial epithelial cells 

(HBECs) stably transduced with a pMSCV-ZEB1 retroviral vector26. Top differentially expressed 

genes between HBEC3pMSCV and HBEC3ZEB1 cells (B, left panel) and graphical representation 

of CD70 expression in HBEC3pMSCV and HBEC3ZEB1 cells (B, right panel). C. Immunoblot 

analyses of ZEB1, E-cadherin and tubulin in HCC44 cells that underwent a CRISPR/Cas9-

mediated ZEB1 knockout (sg: guide RNA, sgCtrl: control). D. Graphical representation and 

quantification of CD70 expression, as evaluated by flow cytometry, expressed in median 

fluorescent intensity (MFI) values, in HCC44 control (sgCtrl) and HCC44-ZEB1 knockout cell 

lines (sgZEB1 #1 to #3). Data are represented as mean ± s.d. (n=3 independent experiments). 

E. ZEB1 expression as assessed by qRT-PCR (left) and immunoblot analyses (right) for ZEB1 

and vimentin in ZEB1-expressing PC9 cells compared to control (e.v.: empty vector). Plasmid 

expression (e.v or ZEB1) was induced by doxycyclin treatment. qRT-PCR values are the 
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average of biologic duplicates from three independent experiments. F. CD70 promoter activity, 

as assessed by a Gaussia luciferase assay, in ZEB1 expressing cells when compared to control 

(e.v). The relative Gaussia luciferase activity was normalized against the activity of secreted 

alkaline phosphatase (SeAP). Data are represented as mean ± s.d. (n=2 independent 

experiments). G. CD70 expression as assessed by qRT-PCR in ZEB1 expressing PC9 cells 

compared to control (e.v). Values are the average of biologic duplicates from two experiments. 

Significance was determined using an unpaired t test. * P < 0.05; ** P < 0.01. 

 

Figure 3. Impact of CD70 inhibition in mesenchymal lung cancer preclinical models. A. 

Immunoblot to assess the protein expression of CD70, EMT-transcription factors and effectors 

of apoptosis in HCC44 and H23 cells transfected with a siRNA targeting CD70 (siCD70) or a 

control siRNA (siCtrl) for 96 hours. B. Histogram of ssGSEA enrichment analysis of the 

biological pathways significantly affected in HCC44 cells upon CD70 knock-down.  

 

Figure 4. Mesenchymal NSCLC tumors expressed increased CD70 mRNA levels. Gene 

expression levels of CD70 according to the EMT status11 in A. lung adenocarcinomas (ADC, 

n=517), B. lung squamous cell carcinomas (SqCC, n=501) from the TCGA dataset and in C. 

lung ADC (n=80), lung SqCC (n=80) and pulmonary sarcomatoid carcinomas (n=4) from the 

GSE41271 dataset. D. CD70 expression in lung tumor tissue versus in comparison to normal 

lung samples, in three independent datasets.  **** P < 0.0001; NS, not significant. 

 

Figure 5. Pulmonary sarcomatoid carcinomas exhibit high ZEB1 expression and are 

enriched for CD70 expression. A. Immunohistochemical staining of ZEB1, as assessed by 

the percentage of positive cells, of full tumor sections of 52 ADC and 47 SqCC and 55 

pulmonary SC. B. Transcriptional EMT pancancer signature score in 51 ADC, 44 SqCC and 40 

pulmonary SC. Targeted transcriptome sequencing was performed using the HTG-EdgeSeq 

technology. C. Spearman correlation of the transcriptional EMT pancancer signature and the 

mRNA expression levels of EMT-related transcription factors and CDH1 (E-cadherin). D. 
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Immunohistochemical staining of CD70 in full tumor sections of 52 ADC and 47 SqCC and 55 

pulmonary SC. The median value (H-score=100) was used to define the low and high CD70 

expression groups. Scale bar represents 200µM. E. Transcriptional EMT pancancer signature 

score of paired epithelial (E) and spindle-cells (SP) compartments of 11 pleomorphic pulmonary 

SC (Wilcoxon matched-pairs signed rank test, ** P < 0.001). Visual quantification of 

immunostaining for ZEB1 (F) and CD70 (G) in the epithelial (E) and spindle-cell (SP) 

compartments of 11 pleomorphic pulmonary SC (Wilcoxon matched-pairs signed rank test, ** 

P < 0.001). The scale bar represents 300µM. 

 

Figure 6. Decreased tumor-infiltrating CD3+ T cells and CD8+ T cells in pulmonary 

sarcomatoid carcinomas expressing high levels of CD70. Automated quantification, as 

assessed by the number of positive cells per mm2, of the immunohistochemical staining of CD3 

(A) and CD8 (C) positive T-cells in pulmonary SC (n=55). Representative images of the 

immunostaining are presented in C. Spearman correlation of CD70 mRNA expression levels 

and (D) markers of T cell exhaustion (i.e., HAVCR2, LAG3 and PDCD1) and (E) FOXP3, a 

marker of regulatory T cells, in 51 ADC, 44 SqCC and 40 pulmonary sarcomatoid carcinomas. 

F. Deconvolution of immune infiltrate between CD70LOW and CD70HIGH sarcomatoid carcinomas, 

using MCPcounter72 (Wilcoxon test). 
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CD70 H−Score SC LEVEL CD70 H−Score SC LEVEL
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NA

2

4

6

8

CD70 level

Cell population Estimate Pr(>|z|)
B lineage 1,696 0,072
Cytotoxic lymphocytes -1,319 0,229
Endothelial cells 0,558 0,690
Monocytic lineage 1,343 0,068
Neutrophils -5,348 0,015
NK cells 3,631 0,023
T cells -0,362 0,829




