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THE GRAVITATIONAL MONOPOLE AND THE WHEELER-HAWKING SPACETIME FOAM

We exploit a quantum spacetime with a Wheeler's foam like structure to show some Euclidean region has a gas of χ -2 black holes of Gravitational Monopoles, where χ is the Euler characteristic (after equation (5.18)). We further showed some large Euler number characteristic (see (5.1)) of the Gravitational Monopoles directly without any further assumption to the Cosmological constant compared to Hawking's arguement (Page 355 of [5]) . Our partition function for the Canonical ensemble (5.5) for the Gravitational Monopoles formally diverges but the inverse Laplace transform (5.9) that counts the number of Gravitational monopoles inside a volume V is well-defined.

Introduction

When dealing with Quantum Gravity one considers quantum fluctuations in the "geometry of space" (see Wheeler's article [START_REF] Wheeler | Superspace and the nature of Quantum Geometrodynamics[END_REF], Page 255). Wheeler demonstrated, by examples, that a very large fluctuation of the metric and therefore fast change of topology of the spacetime at a very short length. One again can consult the paper of Wheeler in [cf.2], (Page 259-260 of [START_REF] Wheeler | Superspace and the nature of Quantum Geometrodynamics[END_REF]). As argued by Wheeler and Hawking [cf.2], [cf.3], [cf.5] this may be due to the nature of the gravitational action which is not scale invariant, so according to Hawking [cf.5] large fluctuation of the metric over a short length-scale does not have a very big action.

Wheeler therefore proposed the following scenerio to tackle the situation described above: one consider spacetimes which are almost flat and smooth on a large length scale but the curvature tensor is nontrivial enough to tackle all the possible topologies at the Planck length. He named this structure as spacetime foam.

In this article we shall consider a portion of spacetime with foamlike structure due to the Gravitational Monopoles.

In the Feynman Path integral quantization one uses the usual gravitational action (1.1) S = -1 16 R(g)

1 2 d 4 x
and adds a source term (1.2) λV 8π to the action and λ being there as a Lagrange multiplier [cf.5]. Although the cosmological constant λ can be very small but can give dominant contribution when λ < 0 (exactly it is true for the Gravitational Monopoles, see the work of the author in [cf.1]) and of the order of unity in Planck units [cf.5].

This article has two parts, one is mathematical, in this part we introduced the concept of spin structure to show some computations for the case of Gravitational monopoles, namely certain hypersurfaces of large enough degree are potential candidates for the Gravitational Monopoles, however the construction will be used in successive sections.This section is more or less rigorous but the physical part follows the physicists way. We hope everything will be clear from the context.

Mathematical Conventions

Let M be a topological space, G be a topological group, preferably a Lie group. Let G be a closed subgroup of G. If G is a complex Lie group then G be a complex Lie subgroup (cf. §3.4.b [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]).

Let W be a fibre bundle with structure group G and fibre F which is associated to a G-bundle ξ over M (cf. §(3.2.a) and §(3.2.c) of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]). One considers natural embedding h induced by the embedding of G → G of the set of G -bundles over M to the set of G-bundles over M . If there is a G -bundle ξ over M with h ξ = ξ one says the structure group of W is reduced to G (cf. §3.4.b [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]).

Let us consider a G-bundle ξ over M and corresponding principal bundle E π -→ M with fibre G. Consider the following quotient space E/G by identifying fibres under the right action of G such that the following diagram commutes (2.1)

E E/G M σ π ρ
The following theorems are proved in [cf.6], [cf.7]

Theorem 2.1. E is a principal bundle over E/G with structure group G and projection σ. We denote by ξ the corresponding G -bundle over E/G . E/G itself is a fibre bundle over M with structure group G, fibre G/G and projection ρ, with a left G-action on G/G ( §3.2.c of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]). E/G is associated to the G-bundle ξ.

The map h from the set of G -bundles over E/G to the set of G-bundles over E/G , then

(2.2) h ξ = ρ * ξ.
Theorem 2.2. The structure group of ξ can be reduced to G if and only if the fibre bundle E/G over M has a section s. If a section s of E/G is given, then the G -bundle

(2.3) η = s * ( ξ),
is mapped to ξ by the embedding G → G.

Let V r be the r-dimensional linear subspace of C q (with coordinates z 1 , z 2 , • • • , z q ) defined by z r+1 = z r+2 = • • • = z q = 0. We define the Grassmannian manifold of r-dimensional linear subspaces of C q is defined below (2.4) G(r, q -r; C) := GL(q, C)/GL(r, q -r; C) = U (q)/(U (r) × U (q -r))

As before, we assume that W a complex vector bundle with fibre C q over M and let E be the principal bundle over M with fibre GL(q, C) (see §4.1.d of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]) of isomorphisms from C q to W is constructed in Theorem (2.2). Now we use Theorem (2.1) to get a fibre bundle W = E/GL(r, q -r; C) over M with fibre the Grassmann manifold G(r, q -r; C).

We assume W has a section s. Then for all s one associates ∀x ∈ M a linear subspace W x of W x that depends complex-analytically on x. Therefore the Theorem (2.2) implies that the section s determines a GL(r, q -r; C)-bundle with sub-bundle ξ and quotient bundle ξ . One observes ∪W x = W is a vector bundle associated to ξ . Similarly the union of the fibres W = W x /W x is a vector bundle W over M with associated GL(q -r, C)-bundle ξ .

Consider the following exact sequence of vector bundles

(2.5) 0 → W → W → W → 0, then W = W/W is called quotient bundle and W the sub-bundle of W .
We give the following definition of the Chern classes of a finite dimensional complex manifold [cf.Page 68 of 6].

Definition 2.3. The Chern classes c i (M ) ∈ H 2i (M, Z) of a complex manifold M of complex dimension n, are the Chern classes of the tangent bundle T M of M . Let N m be a complex submanifold of M n , n ≤ m, then according to the definition of a submanifold, N is a closed subset of M . For all x ∈ N , there is an open set U ⊂ M such that U is endowed with local coordinates z 1 , z 2 , • • • , z n and the local equation of U ∩ N is given by the following z m+1 = z m+2 = • • • = z n = 0. Now consider the embedding j : N → M (cf. §4.9, page 69 of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]) and the tangent GL(n, C)-bundle T M over M . According to the discussion above (also see §4.8, and §4.1.d of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]) the pull-back j * T M of T M to T N admits a sub-bundle and a quotient bundle. We identify the tangent bundle T N with the pulled-back sub-bundle over N . The quotient bundle is identified with the normal bundle ν of N in M . We regard all the bundles as differentiable and therefore j * T M is the Whitney sum of T N and ν.

The Examples

Let M = M n be a complex manifold of dimension n and N = N n is a complex submanifold of complex codimension 1. We call in this case N a non-singular divisor of M . Let {U i } be an open covering of M , and U i ∩ N is given by equation f i = 0 with f i holomorphic on U i with nonzero partial derivatives, therefore

f ij = f i • f -1 j determines a non-zero holomorphic function on U i ∩ U j . Therefore it determines a cocycle [f ij ]
and it corresponds to a complex analytic C * -bundle [N ] over M which is determined by the divisor N only.

As an example, we can consider complex projective space CP n with open covering given by {U i : z i = 0}. A C * bundle η n (cf.Page.58 of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]) over CP n can be defined by the cocycle [g ij ] = [z i z -1 j ], and therefore as a U (1)-bundle over

CP n . So j * [M ] is the complex-analytic normal bundle of N in M [cf.6].
Theorem 3.1 (cf.6). Let N be a non-singular divisor of the compact complex manifold M , let h ∈ H 2 (M, Z) be the cohomology class represented by the oriented

(2n -2)-cycle N . Then c 1 ([M ]) = h.
As in the case of the bundle η n (cf.Page.58 of [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]), one chooses a hyperplane z 0 = 0, with the induced orientation of CP n is a CP n-1 and represents a (2n -2)-dimensional integral homology class of CP n . The corresponding cohomology class with respect to the natural orientation of CP n is denoted by

h n . The class h n is a generator of H 2 (CP n , Z) ∼ = Z.
Let a degree m-hypersurface Σ m in the projective 3-space CP 3 is given by the zero set of a degree mhomogeneous polynomial f m (z 0 , z 1 , z 2 , z 3 ), that is

(3.1) Σ m = {z ∈ CP 3 : f m (z 0 , z 1 , z 2 , z 3 ) = 0}
The inclusion

(3.2) j : Σ m → CP 3
on Σ m we have a induced Kähler for j * ω from the Kähler form of CP 3 . Let X is a multiple of ω on Σ m . The total Chern class of Σ m is represented by

1 + c 1 + c 2 = j * [(1 + X) 4 (1 + mX) -1 ] = 1 + (4 -m)j * X + (m 2 -4m + 6)(j * X) 2 (3.3)
The first Pontryagin class (3.4) p 1 = c 2 1 -2c 2 the signature or the index of the degree m-hypersurface Σ m is given by The existence spin structure on Σ m enforces w 2 = 0 that implies the A-genus A(Σ 2p ) is even integer. For p = 2, we have m = 4 c 1 = 0 and the surface Σ 4 is the K3-surface. By Yau's solution [cf.9] of the Calabi conjecture K3-surface can have a Einstein metric without the cosmological term. For m = 2p > 4 the surface Σ m is not Einstein with the induced metric from CP 3 . One notes that, for a spin manifold M , we get [M ] is spin-corbordant to -σ(M ) 16 [Σ 4 ]. Here are two precise statements regarding the above scenerios Theorem 3.2. There are compact simply-connected Kähler manifolds whose Ricci curvature is identically zero and whose curvature tensor is not zero.

(3.5) σ(Σ m ) = 1 3 Σm p 1 = 16 1 + 1 2 m 1 2 m 1 - 1 2 m /6 Σ m is
Proof. For every complex hypersurface of degree n + 2, n > 1 in CP n+1 is simply connected and c 1 = 0, therefore by Yau's theorem [cf.9] one can represent the (1, 1)-form as the Ricci tensor of some Kähler metric.

Theorem 3.3. There are compact simply-connected Kähler manifolds whose Ricci curvature is negative everywhere.

Proof. Let again n > 1, any complex hypersurface of CP n+1 with degree greater than n + 2 is simply connected and has negative first Chern class. Again, using Yau's theorem [cf.9] one can find a Kähler metric with negative Ricci curvature on it.

Gravitational Monopoles

In [cf.??] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fibre at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomprphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c : 

T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s.
/ ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 e i • e j ψ, ψ e i ∧ e j , or, c (W + g ) ijkl e i ∧ e j = 1 4 e k • e l ψ, ψ . (4.2)
The Weitzenböck's formula [START_REF] Bavnbek | Elliptic Boundary Problems for Dirac Operators[END_REF]: the decomposition of the Laplace-Beltrami operator as a generalized Laplacian is, with the left-Clifford multiplication l = ext l -int l , and corresponding right Clifford action r ,

(4.3) (d + d * ) 2 = ∆ ∧T * X - ijkl R ijkl i l j l k r l r + 1 4 s.
We keep in mind the Seiberg-Witten analysis, and analogously define and get the following definition of Gravitational-Monopole functional, Definition 4.2. The Gravitational-Monopole functional of a pair (ψ, g) is given by,

S(g, ψ) = X | / ∇ψ| 2 + |W + - 1 4 e i • e j ψ, ψ e i ∧ e j | 2 d(vol) g i.e., S(g, ψ) = X |(d + d * )ψ| 2 + |W + - 1 4 e i • e j ψ, ψ e i ∧ e j | 2 d(vol) g . (4.4) 
Proposition 1.

(4.5) S(g, ψ) = X |∇ψ| 2 + |W + | 2 + s 4 |ψ| 2 + 1 8 |ψ| 4 d(vol) g Proposition 2.
As a direct consequence of (1), if the scalar curvature of X is non-negative, all solutions of (4.2) have ψ ≡ 0.

The results

In the following we like to confirm a proposal made by Hawking for general spacetimes [cf.5] . We show how obvious it is in the case of a compact Gravitational Monopoles (we are dealing here with the complex-Riemannian case so it has Euclidean signature).

We are interested in vacuum Einstein's equation with a cosmological term λ,

(5.1) R ab = λg ab
We know λ is related to the topology of the manifold, in particular λ is strictly negative for the Gravitational Monopoles, see author's work in [cf.1]. Using a dimensional analysis, one gets [cf.5]

(5.2) λ = -f V -1 2 (z)
where V (z) is the volume of the spacetime, it may happen whe |z| → ∞ the volume might have many ends and become noncompact, but we will not consider this aspects (as we then need a version of Atiyah-Patodi-Singer index Theorem, we want ourselves for the sake of this paper to content with only Atiyah-Singer index theorem only) and confine ourselves to a "box of volume V ". The results of author in reference [cf.1] implies the negativity ( λ < 0) of the Cosmological constant for the Gravitational Monopoles and therefore then equation (5.2) implies f > 0 for Gravitational Monopoles. where D[g] is the Feynman measure on the space of all metrics, and

(5.7)

I[g] = - 1 16π (R -2λ) √ gd 4 x
is the Euclidean action and the path integral is over all compact metrics. Since λ < 0 the partition function diverges and one needs to regularise it. It will be done in a future paper. This is the peculiar feature of the Gravitationa Monopole, following the usual practice [cf.5] the Z[λ] can not be represented as a Laplace transform of N (V ), namely

(5.8) Z[λ] = ∞ 0 N (V ) exp - λV 8π dV 
( with N (V )dV is the number of gravitational states with 4-volumes between V and V + dV ) as it is formally divergent, but on the contrary, the inverse Laplace transform can be carried out, namely (as λ < 0)

(5.9)

N (V ) = 1 16π 2 i i∞ -i∞ Z[λ] exp λV 8π dλ, N (V ) = 0 f or V ≤ 0.
The Euclidean action is evaluated for the Gravitational Monopole (5.10) 

I = -f 2 8πλ > 0 as λ < 0.
χ(M 4 ) = 1 128π 2 R abcd R ef gh abef cdgh √ gd 4 x = 1 32π 2 (W abcd W abcd + 2 2 3 λ 2 ) √ gd 4 x (5.11)
and the signature or the index σ(M 4 ) is given in the following way

σ(M 4 ) = 1 96π 2 R abcd R ab ef cdef √ gd 4 x = 1 48π 2 W abcd * W abcd √ gd 4 x
(5.12) that satisfies Hitchin-Singer-Thorpe inequality (5.13) 2χ -3|σ| ≥ f 2 6π 2 . Therefore we see, for large Euler number χ, both of the statements below are necessarily true in contrast to Hawking's [cf.5] (1) f 2 is large;

(2) W abcd W abcd √ gd 4 x is large. The converging effects due to above is smeared as few things are natural in our context, for say between any two points in the manifold there is a geodesic of minimum length which does not contain conjugate points as λ < 0 and is of order W abcd W abcd L 2 with L ∼ V If we assume the following scenerio of a Gravitational Monopole where it is spin and |σ| = χ-2, then χ and σ characterise the manifold up to homotopy [START_REF] Whitehead | Simple homotopy types[END_REF]. One gets interested in noncompact but simply-connected Gravitational Monopoles for which the following relationship holds [cf.13] 

  a Spin-manifold if and only if the second Stiefel-Whitney class w 2 of Σ m vanishes. By the definition of the second Stiefel-Whitney class, (3.6) w 2 ≡ c 1 mod 2 so, the condition w 2 = 0 =⇒ c 1 ∈ 2Z. We assume w 2 = 0 for Σ, so we have even m ∈ 2Z =⇒ m = 2p, p ∈ Z, and the hypersurface Σ m is always a spin manifold for this choice of m, hence using the results of Atiyah-Hirzebruch-Riemann-Roch theorems [cf.8] we get (3.7) σ(Σ m ) ≡ -8 A(Σ m ) = -16(n + 1)n(n -1)/6.

Definition 4 . 1 .

 41 The twisted Dirac operator associated to (E, ∇ E ) is the operator, (4.1)

5. 1 .

 1 The volume canonical ensemble. The partition function Z[β] for the thermal canonical ensemble for a field φ with temperature T = β -1 is given with respect to a complete orthonormal basis |φ n [cf.5] (5.3) Z[β] = n φ n |exp(-βH)|φ n with coreesponding Path integral (5.4) Z[β] = D[φ] exp(-I[φ]) with D[φ] is a "Feynman measure" on the space of all fields φ, I[φ] is the Euclidean action, and the integral is evaluated with respect to the fields that are periodic with period β in the Euclidean time. This definition is used to derive the entropy of the black holes [cf.11], [cf.12], [cf.5]. One formally defines the partition function Z[λ] or which is called the volume canonical ensemble by Hawking in [cf.5], defined by (5.5) Z[λ] = n g n |exp -λV ) 8π |g n here |g n denote the states of the gravitational fields by metrics {g n } and V is the 4-volume. We assume the geometry is compact. Corresponding Path integral is (5.6) Z[λ] = D[g] exp(-I[g])

1 4 χ -1 4 ,

 14 the length per unit of topology [cf.5]. It is well known that the Euler number (5.11) is the alternating sum of the Betti numbers (5.14) χ = b 0 -b 1 + b 2 -b 3 + b 4b i 's are the number of independent harmonic i-forms on M . We have the following decomposition(5.15) b 2 = b + 2 + b - 2 of b + 2 self-dual and b - 2 anti-self-dual harmonic 2-forms.The following is true for the signature σ (see Atiyah-Hirzebruch[START_REF] Atiyah | Riemann-Roch theorems for differentiable manifolds[END_REF])σ = b + 2 -b - 2 = 8(ker / ∂ -ker / ∂ † ) = -1 384π 2 R abcd * R abcd d 4 x = -1 8 σ(M 4 ) = A(M 4 ).(5.16) where / ∂ is the Dirac operator for massless Dirac equation on M . For compact, simply-connected Gravitational Monopoles, we have (5.17) b 0 = b 4 = 1, b 1 = b 3 = 0.

(5.18) χ = 2 + b 2 ,

 22 here b 2 is the rank of π 2 (M ) the number of homotopically inequivalent maps of 2-spheres into M . An argument similar to [cf.5] can be made and Gravitational Monopoles become endowed with Euclidean black hole metrics, therefore we have a gas of χ -2 black hole Gravitational Monopoles.

  The evaluation is similar to [cf. equation 4.3 of 5]. but in our case we have clear sign of the action which is positive definite.Let W abcd is the Weyl tensor, then