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Abstract11

Biphasic hyperelastic models have become popular for soft hydrated tissues and there is a
pressing need for appropriate identification methods using full-field measurement techniques
such as digital volume correlation. This paper proposes to address this need with the virtual
fields method (VFM). The main asset of the proposed approach is that it avoids the repeated
resolution of complex nonlinear finite-element models. By choosing special virtual fields,
the VFM approach can extract hyperelastic parameters of the solid part of the biphasic
medium without resorting to identifying the model parameters driving the osmotic effects in
the interstitial fluid. The proposed approach is verified and validated through three different
examples: first using simulated data and then using experimental data obtained from porcine
descending thoracic aortas samples in osmotically active solution.
Keywords: Biphasic hyperelasticity, parameter identification, chemoelasticity, virtual fields12

method, osmotic effects13

1. Introduction14

The mechanical behavior of soft biological tissues, such as cartilage or arteries, can be15

commonly modeled as biphasic, accounting for the intertwined contributions of fiber networks16

and interstitial fluid[1]. This biphasic behavior implies chemomechanical couplings regulating17

the osmotic pressure of the interstitial fluid[2]. An example of such coupling is the swelling18

effect that occurs when there is a gradient of osmotic pressure, which can be attributed to19

the presence of proteoglycans[3, 4] within collagenous fiber networks in the tissues[2].20
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The biphasic hyperelastic constitutive models of hydrated biological tissues were origi-21

nally introduced by Eringen and Ingram in the 1960s[5, 6]. These biphasic models have been22

widely used in the biomechanics research of soft biological tissues. For instance,23

— In the field of the biomechanics of cartilage, Mow et al.[7] and Lai et al.[8] estab-24

lished a biphasic model and a triphasic model. These models include mainly the collagen-25

proteoglycan matrix and the interstitial fluid, respectively. Then Ateshian et al.[9–11] applied26

for the models to articular cartilage with osmotic loading. Besides, Wilson et al.[12] studied27

the links between the biphasic swelling theories and mechano-electrochemical models. Wayne28

et al.[13] developed a u-p finite element model for biphasic theory by coupling deformation and29

fluid pressure. Recently, Kandil et al.[14] proposed a microstructure-based chemo-viscoelastic30

model considering the osmo-induced deformation and internal fluid variation.31

— In the field of biomechanics of arteries, Lanir[1, 4] developed the biocomponent theory32

in 1987. He applied this theory to residual stresses of cardiovascular tissues. Then Azeloglu33

et al.[15] proposed a numerical model combining the triphasic theory of Lai et al.[8] with34

the FEM to study the influence of proteoglycans on residual stresses in the aorta. Their35

model was eventually validated experimentally. Recently Santamaría et al.[16, 17] developed36

experimental methods for quantifying the chemoelastic effects in arterial tissues.37

All those studies showed the importance of biphasic or triphasic theory to investigate the38

biomechanics of hydrated biological tissues, such as cartilage and arteries.39

The identification of constitutive model parameters for soft biological tissues is still40

flourishing[18, 19]. Among the available identification approaches, the virtual fields method41

(VFM) has been widely used in solid mechanics[20–26], given its advantages, such as its insen-42

sitivity to the uncertainty of boundary conditions[27], robustness[28], and fast convergence[29].43

Avril et al.[30] first applied VFM to arterial tissues to identify anisotropic hyperelastic ma-44

terial parameters. Kim et al.[31] used VFM to identify the material properties of human45

aneurysmal aortas. Bersi et al.[32] collected full-field biaxial data and used the VFM to46

estimate regional variations in material parameters for a microstructurally motivated con-47

stitutive model.48

The identification of biphasic hyperelastic model parameters has been rather challenging.49

Nadeen et al.[33] designed an apparatus for measuring osmotic pressure and estimated how50

it contributes to cartilage stiffness. More recently, Santamaría et al.[17] measured 3D strain51

fields induced by chemoelastic effects in arteries. These studies showed the significance of52

the biphasic constitutive model in arteries. Nevertheless, to the best of the authors’ knowl-53

edge, there has been no existing work dedicated to the identification of biphasic constitutive54

models using VFM. Besides, although soft tissues (e.g. arterial wall) could be multi-layered55

structures, there is no work on the identification of layer-specific parameters for soft tissues56

in the framework of biphasic hyperelastic model.57

The objective of this work is to address this lack. Considering that biphasic constitu-58

tive models are computationally challenging due to coupling between elasticity and osmotic59

effects, we designed a novel specific VFM framework for chemoelasticity.60

The paper is organized as follows: Section 2 introduces the materials and methods,61

including constitutive relationship for biphasic hyperelasticity, general principle for VFM62
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and the application of VFM for biphasic hyperelasticity. Section 3 reports the results of the63

verification of the proposed model and its application into practical problems, first conducted64

with simulated data and then with experimental data. Finally, the conclusion and discussion65

are given in Section 4.66

2. Materials and methods67

2.1. The introduction for biphasic hyperelasticity in arterial tissues68

The framework of the biphasic constitutive relationship used in this paper is proposed69

by Azeloglu et al.[15], in which the residual stresses are hypothesized to arise from the fixed-70

charge density of the proteoglycans present in the arterial tissues, inducing the Donnan71

osmotic pressure relative to the external environment as only equilibrium conditions are72

considered for simplicity, when the solid and fluid velocities have reduced to zero. Therefore,73

the Cauchy stress T is assumed to have two components:74

T = Ti + Ts (1)

where Ti is the interstitial fluid component and Ts is the solid matrix component.75

As illustrated in Fig. 1, the total deformation gradient F is realized by the multiplying a76

prestretched part Fpre and a mechanical part Fm
[14]. The Fpre is a stress-free swelling due to77

osmotic effects without any mechanical loading. Therefore, the total deformation gradient

Reference configuration 
Stress-free chemical configuration 

Current configuration 

preF

F mF

Figure 1: Multiplicative decomposition of the deformation gradient F

78

F can be decomposed into two parts79

F = FmFpre. (2)
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The interstitial fluid component of Cauchy stress Ti takes the form based on the Donnan80

equilibrium theory[15, 34, 35], that is,81

Ti = −(p− p∗)I = −Rθ

[√
(cF)2 + (c∗)2 − c∗

]
I (3)

where I is the identity tensor, p∗ is the ambient pressure in the external bath (henceforth82

considered to be zero, p∗ = 0), c̄∗ is the external bath salt osmolarity, R is the universal gas83

constant, and θ is absolute temperature, cF is the proteoglycan fixed-charge density relating84

to the solid matrix relative volume change (J = detF ) via85

cF =
φw
0 c

F
0

J − 1 + φw
0

(4)

where cF0 and φw
0 are the fixed-charge density and water content, respectively. Note that in86

this paper the above chemical parameters are assumed to be homogeneous.87

For the solid matrix component, consider an isotropic neo-Hookean constitutive relation-88

ship[36]:89

Ts = µJ−5/3

(
B − 1

3
I1I

)
+ κ(J − 1)I (5)

where B = FF T is the left Cauchy-Green deformation tensor, I1 is the first invariant of90

the right Cauchy-Green deformation tensor C, and µ and κ are the shear modulus and bulk91

modulus of the solid matrix, respectively.92

In this paper, the reference configuration is set as the zero osmotic loading stage, and93

a conceptual sequence of configurations is assumed as shown in Fig. 1 according to Kandil94

et al.[14], in which the stress-free chemical configuration is an intermediate virtual state due95

to osmotic swelling. In this way, the total deformation is divided into chemical-induced and96

mechanical-induced parts. Note that a non-zero prestretched deformation Fpre is produced97

to maintain the Cauchy stress T = 0 in the stress-free chemical configuration. By combining98

the Eq.(3), Eq.(4) and Eq.(5), and note that the prestretch Fpre has the form99

Fpre = λpreI = (Jpre)
1/3I (6)

where Jpre = detFpre, we have the equation for solving Fpre as100

−p+ κ(Jpre − 1) = 0 . (7)

Finally, the prestretch can be calculated as101

Fpre =
(
1 +

p

κ

)1/3

I . (8)
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2.2. General principle for VFM102

The virtual fields method (VFM) is based on the principle of virtual work, for quasi-static103

conditions with neglecting the acceleration and the body force[20], which may be written such104

as,105

−
∫
Ω

T : ε∗dΩ +

∫
∂Ωt

t · u∗d∂Ωt = 0 (9)

where T is the actual Cauchy stress tensor across the domain of interest Ω and is related to106

the strains through constitutive equations, strains are derived from gradients of the measured107

displacement field u, t are the tractions applied on a part of the boundary ∂Ωt, u∗ is a108

kinematically admissible virtual displacement field, and ε∗ is the associated virtual strain109

field.110

First, a constitutive model is chosen, one can write in the general case111

T = G (ε), (10)

where G is a given function of the actual strain components. The constitutive parameters112

are also involved in G . Therefore Eq.(9) can be written as113

−
∫
Ω

G (ε) : ε∗dΩ +

∫
∂Ωt

t · u∗d∂Ωt = 0 . (11)

Then, virtual fields are chosen. Each virtual field introduced into equation Eq.(26) yields114

one scalar equation. The constitutive parameters are then sought as solutions to a set of such115

equations. The construction of the virtual fields is a key issue of the method. An important116

feature is the fact that the above equation is verified for any kinematically admissible virtual117

field u∗[20]. Kinematically admissible means that u∗ must be continuous across the whole118

volume and it must be equal to the prescribed displacement on the boundary. The virtual119

field u∗ can be constructed analytically or solving equations created automatically[37]. The120

detailed procedure of constructing virtual field for the proposed model in this paper will be121

introduced later.122

2.3. The adaptation of the VFM to biphasic hyperelasticity123

2.3.1. Governing equations124

Assuming quasi-static conditions and no body forces[30], the VFM equations for the125

biphasic hyperelasticity can be written as126

−
∫
Ω

(Ti + Ts) : ε
∗dΩ +

∫
∂Ωt

t · u∗d∂Ωt = 0 (12)

where Ts and Ti denotes the solid matrix component and interstitial fluid component for127

actual Cauchy stress across the domain of interest, respectively, t are the tractions applied128

on the boundary ∂Ωt, Ω is the domain volume in the current configuration, and ε∗ is the129

virtual strain field.130
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2.3.2. Definition of virtual strain fields131

In this paper, the virtual displacement fields are defined by solving a serial of equations.132

Firstly it is assumed that the osmotic pressure terms vanish under the principle of virtual133

work with the use of some special virtual fields, i.e. a special virtual field with tr(ε∗) = 0,134

yielding135 ∫
Ω

−p(J)I : ε∗dΩ = 0 . (13)

Further if we consider a three-layers arterial wall tissue for example, including intima,136

media and adventitia. Then, Eq.(12) can be written as137

−
3∑

i=1

∫
Ωi

T (µi) : ε
∗dΩ +

∫
∂Ωt

t · u∗d∂Ωt = 0 (14)

where Ωi is the domain of the i-th layer, and µi is the shear modulus in Ωi.138

In order to construct the virtual strain fields ε∗ in Eq.(13)�a simple approach is to con-139

struct a linear virtual displacement field to produce a constant virtual strain field,140

u∗ = (η1x)ex + (η2y)ey + (η3z)ez . (15)
where it is required to make η1 + η2 + η3 = 0 for meeting Eq.(13).141

For the case of identification for multi-layers in Eq.(14), the virtual fields are required to142

be linearly independent when there are many unknown parameters to be identified simul-143

taneously, and in order to realize tr(ε∗) = 0, these more complicate virtual fields can be144

constructed by defining the curl of a potential vector field H [37]145

u∗ = ∇×H , (16)
since the divergence of the curl above always yields146

div(∇×H) = 0 , (17)
where H = Hiei(i = x, y, z) and ei is the unit vector in the global cartesian coordinate147

system.148

Thus, we can reconstruct virtual displacement fields such as149

u∗ = ∇×H =

(
∂Hz

∂y
− ∂Hy

∂z

)
ex +

(
∂Hx

∂z
− ∂Hz

∂x

)
ey +

(
∂Hy

∂x
− ∂Hx

∂y

)
ez . (18)

In this work, under the kinematically admissible condition, we calculated the virtual150

displacement field by assuming a special case in an uniaxial tension for a plate as shown151

in Fig. 2, where displacement boundary condition is ux|x=0 = uy|y=0 = uz|z=0 = 0 which is152

usually used, and define the virtual fields as follow:153

u∗
x =

∂Hz

∂y
− ∂Hy

∂z
= ηxkf(z) (19)

u∗
y =

∂Hx

∂z
− ∂Hz

∂x
= 0 (20)

u∗
z =

∂Hy

∂x
− ∂Hx

∂y
= ηzk+1g(x) , (21)
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where k is the exponent parameter of the power functions, η is a scaling factor parameter154

which is usually set to a small value to prevent excessive virtual deformation, f(z) and g(x)155

are undetermined functions. Note that power functions are used for the virtual displacements156

in Eq.(19) and (21). The purpose of power functions is to generate virtual strain fields that157

avoid linear dependent VFM equations.158

In order to simply the problem, we set Hy = 0, in this way Hx and Hz can be directly159

calculated by integration leading to160

Hx = −ηy · zk+1g(x) (22)
Hz = ηy · xkf(z) . (23)

Then, by substituting Eqs.(22) and (23) into Eq.(20), we can deduce that161

g(x) = −kx(k−1) (24)
f(z) = (k + 1)zk . (25)

Finally, combining Eqs.(19), (20), (21), (24) and (25), we obtain the general equations162

for these special virtual fields such as163 
u∗
x = η(k + 1)xkzk

u∗
y = 0

u∗
z = −ηkxk−1zk+1.

(26)

2.3.3. Summary of the complete procedure164

Based on the theory and methods introduced above, the procedure for the implementation165

of the proposed model is briefly shown in Table 1, mainly including three parts in the166

following:167

(1)Full-field measurements: The displacement fields used in this study have three168

different possible origins, namely analytical solutions, FE analyses and real experiments. For169

simple homogeneous (monolayer) uniaxial tension, the analytical solution can be used. For a170

multilayered structure, the FEM is used to provide simulated measurements and derive the171

deformation gradient F and the Jacobian J . For the experimental case, the displacements172

are measured using optical coherence tomography (OCT) and digital volume correlation173

(DVC) before deducing F , E and J , The traction t for the VFM in numerical verifications is174

pointwise on the boundary, but as for experiment case, the measured stress is an average force175

by assuming cross-section perfectly homogeneous as it is hard to measure the heterogeneous176

traction distribution on the boundary in the experiment.177

(2)Building the VFM equations: From the obtained F fields, we determine T ac-178

cording to Eq.(1),(3),(4),(5). Special virtual fields based on Eq.(26) are applied to Eq.(14).179

Since T depends on the unknown parameters µ, the virtual work equation Eq.(14) is not180

satisfied exactly, and a residual can be derived, as defined in Eq.(27). This residual is then181

minimized. The cost function can be written such as182

f(µ1, µ2, µ3) =
3∑

v=1

[
−

3∑
i=1

∫
Ωi

T : ε∗vdΩ +

∫
∂Ω

t · u∗vd∂Ω

]2

, (27)
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which represents the quadratic deviation between the internal virtual work (IVW) and the183

external virtual work (EVW), with v labelling the virtual field and i labelling the layer.184

Using Gauss quadrature in isoparametric elements, integrals in the cost function can be185

changed into discrete sums, such as186

f(µ1, µ2, µ3) =
3∑

v=1

[
−

3∑
i=1

∑
ele

T (µi,X
ele) : ε∗v(Xele) +

∑
eleb

telebAelebu∗v(Xeleb)

]2

(28)

where ele and eleb denote the element and boundary element respectively, Aeleb is the area187

of one element side, ε∗v(Xele) denotes the value of the v-th virtual strain field at the Gauss188

integration point in the ele-th element, and ε∗v is derived from u∗v.189

(3) Solving the VFM equations: We use the MATLAB fminsearch function to190

search for µ, in which the derivative-free Nelder-Mead simplex optimization algorithm is191

used for finding the minimum value of an unconstrained multivariable scalar function[38].192

The problem can be expressed as193 
Find µ = {µ1, µ2, µ3}
f(µ) =

∑3
v=1

(
−W In

v +WEx
v

)2
min f(µ)

(29)

where W In
v represents the IVW under the v-th virtual field, and WEx

v represents the EVW194

under the v-th virtual field. Eventually, the cost function is minimized through an iterative195

scheme and yields the unknown material parameters.196

Table 1: Steps of the identification procedure for biphasic hyperelastic parameters
1. Forward simulation of chemomechanically coupled model and experimental tests in

osmotically active solution.
2. Acquisition of full-field displacement from numerical calculation or experimental

measurements.
3. Computation of deformation gradient F through the given full-field displacement.
4. Computation Cauchy stress T from chemomechanically constitutive equations.
5. Choice of virtual field that satisfies tr(ε∗) = 0 to avoid the effect of the chemo term.
6. Computation of the value of cost function f .
7. Use of the optimization method to find a vector of µ by minimizing f .
8. Checking whether the identified value equals the parameters used in forward

simulation.

2.3.4. Noise investigation method197

In order to study the influence of measurement errors on identifications, we add artificial198

white noise to the displacement data obtained by the FEM simulations as[39].199

ua,n
i = ua,fem

i + δa,∆n
i with δa,∆n

i ∼ N (0, σ2
u) ∀(a, i) ∈ Ω (30)
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where ua,fem
i and δa,∆n

i denote the true displacement from FEM and random noise, respec-200

tively, the δa,∆n
i represents the Gaussian white noise with zero mean and standard deviation201

σu ranging between 10−4 (low noise) to 10−3 (high noise)[40]. For each fixed value of σu, 40202

realizations of Gaussian white noise δa,∆n
i were generated. The average identified results for203

all the samples were calculated[41].204

The relative error was defined as205

error =
µ̂i − µ̄i

µ̂i

× 100% (31)

where µ̂i and µ̄i are the exact shear modulus and average identified value under 40 samples206

respectively.207

2.4. Verification of the new VFM based on analytical or FEM simulations208

In this paper, the proposed model as established in previous section will be verified in209

theoretical cases before applying into the practical problems. In the verification, the full-210

filed measurements are assumed to be ’virtually’ obtained from analytical solutions or FE211

analyses. The derivations for analytical solutions and FE schemes are introduced in the212

following, respectively.213

2.4.1. Analytical solution for a plate under tension214

For some cases with simple geometry and boundary conditions, the analytical solution215

of the biphasic hyperelastic problem can be derived. For example, consider a plate under216

uniaxial tension, as shown in Fig. 2, where λ is the prescribed axial stretch, and α and β are

l

m

n

X

Y

Z

X

Z Displacement loading applied  

pre ml l   m

n

n
l

Boundary condition Undeformed configuration

Current 
configuration

Figure 2: The geometry and boundary conditions for a plate under tension
217

unknowns, then total deformation is218

F =

λ 0 0
0 α 0
0 0 β

 . (32)
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Under this uniaxial tension case, according to Eq.(1),(3),(4),(5), we could have219

T22 = −p+ µ(λαβ)−5/3(
2

3
α2 − 1

3
λ2 − 1

3
β2) + κ(λαβ − 1) = 0 (33)

T33 = −p+ µ(λαβ)−5/3(
2

3
β2 − 1

3
λ2 − 1

3
α2) + κ(λαβ − 1) = 0 . (34)

The relationship α = β can be derived from the equations above, therefore the Eq.(34)220

can be rewritten as221

T33 = −p+ µ(λβ2)−5/3

(
1

3
β2 − 1

3
λ2

)
+ κ(λβ2 − 1) = 0 (35)

where p based on Eq.(3) and (4), can be elaborated as222

p =

Rθ

√(
φw
0 c

F
0

λβ2 − 1 + φw
0

)2

+ (c∗)2 − c∗

+ p∗

 . (36)

To solve this nonlinear problem, the Newton method is applied, yielding223

βn+1 = βn −
T33 (βn)

T
′

33 (βn)
(37)

where βn is the n-th iteration of β. For any λ, β and α, hence F can be deduced with this224

iterative resolution.225

2.4.2. FEM solutions226

The FEM is an alternative approach when analytical resolution is not possible. Let227

x = φ(X, t) describe the motion of a body from the initial reference configuration X ∈ k(0)228

to its current configuration x ∈ k(t). Define the deformation gradient as229

F = ∇Xφ . (38)

The general total potential energy for the biphasic hyperelasticity model is230

Π =

∫
Ω

ΨdΩ−
∫
Ω

b̄ ·φdΩ−
∫
∂Ω

t̄ ·φd∂Ω . (39)

where Ψ is the strain energy, b̄ is the body force vector per unit current volume of Ω and t̄231

are the tractions on the boundary ∂Ω.232

Minimization of the potential energy with respect to φ results in a nonlinear system of233

equation, and the variational forms in the spatial description are234 ∫
Ω

T : ∇xδφdΩ−
∫
Ω

b̄ · δφdΩ−
∫
∂Ω

t̄ · δφd∂Ω = 0 . (40)
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In finite element discretization, isoparametric interpolations of geometry variables X and235

field variables φ are written as236

X =
n∑

I=1

NI (ξ)XI , φ =
n∑

I=1

NI (ξ)φI (41)

where ξ denotes the coordinates in the reference element, and n is the number of nodes in237

each element.238

Substituting Eq.(41) into Eq.(40) and using the Newton-Raphson scheme to solve the239

nonlinear system of equations[42], we obtain240

Rφ
i +Kφ

i ·∆φi+1 = 0 (42)

where Rφ is the global residual vector, and the element stiffness matrix is given by241

Kφ =

∫
Ω

∇T
xN · C · ∇xNdΩ +

∫
Ω

[∇T
xN · T · ∇xN ]IdΩ (43)

and the spatial elasticity tensor C is given by242

C = Cosmo + Ce (44)

where Ce is the spatial elasticity tensor for the solid matrix, which can be written as243

Ce = 4J−1(F⊗F ) :
∂2W

∂C2
:
(
F T⊗F T

)
(45)

in which C = F TF is the right Cauchy-Green deformation tensor, and W is a strain energy244

density function for the solid. Here, a hyperelastic constitutive model[36] is used and is245

expressed as246

W =
1

2
µ
(
J−2/3I1 − 3

)
+

1

2
κ(J − 1)2 (46)

and Cosmo in Eq.(44) is the tensor of the osmotic modulus,247

Cosmo = J−1(F⊗F ) : 2
∂ (−JpC−1)

∂C
:
(
F T⊗F T

)
= −J

∂p

∂J
I ⊗ I + p(2I⊗I − I ⊗ I) (47)

which results in part from the change in osmotic pressure with a change in tissue volume[9, 33].248

The detailed expression of Cosmo can be found in Azeloglu et al.[15].249
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2.5. Application to experimental data250

Uniaxial tensile tests were previously performed to stimulate and investigate chemoelastic251

effects in arteries[17]. In these experiments, porcine descending thoracic aortas were excised252

and used as test samples. Propylene glycol (PG) and phosphate-buffered saline (PBS) were253

mixed to prepare an osmotically active solution.254

Three rectangular samples (10 × 58mm), named Aorta1, Aorta2 and Aorta3, were im-255

mersed in an 80% PG solution and tested in uniaxial tension (stepwise stress-relaxation256

tests). The loading direction was aligned with (Y-axis). Strain fields were measured dur-257

ing these tests using optical coherence tomography (OCT) and digital volume correlation258

(DVC)[16].259

Before carrying out the stepwise uniaxial tensile tests, a 1.15 stretch preconditioning260

(displacement increment of 5.2mm) was applied. The initial distance between clamps was261

35.1mm, as shown in Fig. 3.262

Figure 3: Setup used for obtaining experimental datasets and acquisitions of experimental data using the
OCT-DVC technique[17]

OCT volumetric images were acquired under a field of view (FOV) of 2 × 4 × 2.51mm263

(X-, Y- and Z-axes, respectively, see Fig. 3(b)). Four specific regions of interest were defined264

on the OCT volume images: the entire aortic wall (global), the intima region, the media265

region and the adventitia region. 3D displacement fields were measured using DVC with266

a local correlation algorithm (LA-DVC). Ideal correlation conditions were reached directly267

in the 3D OCT image sequence acquisition and using a rigid body translation test. The268

implemented correlation parameters can be found in our previous work[16, 17]. The voxel size269
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was a key parameter to reduce the uncertainties of the full-field measurements. The subset270

size parameter was used as (128, 96, 64, 32, 16, and 8 voxels). After measuring and fitting271

the displacement fields with tricubic functions, the components of the Green–Lagrange strain272

tensor were calculated with MatLab®. Here the error of measurement is not considered and273

only the mean value of displacement measurement is used for simplification.274

3. Results275

3.1. First case study: homogeneous material with uniaxial tension276

This first case study is a plate under uniaxial tension, as introduced in Section 2.4.1,277

where an analytical solution is derived. A stretch λ is applied in the x direction at the278

right-side of the plate, and the constraints are applied as shown in Fig. 2. The parameters279

of the chemo-mechanically coupled constitutive model are reported in Table 2.

Table 2: Parameters of the chemo-mechanically coupled constitutive model
Type Description Symbol Values Units

Chemoelastic
term

Universal gas constant R 8.314 kg ·m2s−2K−1mol−1

Absolute temperature θ 298 K
Ambient pressure p∗ 0 kPa
Initial fixed-charge density cF0 [20,40,100,200] meq/L
Water content φw

0 70 %
External bath salt osmolarity c∗ [10-2000] mosM

Hyperelastic Shear modulus µ 140 kPa
Bulk modulus κ 1400 kPa

280

3.1.1. Analytical solutions281

Based on the analytical solutions of Section 2.4.1, the solutions of deformation and stress282

are shown in Fig. 4. The deformation in Y-direction β is shown in Fig. 4(a) with different283

external bath salt osmolarity c∗, and it is seen that a larger β is produced with a lower c∗284

because of a larger swelling. The influences of c∗ on total Cauchy stress T11 is illustrated in285

Fig. 4(b), in which a smaller external bath salt osmolarity produces a relatively smaller total286

T11, it can be explained that as the T11 has hyperelastic part and chemo part according to287

Eqs.(3),(5), while the chemo part p will be increased with a lower c∗ as shown in Fig. 4(c),288

therefore, a lower total Cauchy stress is produced.289

3.1.2. Parameter identification290

Since the material considered in the first case study is homogeneous, there is only one291

unknown parameter, µ. Thus, one single linear virtual displacement field based on Eq.(15)292

is considered, that is,293

u∗ =

 0.2x
−0.1y
−0.1z

 ε∗ =

 0.2
−0.1

−0.1

 . (48)
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Figure 4: Analytical results under different external bath salt osmolarities and initial fixed-charge density
cF0 = 200 meq/L in uniaxial tension. (a) Stretch β variation in the Z-direction.(b) Cauchy stress T11. (c)
Osmotic pressure p.
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Figure 5: The process of convergence for the shear modulus in the identification.

The shear modulus in solid part is well identified as shown in Table 3 regardless the294

existence of chemo term and the convergence process of µ is shown in Fig. 5. Due to many295

uncertainties in the chemo terms, we verify that the proposed VFM is immune to chemoelas-296

tic coupling effects by simulating three different external bath salt osmolarity environments297

and one different initial fixed-charge density in the tissue. The identified results of shear298

modulus µ̃ are always equal to the exact shear modulus µ̂, as reported in Table 3. Moreover,299

we also test the identification results under different initial guess values and target(exact)300

values, the results are provided in Table 4, in which the initial values of shear modulus µ301

changes from 1000 Pa to 10000 Pa and the exact value of shear modulus µ̂ changes from302

130000 Pa to 150000 Pa, it is shown that the identified results maintain a good accuracy303

with relative error less than 1%.304

Based on the noise analysis method in Section 2.3.4, we tested the influence of noise on305

the identification, as reported in Table 5. It is shown that the error remains less than 3%,306

with a relatively low noise level (σu ≤ 5× 10−4) but gradually increases with the increase of307

noise level.

Table 3: Identified shear modulus in the first case study
Type Symbol Value
External bath salt osmolarity c∗ 50 mosM 100 mosM 500 mosM 500 mosM
Initial fixed-charge density cF0 40 meq/L 40 meq/L 40 meq/L 60 meq/L
Tensile stretch λ 1.2 1.2 1.2 1.2
Initial guess shear modulus µ 1000Pa 1000Pa 1000Pa 1000Pa
Identified modulus µ̃ 140000Pa 140000Pa 140000Pa 140000Pa
Exact modulus µ̂ 140000Pa 140000Pa 140000Pa 140000Pa

308
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Table 4: The identification results of different exact values and initial guesses
Identified µ̃(Pa)

and relative error(%)
Exact values µ̂(Pa)

130000 135000 140000 145000 150000

Initial guess
µ(Pa)

1000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

2000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

3000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

4000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

5000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

6000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

7000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

8000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

9000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

10000 129533
(-0.36)

135192
(0.14)

140000
(0)

144500
(-0.34)

150123
(0.08)

Table 5: The relative error of identified results under different levels of measurement noises
Standard deviation σu 1× 10−4 3× 10−4 5× 10−4 7× 10−4 1× 10−3

Exact µ̂(Pa) 140000 140000 140000 140000 140000
Mean identified µ̄(Pa) 140349 139443 136382 131183 119993

error -0.25% 0.4% 2.58% 6.30% 14.29%

16



3.2. Second case study: multilayer material under biaxial tension309

The second case study relies on the chemomechanically coupled constitutive model that310

we implemented within the Abaqus/Standard commercial FE software by means of the user311

subroutine UMAT, based on Eqs.(3),(4),(5),(45) and (47).312

The geometry of this second case study is shown in Fig. 6 to simulate the layered structure313

of arteries. The size of the three-layers plate is 0.08×0.04×0.03m (i.e. l=0.08, m=0.04314

and n=0.03) and the geometry is discretized with a fine mesh of 768 cubic elements. The315

boundary conditions are the same as the first case study in Fig. 2, with ux|x=0 = uy|y=0 =316

uz|z=0 = 0. Biaxial displacement loading is applied to the X and Y directions, including317

1.30 stretch in X direction and 1.05 stretch in Y direction. Accordingly, the hyperelasitic318

constitutive model is used for arterial tissues in this example. The values for the constitutive319

parameters are those reported in Tables 6. Note here we use a large bulk modulus to make320

the material nearly incompressible.321

1.30l

1.
05

m

l

m
n

X

Y

Z

Material 1

Material 2

Material 3

Figure 6: The geometry and displacement loading for the three-layers plate

3.2.1. FEM solutions322

Firstly, we verify the accuracy of the FE solutions for direct analysis. As it is not323

possible to find the analytical solution for the three-layers examples, so we use the FE324

model introduced in Section 2.4.2 to solve the previous first case example with different bath325

osmolarity values. As it is shown in Fig. 7, it is found that there is a very good agreement326

between FE and analytical solutions.327

3.2.2. Parameter identification328

For the second case study, we can still consider the constant virtual strain field of Eq.(48),329

which is represented in Fig. 8(a). However, two other heterogeneous virtual fields are re-330

quired to be introduced to ensure independence among the three VFM equations. Based on331

Eq.(26), two other virtual fields can be determined as illustrated in Fig. 8(b) and 8(c) where332

parameters setting details can also be found.333
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Table 6: Parameters of the chemo-mechanically coupled constitutive model for second case study
Type Description Symbol Values Units

Chemoelastic
term

Universal gas constant R 8.314 kg ·m2s−2K−1mol−1

Absolute temperature θ 298 K
Ambient pressure p∗ 0 kPa
Initial fixed-charge density cF0 40 meq/L
Water content φw

0 70 %
External bath salt osmolarity c∗ [20,100,500,1000] mosM

Hyperelastic
term

Material 1 Shear modulus µ1 100 kPa
Bulk modulus κ 6000 kPa

Material 2 Shear modulus µ2 200 kPa
Bulk modulus κ 6000 kPa

Material 3 Shear modulus µ3 300 kPa
Bulk modulus κ 6000 kPa
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Figure 7: Verification of the FE model against the analytical model on the results of Cauchy stress
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Figure 8: The three virtual displacement fields used in the second case study. (a) Constant strain field. (b)
Heterogeneous virtual strain with k = 1 and η = −0.01. (c) Heterogeneous virtual strain with k = 2 and
η = 0.001.
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Figure 9: The identification process in the second case study. (a) Convergence plot of the novel VFM
approach for each layer parameter. (b) Cost function f descent.
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Table 7: The identified results for different layers under different external bath osmolarities
c∗ Type Material 1 Material 2 Material 3

Initial value of µ(Pa) 150000 150000 150000
20 mosM Identified µ̃(Pa) 100000.95 199999.81 299998.34
100 mosM Identified µ̃(Pa) 99999.02 200001.77 300003.04
500 mosM Identified µ̃(Pa) 100001.24 199998.37 299996.26
1000 mosM Identified µ̃(Pa) 99997.62 200001.04 300006.52

Exact µ̂(Pa) 100000 200000 300000
Average relative error (%) 1.388× 10−3 5.788× 10−4 1.247× 10−3

The identification for each layer is verified by considering with different chemoelastic334

terms. As reported in Table 7, the same values of µ are identified even if we assume different335

values for the external salt osmolarity. This demonstrates that the proposed model is effective336

in shear modulus identification without knowing the chemoelatic terms. The process of337

minimizing the cost function f(µ1, µ2, µ3) is provided in Fig. 9.338

The influence of noise on the identification is reported in Table 8. The material param-339

eters are well recovered with a low noise level (σu < 5× 10−4) and it is also shown that the340

error of identified results is increased with the increase of noise level. However, when the341

noise level reaches a higher level (σu = 1 × 10−3), the results deviate significantly from the342

reference values.343

Table 8: The relative error of identified results in three layers under different levels of measurement noises

σu
Mean identified values µ̄(Pa)

µ̄1 error(%) µ̄2 error(%) µ̄3 error(%)

1× 10−4 99622.35 0.38 200185.09 -0.09 298801.27 0.40
3× 10−4 97340.56 2.66 197091.80 1.45 292038.95 2.65
5× 10−4 92950.14 7.05 189106.28 5.45 279275.88 6.91
7× 10−4 86117.79 13.88 175407.71 12.30 259909.74 13.36
1× 10−3 63550.56 36.45 142574.59 28.71 209265.30 30.24

Exact values 100000.00 — 200000.00 — 300000.00 —

3.3. Third case study: uniaxial tensile test of descending thoracic aortas344

The third example consider the parameter identification based on the measurements345

in a uniaxial tensile test of descending thoracic aortas described in Section 2.5. Three346

samples with the same size were tested. The thickness ratio of each layer was set as 1:8:1347

(adventitia:media:intima), according to the size of experimental sample[17]. The geometry348

for the sample is shown in Fig. 10. The measurement for the average Green-Lagrange349

strains with the standard deviation(std) and the corresponding applied force in the different350

deformed configurations for each sample are reported in Tables 9, 10, and 11.351
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X

Figure 10: Geometry and boundary condition for an aortic sample immersed in a PG solution and subjected
to a uniaxial tensile test

Table 9: The average Green-Lagrange strains from the experiment for Aorta1

Type Loading
step

Measured
stress(MPa) Exx(%) (std) Eyy(%) (std) Ezz(%) (std)

Global

3rd 0.07 -1.510 (0.42) 4.352 (0.26) 0.145 (1.18)
5th 0.1 -2.124 (0.52) 7.090 (0.37) 0.108 (2.32)
7th 0.13 -2.596 (0.71) 9.554 (0.51) 0.170 (3.56)
9th 0.17 -3.125 (0.76) 11.847 (0.60) 0.353 (4.76)

Intima

3rd 0.07 -1.558 (0.42) 4.381 (0.35) -2.271 (4.57)
5th 0.1 -2.136 (0.44) 7.157 (0.49) -3.528 (6.99)
7th 0.13 -2.600 (0.65) 9.603 (0.67) -4.768 (8.89)
9th 0.17 -3.129 (0.74) 11.949 (0.79) -5.566 (10.18)

Media

3rd 0.07 -1.489 (0.39) 4.376 (0.23) 1.003 (0.34)
5th 0.1 -2.127 (0.54) 7.112 (0.32) 1.603 (0.63)
7th 0.13 -2.582 (0.68) 9.570 (0.45) 2.263 (1.60)
9th 0.17 -3.114 (0.72) 11.857 (0.52) 3.007 (2.67)

Adventitia

3rd 0.07 -1.434 (0.67) 4.273 (0.35) -2.120 (3.15)
5th 0.1 -2.043 (0.85) 6.958 (0.46) -3.525 (4.96)
7th 0.13 -2.509 (1.05) 9.407 (0.65) -4.795 (6.73)
9th 0.17 -3.020 (1.24) 11.630 (0.79) -6.137 (7.91)
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Table 10: The average Green-Lagrange strains from the experiment for Aorta2

Type Loading
step

Measured
stress(MPa) Exx(%) (std) Eyy(%) (std) Ezz(%) (std)

Global

3rd 0.06 -0.628 (2.26) 3.572 (1.80) 0.493 (0.38)
5th 0.1 -1.135 (3.60) 6.412 (2.92) 0.627 (0.87)
7th 0.13 -1.475 (4.93) 9.210 (4.10) 0.523 (1.63)
9th 0.17 -1.982 (6.02) 11.708 (5.09) 0.385 (2.53)

Intima

3rd 0.06 -0.370 (2.93) 4.134 (2.01) -2.470 (10.00)
5th 0.1 -0.717 (4.68) 7.579 (3.22) -3.383 (14.95)
7th 0.13 -1.105 (6.36) 10.846 (4.38) -4.156 (18.03)
9th 0.17 -1.688 (8.12) 13.758 (5.22) -5.080 (19.37)

Media

3rd 0.06 -0.733 (2.55) 3.658 (1.88) 0.645 (1.60)
5th 0.1 -1.309 (3.94) 6.555 (2.96) 0.919 (1.50)
7th 0.13 -1.726 (5.18) 9.555 (3.94) 1.152 (1.22)
9th 0.17 -2.225 (6.19) 12.021 (5.15) 1.627 (1.19)

Adventitia

3rd 0.06 -1.233 (2.91) 1.912 (1.63) -2.372 (5.29)
5th 0.1 -1.511 (4.12) 3.393 (2.70) -3.950 (7.58)
7th 0.13 -1.775 (4.62) 4.830 (4.07) -4.421 (8.65)
9th 0.17 -2.076 (5.25) 5.926 (5.35) -4.922 (11.71)

Table 11: The average Green-Lagrange strains from the experiment for Aorta3

Type Loading
step

Measured
stress(MPa) Exx(%) (std) Eyy(%) (std) Ezz(%) (std)

Global

3rd 0.08 -1.315 (1.28) 4.940 (0.62) -0.269 (0.71)
5th 0.12 -2.303 (1.92) 8.377 (1.03) -0.708 (1.66)
7th 0.17 -2.923 (2.54) 11.174 (1.24) -1.020 (2.76)
9th 0.21 -3.368 (3.08) 14.004 (1.60) -1.124 (3.80)

Intima

3rd 0.08 -1.506 (1.13) 4.929 (0.58) -1.655 (3.22)
5th 0.12 -2.642 (1.82) 8.405 (0.89) -3.531 (5.50)
7th 0.17 -3.432 (2.45) 11.206 (1.02) -5.844 (8.40)
9th 0.21 -3.978 (2.94) 14.030 (1.34) -7.480 (10.18)

Media

3rd 0.08 -1.235 (1.55) 4.909 (0.69) 0.156 (0.71)
5th 0.12 -2.210 (2.17) 8.342 (1.06) 0.279 (0.70)
7th 0.17 -2.836 (2.88) 11.166 (1.26) 0.687 (1.08)
9th 0.21 -3.287 (3.36) 14.069 (1.57) 1.472 (1.40)

Adventitia

3rd 0.08 -1.367 (1.47) 4.860 (1.01) -2.878 (4.84)
5th 0.12 -2.213 (2.13) 8.097 (1.66) -5.542 (7.43)
7th 0.17 -2.590 (2.60) 10.910 (2.24) -8.711 (11.56)
9th 0.21 -3.072 (3.25) 13.703 (2.71) -11.764 (13.49)
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Table 12: The identification results for experimental measurements from different initial guesses
Initial guesses µ(MPa) Identified values µ̃(MPa)

Intima Media Adventitia - Intima Media Adventitia
0.1 0.1 0.1 - 0.4746 1.0040 0.4831
0.2 0.2 0.2 - 0.4746 1.0040 0.4831
0.3 0.3 0.3 - 0.4746 1.0040 0.4831
0.4 0.4 0.4 - 0.4746 1.0040 0.4831
1.0 1.0 1.0 - 0.4746 1.0040 0.4831
2.0 2.0 2.0 - 0.4746 1.0040 0.4831
3.0 3.0 3.0 - 0.4746 1.0040 0.4831
10.0 10.0 10.0 - 0.4746 1.0040 0.4831
1.0 2.0 3.0 - 0.4746 1.0040 0.4831
3.0 2.0 1.0 - 0.4746 1.0040 0.4831

Firstly, we investigate the influence of initial guess on the identification results as shown352

in Table 12, in which one group of experimental measurements in Table 9 is used, it is shown353

that the identified results for different layers of arteries are the same for ten different group of354

initial guesses. Then, the identification results for three samples using the proposed VFM are355

shown in Figs. 11(a), 11(b), and 11(c), respectively. Despite the chemoelastic effects going356

on in these samples, the identified shear moduli show only marginal variations with the357

applied force, indicating that the identification method is able to eliminate the non-purely358

elastic effects. Indeed, it is assumed that these effects only affect the hydrostatic pressure359

to which the VFM is immune. This assumption permitted the separate identification of the360

shear modulus of each layer, as shown in Fig. 12. The largest shear moduli are obtained in361

the media layer, with values of approximately 1 MPa. The intima and adventitia appeared362

to be at least half as stiff. Although the obtained absolute values may be specific to the363

conditions used for the purpose of this study (immersion in PG to induce osmotic effects),364

the relative values between each layer indicate a significant gradient of elastic properties365

across the thickness.366

4. Conclusion and discussion367

The mechanical behavior of soft biological tissues can be significantly affected by the368

chemical potentials of interstitial fluids, resulting in obvious chemomechanical coupling phe-369

nomena. And chemoelastic constitutive models are widely used for soft biological tissues.370

However, to the best of our knowledge, there have been very few studies related to parame-371

ter identification of these models using VFM combined with optical full-field measurement372

techniques.373

In this paper, VFM was applied for the parameter identification of biphasic chemoelastic374

models using full-field measurements. The proposed approach avoids iterative resolutions375
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Figure 11: Identified shear moduli of tested samples with average strains across each layer and the entire
aortic wall. (a) Aorta1, (b)Aorta2,(c)Aorta3. 25
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Figure 12: Identified shear moduli (mean value and deviation bar) for each layer of the tested samples

of direct problems with complex nonlinear chemomechanical interaction relationships. An376

advantage of the proposed approach is that it can extract hyperelastic parameters without377

knowing the chemoelastic parameters of the model simply by designing a special virtual field.378

Therefore, the proposed approach will be useful for further parameter identifications in soft379

biological tissues.380

The proposed approach was assessed to identify the layer-specific stiffness properties of381

arteries based on strain fields. The identification results based on numerical simulations382

showed that the proposed model is immune to chemoelastic effects. Moreover, the shear383

modulus of the media of porcine descending thoracic aortas immersed in an 80% PG so-384

lution was identified with values of approximately 1 MPa, however, the identified shear385

modulus is smaller than the instantaneous shear modulus, which was identified to be ap-386

proximately 3 MPa in a previous work[17]. Indeed, the instantaneous shear modulus was387

found by assuming incompressibility of the solid part in the biphasic hyperelastic model,388

whereas identification with the VFM did not require such an assumption. Another interest-389

ing finding is that the layer-specific shear moduli can be identified simultaneously with the390

VFM. The shear modulus of the media layer is nearly twice as stiff as that of the intima and391

adventitia. The ratios between interlayer shear moduli of arteries are similar to those ob-392

tained in the work of Peña et al.[43], in which they were approximately 1:2:1. Therefore, the393

proposed approach was proved to provide an effective identification of interlayer gradients of394

shear moduli despite the chemoelastic effects. A potential application of the proposed VFM395

approach is the multiscale mechanical characterization of biological tissues since both the396

effective material parameters at the macroscopic scale (as in Example 1) and the multilayer397
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or heterogeneous material parameters at the mesoscopic scale (as in Examples 2 and 3) can398

be well identified, showing effective multiscale identification for soft biological tissues even399

in the presence of chemoelastic effects.400

A main limitation in this study is that the VFM was only tested with the neo-Hookean401

model. Due to the obvious anisotropic behavior of aortic wall, future work will extend402

the approach to anisotropic hyperelastic models, such as the Holzapfel[44] and MA-HGO[45]403

models which are used extensively to model collagen fibre reinforced biological materials,404

and the use of neo-Hookean model could produce a systematic variation of the apparent405

shear modulus with increasing strain. Another limitation of the work is that we ignore the406

stiffening effect of soft tissues for the sake of simplicity, a more complex VFM for nonlinear407

problems is required to consider this case.408

In summary, we have presented a new VFM approach for parameter identification that409

is well suited for chemoelastic constitutive relationships in soft biological tissues. The iden-410

tification of layer-specific elastic parameters can be applied even in the presence of complex411

chemoelastic effects. Important developments will extend the approach to multiscale consti-412

tutive models, and anisotropic effects of soft tissues.413
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