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Abstract

To meet current societal demand for more sustainable transformation processes and

bioresources, these processes must be optimized and new ones developed. The evolu-

tion of various systems (raw material, food, or process attributes) can be predicted to

optimize the uses of biomass for better quality, safety, economic benefit, and sustain-

ability. Predictive modeling can guide the necessary changes and influence industrials,

governmental policies and consumers decision-making. However, achieving good pre-

dictive capability requires reflection on the models and model validation, which can be

difficult. This review aims to help scientists begin to predict by presenting the tech-

niques currently used in predictive science for food and related bioproducts. First, a

guideline helps readers initiate a prediction process along with final tips and a warning

about the risks involved, with a particular focus on the crucial validation step. Three

broad categories of techniques are then presented: empirical, mechanistic, and artificial

intelligence (or “data-driven”). For each category, the advantages and limitations of cur-

rent techniques for prediction are explained in light of their current domains of applica-

tions, illustrated with literature studies and a detailed example. Thus this article

provides engineering researchers information about predictive modeling which is a

recent relevant development in optimization of both food and nonfood bioresources

processes.

Practical applications

Predictive modeling is a recent development of much relevance in the optimization

of both food and nonfood bioresources processes. The goal of this article is to guide

those in research or industry who would like to start predicting. Therefore, the article

is intended as a primer on prediction concepts and predictive techniques for food

and non-food bioresources processing. Three categories of techniques commonly

used in these fields are illustrated by various examples of current applications and a

more detailed example helps to understand the implementation process. An

increased ability of the global scientific body to predict the outcome of various deci-

sions, often linked or sequential, will open new avenues for designing food products

with circularity in mind: maintaining value and not creating waste in the process.
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1 | INTRODUCTION

The manufacturing of food and feed and byproducts-based economic

activities that exploit biotechnology and biomass to produce energy,

goods or services have progressively become severe political and

social concern (Bakan et al., 2022). Research in this field has grown

significantly recently, with national and international governing bodies

pushing for more sustainable natural resource use and less depen-

dence on nonrenewable resources (European Commission &

Directorate-General for Research and Innovation, 2017). Not surpris-

ingly, more and more lines of research are now focused on modeling

and predicting the outcomes of food and bioproducts-related pro-

cesses and the qualities and properties of the end-product output.

The COVID-19 pandemic has confirmed the ability of science to

prepare and guide public decision-making through predictive models.

Similar outcomes are expected for the eco-efficient transformation of

food and the use of bioresources. Predictive models are increasingly

used in open-loop simulations to guide governments (Acs et al., 2019)

and evaluate alternative policies (Schlüter et al., 2022). The bioecon-

omy means using renewable biological resources from land and sea,

like crops, forests, fish, animals, and micro-organisms to produce food,

materials and energy (European Commission, 2022). All those could

benefit from scripting scenarios with efficiency, quality, safety, econ-

omy, and sustainability indicators. At the scale of the processing of

food and biomass, the ability to predict the outcome of a succession

of linked decisions would be beneficial at all stages of transforming

agricultural biomass into food and biotechnological products, and

recycling biomass (Zeng & Li, 2021). It is generally accepted that pre-

dictions can support objective decisions in many areas: minimizing

cost and resources, securing investments, and scheduling supplies and

deliveries (Bauwens et al., 2020). More integrated predictions sup-

porting food safety, quality, and sustainability are usually missing or

more challenging to develop. They typically require more interdisci-

plinary and integrative approaches than those used in engineering and

more detailed ones than those supporting the public decision (Vitrac

et al., 2022). They are now within reach and should significantly rede-

fine how natural resources are used and how food and other biotech-

nological products are processed and distributed. In a nutshell, the

technologist already has at his disposal a range of numeric predictive

techniques allowing him to control the efficiency and flexibility of the

transformation activities, evaluate the impacts of his choices, and find

the best technological route. Innovation can be triggered virtually, and

previous failures can be analyzed forensically with the help of the

same predictive techniques.

The primary interest of prediction stems from its ability to remove

subjectivity from decision-making while preventing adverse outcomes.

In other words, the main objective is not to achieve the best choice

but to direct choices away from the worst options. The methodology

can be rolled out to all technology readiness levels without requiring

the product to be physically present. The consequences of actions

(such as modifications of recipes, processes, the distribution chain, by-

product delivery) can be tested without sampling, detection limit,

time, or even the existence of tested conditions or techniques (Gillet

et al., 2009). Multiscale modeling opens new perspectives by virtualiz-

ing process (Touffet et al., 2021; Vitrac & Touffet, 2019) and product

design (Vitrac et al., 2022). Two features offer significant break-

throughs: almost continuous descriptions from process down to

molecular scales and the possibility of considering contradictory goals

such as minimizing packaging waste and maximizing product shelf-life

(Zhu et al., 2019). Beyond the immediate benefits of cost and devel-

opment time reduction, it is thought that these techniques could ulti-

mately lead to solutions and optimums that could not be found

experimentally.

Scientific predictions have come a long way over the past few

decades. Earlier, estimates were based on the fundamental laws of

nature and relationships between a few measurable entities incorpo-

rated into simple models governed by a few parameters. They now

mobilize complex representations involving large observational data

sets and increasing knowledge, all integrated into refined process rep-

resentations to provide sophisticated numerical models. In the sense

of this article, predictive ability relies on three prerequisites:

• Prediction requires a scientifically sound model—even a simple

one—supported by sufficient pieces of scientific evidence.

• Prediction is intentional (a priori): a predictive model is designed

for a specific class of problems while providing answers even for

values missing at its creation.

• Prediction can be evaluated (a posteriori), so its domain of validity

can be ascertained.

Although the art of predicting is well accepted in the manufactur-

ing industry, it remains less developed in the food industry and more

generally in areas associated with the primary transformation of biore-

sources or the management of wastes (Erdogdu et al., 2022). Many

reasons have been invoked, including the coupling of physical, chemi-

cal, and biological processes intimately coupled at different scales, the

soft-matter behavior of the biological matter, the lack of mathematical

and physical modeling in related curricula, the considerable variability

of raw materials and the dramatic evolution of all properties during

the transformation of biological matter. To accelerate innovation and

encourage the ecological transition, the authors think that predicting

for the bioeconomy should be a unique interdisciplinary topic. Predic-

tions, if properly managed, could be less costly than experiments and

obtained without delaying the innovation process. As engaging in a

prediction process can be intimidating, we set out guidance on imple-

menting fast and reliable predictions. We then move forward with the

2 of 16 COMMENTARY

 17454530, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfpe.14325 by Inrae - D

ipso, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



main strategies for getting started, illustrated with case studies chosen

to represent different classes of common problems encountered in

food and bioresource processes. We conclude with future research

directions on prediction.

2 | GUIDANCE ON USING PREDICTION IN
YOUR RESEARCH

To help the reader get started on initiating a prediction process, we

have conceived a purpose-designed guideline. The decision tree aims

to define the model type to initially try to implement according to the

knowledge and data available on the topic. As a first approach, we

suggest assessing the fundamental knowledge (literature, expertise,

data, etc.) you already have, and then drawing inspiration from

Figure 1 to determine the model that, a priori, would be most suitable

for you to use. This decision tree is a basic guideline to guide the user

in obtaining a prediction from the available knowledge or data by

choosing the right method from mechanistic, empirical, or data-driven

families. Note that it does not indicate a priority or hierarchical rela-

tionship among methods. Most problems can ultimately be success-

fully solved with each of the presented approaches, but one may be

more suitable than others. The main difficulty of the prediction does

not reside in the implementation of a technique but in the necessary

validation. It is therefore the incompatibility between the formulation

of what is known, be it knowledge or data, and what is readily

interpretable within model structure that tends to make methods

unsuitable. Machine learning is a field devoted to leveraging data to

create information, so it is especially useful for problems with large

amounts of data. Mechanistic modeling is established in phenomeno-

logical knowledge. Empirical modeling generally uses data, informa-

tion, and knowledge, but tend to be lacking in each. We have divided

this last large family according to how the knowledge gaps are filled.

This is a key to understanding prediction limits.

Consider where your proficiencies lie in addition to this decision

tree. A learned suboptimal tool may be a better choice than the

recommended one you know nothing about. The intention of this

guide is to make things easier, not to force you into one way.

2.1 | Modeling process

The predictive process is always initiated by observing the phenom-

ena to be predicted. A mathematical model is built from these phe-

nomena to capture conceptually essential features while eliminating

irrelevant detail.

The first step is to identify the relevant key variables to predict,

which may require scientific knowledge depending on your focal

area. Interaction with experts can be helpful to start out with good

foundations. Critical properties of the variables must be evaluated.

Are they qualitative or quantitative? How many levels are there, or

what is the acceptable uncertainty? Are you looking for a

F IGURE 1 Predictive technique decision tree. What is the right approach given the data and knowledge available?
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deterministic result or a probabilistic result? Do the outputs serve as

feedback inputs? In the latter case, the control function parameters

(e.g., proportional-integral-derivative controllers) need to be

included in the modeling.

Remember the concept of using a systemic approach: try to break

your problem down into simpler components. Modeling and validating

unit-operation models is more reliable and resilient to changes in the

process.

Thought needs to go into defining the limits of the model appli-

cation. You will then need to define the model's limits, depending on

what is unknown about the problem. This will determine the poten-

tial scope of the prediction, which should match your research ques-

tion. The main limits concern the scope of the model, the

practicability of the outputs, and the accessibility of input parame-

ters. Limits can be strict when the model uses parts or theories that

themselves have a predetermined domain of validity (mechanistic

case-example: the prediction of the velocity fields in a duct for a

laminar flow usually requires a Reynolds number lower than 2000) or

that reflect what has been validated through the data sets, in which

case validation with new data sets may extend the limits of

prediction.

A model represents knowledge; this initial collecting step will

therefore allow you to know what you can represent and ultimately

model.

2.2 | Upgrading to prediction: Validation

When designing a model, especially a mechanistic one, it is usually

best to start with a very simplified representation before adding com-

plexity. You add complexity gradually, layer-by-layer, and only until

the model output has a precision appropriate to the question asked.

Going any further is futile. Redirect your efforts toward model valida-

tion and evaluation. Simply having a model is not enough to run a

prediction—its reliability must be assessed first.

The results obtained and their potential applicability and limits

will vary depending on the technique used. Nevertheless, validation is

needed to gain confidence that the model can predict within its capa-

bilities. It generally involves three steps of testing and improvements

in an iterative loop process that continues as long as the model fails to

meet its objective quality threshold:

• The qualification of the model is evaluated on a set of data that is

independent from the set used to create it, in a range of situations

in coherence with the limits,

• The limits of the model application are re-evaluated,

• The model is consolidated through more realistic assumptions and

new developments in the methods.

The way to get out of this spiral is to meet the quality threshold,

so it is essential to define this threshold appropriately. To illustrate,

Guisan and Zimmermann (2000) report trade-offs and evaluation mea-

sures for habitat distribution.

When the output is qualitative and binary, simple metrics are

commonly used:

• Accuracy: the ratio of correct predictions to total cases,

• Sensitivity: the ratio of correct positive predictions to total positive

cases,

• Specificity: the ratio of correct negative predictions to total nega-

tive cases.

Different threshold values for these metrics result from different

aversion levels to the types of risk. Likewise for a quantitative profile,

setting a maximum local error reflects a different relationship to het-

erogeneity than a maximum error on the mean value. The worth of

these relationships is to be assessed alongside the prediction

objective.

3 | DESCRIPTIVE BRIEF ON PREDICTIVE
MODELS AND THEIR APPLICATIONS

Prediction always requires a model able to provide a relevant output.

However, from a binary check on the presence or absence of a given

marker to a full-scale physical description of a process, the scientific

basis of models covers several levels of complexity. Below, we provide

case studies and success stories for each approach and discuss limita-

tions and potential future evolutions.

Among the many classification possibilities, we chose to group

the techniques into three broad categories, which have distinctive

relation to data and knowledge.

The first category, empirical prediction, regroups the models pri-

marily rooted in biology, life sciences, environmental science, and

medicine. Their primary mathematical pillar and core assessment tool

are probability and statistics. They require a moderate amount of

knowledge and data and can include inputs from industry expertise or

traditional craftsmanship more straightforwardly than other

techniques.

The second category, mechanistic prediction, regroups the

models primarily rooted in physics, chemistry, biochemistry, and biol-

ogy. With underlying mechanisms and laws as a core, these tech-

niques are closely related to mathematics, but mathematics is the

language, not the primary driver. These models require extensive

knowledge about the inner workings of the problem.

The third category, artificial intelligence or “data-driven” predic-

tion, regroups the foremost models in cognitive science, computer sci-

ence, and mathematical logic. These models require large amounts of

data and computational resources.

The models of these three categories are usually developed and

validated independently and from different mathematical roots and

concepts. Their relation to causation is one of the most distinctive

features. Mechanistic prediction is powered by causation, whereas

correlations are considered good enough for empirical and artificial

intelligence predictions. Causality is much more complex to establish

than correlation. Indeed, it is common to confound undetermined

4 of 16 COMMENTARY

 17454530, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfpe.14325 by Inrae - D

ipso, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



factors with biases. Causality due to many interactions is also chal-

lenging to evidence and reproduce. In this perspective, mixed

approaches are likely to become the norm for the bioeconomy and

the transformation of bioresources. Some other aspects, such as those

related to cognitive processes (hedonic perception…) or physiological

(appetite, satiety, glycemia…), may remain out of reach of mechanistic

approaches. The outputs of one approach will be used as inputs of

another at a letter stage of the prediction.

3.1 | Empirical prediction

3.1.1 | Description and advantages

Empiricism produces experimental observations and analyses them

mathematically. Empirical approaches lie at the crossroads of machine

learning approaches, which need a large amount of data, and mecha-

nistic descriptions, making explicit the cause-and-effect relationships

between the components of bio-physical-chemical processes. They

mobilize a moderate amount of data and support it by an incomplete

integration of phenomenological knowledge. This incomplete integra-

tion is the consequence of either a lack of knowledge about the phe-

nomena, or a choice of simplification for practicality purposes.

Where there are knowledge gaps, empirical prediction seeks to

pass directly from measured elements considered relevant by humans

(introducing the “human” filter, which exists in all methods except

unsupervised machine learning) to the object of interest, thus avoiding

the complexity necessary for the description of mechanisms. This

shortcutting makes the empirical method especially suitable when the

prediction outputs must be application-ready, for instance, for eco-

nomic or environmental considerations. In this type of study, statisti-

cal analysis is a pillar for supporting the validation of correlations or

refuting seemingly obvious predictors, for example, appetite rating to

predict energy intake (Holt et al., 2017), as the transition to causality

comes from expertise (and is not always essential).

The model is often based on the definition of “markers” of the

biological or physical criteria in bioresource process predictions. Once

defined, these biomarkers will serve as indicators of a specific condi-

tion. The prediction is focused more on the input data than on the cal-

culation per se, the model, or the way to analyze the data. Therefore,

empirical models tend to be comparatively more straightforward, but

finding an efficient marker is the challenge.

3.1.2 | Techniques used and application areas

Large scope analysis techniques

The recent rapid development of biological, physical, and chemical

analytics tools, which provide indirect information on a large number

of practical questions, allows us to obtain the first type of input data

for empirical prediction. Some of the data obtained through these

tools also lend themselves well to data-driven methods. However,

they are still hampered by the cost of obtaining results, which de facto

limits the amount of data and forces analysts to use expert knowledge

and, hence, empirical prediction.

All of these analytics tools give access to a large domain of poten-

tial predictors. Most of them are irrelevant to the problem at hand,

but some may be. The analysis revolves around finding these

correlations.

The following subsections list examples of using some of the

advanced analytics tools to find empirical predictors. This is aimed at

researchers who may have access to these tools to get an outline of

their possibilities.

Omics. The omics branches of biology, spurred by the development of

advanced methods and tools, are prime users of these predictions.

They statistically search for candidate genes and biomarkers associ-

ated with various kinds of target traits. Genomics can be used to pre-

dict medical problems such as hyperketonemia (Pralle & White, 2020),

reproductive traits (Long, 2020), or evolutionary potential (Bay

et al., 2017; Mueller-Schaerer et al., 2020). Proteomics can for exam-

ple provide information on animal stress levels (Mouzo et al., 2020). In

this context, analysts find correlations using between-population dif-

ferences in gene expression intensity.

Omics-based predictions extensively use bio-ontologies such as

the collaborative Gene Ontology knowledgebase, a directed acyclic

graph that describes gene/gene product molecular functions and cel-

lular locations and the biological process in which these functions par-

ticipate. This knowledge of the biological processes adds a layer of

expertise, improving confidence that any correlated predictors identi-

fied might be somehow implicated in the target processes.

Infrared spectroscopy. Mid- and near-infrared (NIR) spectroscopy has

recently been successfully used to predict complex food phenotypes

and an extensive set of quality traits (Bresolin & Dorea, 2020; Pralle &

White, 2020; Vranic et al., 2020). NIR uses both empirical techniques

and machine learning, although the proportion of machine learning

increases with increasingly massive output.

Predictions are usually based on partial least squares regression

(Bresolin & Dorea, 2020) and multiple linear regression models

(Pralle & White, 2020) to obtain statistical indicators.

NIR has good potential for online analysis because it affordably

generates real-time, nondestructive information. However, caution

should be exercised in making the transition from laboratory to online

prediction, as online measurement tools lack accuracy, which may

substantially impact the reliability of the prediction.

Hyperspectral imaging, nuclear magnetic resonance or mass spectrome-

try. Other techniques such as hyperspectral imaging (Cheng

et al., 2017), nuclear magnetic resonance spectroscopy or mass spec-

trometry (Fayeulle et al., 2019), also use statistical indicators to pre-

dict. These techniques share a similar problem of under-precision

when attempting to scale up to online prediction, as affordable equip-

ment is less discriminant (e.g., low-field magnetic resonance

vs. laboratory-grade high-field magnetic resonance), and this potential

limitation should be considered early in the prediction process.
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Dedicated experiments approach

An alternative solution to develop an empirical prediction is to collect

data through dedicated experiments. Those are based on the

researcher's reasoning, knowledge and capacity to judge the a priori

essential parameters and the extent of their interactions (linear, qua-

dratic, etc.). Expert knowledge can therefore play a decisive role in

designing this data collection.

Whenever experiments are performed with predictive intent and

independently of the model envisioned, the crucial factor will always

be the design of experiments, which should establish statistical con-

cepts of validity, reliability, and replicability.

The following subsections list examples of some fields where this

approach have generally been successful.

Predictive microbiology. The poster child of empirical prediction is pri-

mary models used for predictive microbiology, which have been very

successful in describing microbial evolution as a function of time

(Stavropoulou & Bezirtzoglou, 2019) and which have become essen-

tial to food risk management and assessment (Lopatkin &

Collins, 2020; Valdramidis et al., 2013). These models are grounded in

the basic assumption that populations of microorganisms show repro-

ducible responses to environmental factors. Primary models are often

coupled with secondary models describing the evolution of influenc-

ing factors like pH, temperature, water activity (Li et al., 2008). These

secondary models often follow a mechanistic approach, as described

in Section 3.2.

Resources management. The field of agricultural management is very

much a user of empirical predictions for water management (Adisa

et al., 2020; Pereira et al., 2020), energy management (Bersani

et al., 2020; Garcia-Maraver et al., 2017; Shine et al., 2020), and biologi-

cal control (Haan et al., 2020; Mills & Heimpel, 2018; Mueller-Schaerer

et al., 2020), or to predict direct impacts on productivity. These

productivity-focused models have been employed in a wide range of

studies, from predictions looking directly at overall yield (Bekenev, 2019;

Horie, 2019; Li et al., 2018; Menzel, 2021) to predictions investigating a

specific cause of product loss (Ealy & Seekford, 2019; Zhou et al., 2020),

typically by the impact of animal diet (Hanigan et al., 2018; Lyu

et al., 2020; Święch, 2017; Trottier & Tedeschi, 2019).

Regression models are the prevalent tools (Menzel, 2021; Shine

et al., 2020), but various fields have developed computed-based tools

that improve efficiency and ease the display of statistical output, such

as geographic information systems for maps (Adisa et al., 2020) or the

“Simulation model for rice–weather relations” for rice (Horie, 2019).

Sensors-based prediction. Sensors and nondestructive measurement

methods (Ealy & Seekford, 2019; Li et al., 2018) are extensively used

to connect predictors to predicted outcomes, in some cases in real-

time to enable in situ monitoring of the impact of an intervention.

Remote sensing imagery for maps (Adisa et al., 2020; Pereira

et al., 2020), Internet of Things for smart greenhouses (Bersani

et al., 2020), or frost monitoring (Zhou et al., 2020), colorimetry and

visible imaging (Li et al., 2018) are other examples of sensors in use.

How those can be linked together, a case study

Several quality criteria concerning animal stress level, technological

quality of meat, and their relationship have been developed for pre-

diction purposes (Mouzo et al., 2020; Théron et al., 2020). Mouzo

et al. (2020) feature a proteomics study that results in protein intensi-

ties with a threshold distinguishing “control” and “stress.” Théron

et al. (2020) combined spectral protein fingerprints acquired by mass

spectrometry and infrared to build a statistical model to distinguish

the “control” and “defect” classes. To illustrate that boundaries

between empirical and data-driven categories can be fuzzy, they did

incorporate some supervised machine learning to find their input

marker. Both animal stress levels and muscle defects predictions rely

on practical noninvasive sampling: for instance, blood obtained in vivo

(as opposed to organs and muscles). Identifying a precise and accessi-

ble indicator can promote short-term innovation.

3.1.3 | Limitations and relationship to mechanistic
prediction

Prediction through empirical modeling does not necessarily need cau-

sation. However, this approach has limited genericity, as any interven-

tion on the system is likely to remove the observed correlation.

Moreover, as the basis for the correlation is unknown, there is no sim-

ple way to identify whether an intervention is safe. Consequently, it is

difficult to translate the obtained correlations from one problem to

another (Garcia-Maraver et al., 2017). This lack of genericity means a

new set of experiments is likely needed whenever a factor gets modi-

fied, thus effectively starting over from near-zero and accumulating

costs over time.

In situations where experiments are not practicable, a mechanistic

understanding is often necessary to transpose the problem into

another problem frame (e.g., time and size scaling).

Progress in expert knowledge and understanding of the phenom-

enon leads to hybrid empirical–mechanistic prediction (Hanigan

et al., 2018; Lyu et al., 2020; Święch, 2017; Trottier &

Tedeschi, 2019).

When experimental measurements accumulate, are repeated and

validated, we tend to extract laws by inductive reasoning, thus giving

birth to empirical laws. Like mathematical conjectures, these laws are

suspected to be true due to the supporting evidence and absence of

disproof, yet lack proof. The multitude of empirical laws has enabled

the development of mechanistic prediction, which minimizes the need

for experimental validation without ever succeeding entirely and con-

fidently eliminating it. The following section discusses this type of pre-

diction's current state of the art.

3.2 | Mechanistic predictions

The main steps towards mechanistic prediction on bioresource and

food products covered in this manuscript are sketched out in Figure 2.

The process from understanding the mechanisms to integrating the
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knowledge is progressive. It involves firstly reducing the model to only

the most relevant mechanical building blocks and then evaluating the

performance and limits before increasing complexity. Prediction suc-

cesses and failures help forge a more accurate description of the con-

text or understanding of the mechanisms. Furthermore, an updated

description of the context may also inform on the physicochemical

mechanisms.

3.2.1 | Description and advantages

Conservation laws, including mass/species, energy/heat or momen-

tum/flow, constrain mechanistic predictions to only feasible or proba-

ble predictions. As mechanistic modeling is systemic, mechanistic

predictions can apply to any system, regardless of its size, from the

product scale to the entire planet. The time-frame can cover fast

molecular events up to a shelf-life or the bioaccumulation of chemi-

cals in the human body or the environment (Ho et al., 2013). Compu-

tational costs can rise quickly but this can be mitigated by associating

and chaining simulations. A prediction or guess at one scale can be

used hierarchically at the next scale up. Under similar conditions of

independence, some mechanistic predictions can be cumulated for

several steps or calculated stochastically, such as conversion rates in

chemical reactions, microorganism destruction rates, or contamination

rates (Vitrac & Hayert, 2005).

With the increase in computing power, mechanistic prediction

moved from the experts' hands to practitioners' hands. Modern

numerical simulation software are able to leave the user free to focus

on the description of the problem and the choice of the physical,

chemical or biological parameters. The postprocessing to transform

solution fields (two-/three-dimensional [2D/3D] concentration/veloc-

ity/temperature profiles) into desired scalars (amounts, fluxes, and

rates), kinetics, surface plots and movies may involve some mathemat-

ical treatment (interpolation and integration) and coding. Due to its

multiple capabilities, mechanistic predictions offer the most extensive

spectrum of predictions, including the capacity to reconstruct an

entire real scene such as cooking or thawing in a microwave oven

(Datta, 2016) that requires a combination of electromagnetism, heat,

and mass transfer. The process, the product, the transformations and

reactions inside the product, and the characteristics of the final prod-

uct (composition, structure) can be studied separately or together.

A methodology is required to build predictive models of complex

systems that include many components and phases that may evolve

with time. One strategy is to combine models from different scales,

such as microscopic and macroscopic models (Vitrac & Touffet, 2019),

to achieve the predictions. This approach decomposes into small unit

mechanisms, some well-known and others unknown. An iterative pro-

cess may be necessary to achieve this goal. A recent application of

this methodology is described in Section 3.2.2.

3.2.2 | Techniques used and application areas

Mechanistic predictions for solid foods and their characteristics (struc-

ture/texture, composition, nutritional value, functional value, sensory

perception) during processing (drying, cooking, frying, freezing, gela-

tion) are comparatively less developed than mechanical industries

models and require more experimental validation. The chief difficulty

is that the properties of solid raw food materials are highly variable

and can change significantly during processing. Heat and mass trans-

fer properties significantly change with composition (e.g., during dry-

ing) while mechanical properties evolve with structure (Datta, 2016).

Shrinkage during drying/cooking, chilling injury and cell damage dur-

ing freezing are challenging to capture. Image-based modeling is a

powerful approach to describe solids at pore level or smaller. Exam-

ples cover realistic simulation of artificial bone cultures (Alam

et al., 2016), multiphasic oil flow in French fries (Touffet et al., 2020;

Vauvre et al., 2015), gas transport in fruits (Ho et al., 2010) and

mechanical properties of 3D-printed cookies (Piovesan et al., 2020).

Combining mechanistic predictions at different scales offers a path-

way to engineering new foods (Roos et al., 2016) or develop eco-

designed food packaging (Zhu et al., 2019).

Reaction–diffusion systems are widely used to predict the bio-

chemistry of foods during storage, processing, or consumption. The

completeness of the chemical reaction system varies between models,

but most include at least one chemical reaction and the diffusion of

an involved species. As the name “reaction–diffusion system” implies,

it is already a collection of predictions, with the reaction and diffusion

parts being independently tested as much as possible. As practicable,

the reaction system should be defined independently of space, in zero

dimension, and the applicable diffusion laws should ideally be defined

without any reaction involved. The two tested models are only

F IGURE 2 Process of knowledge
revision. The prediction is progressively
achieved (solid black arrows) by
considering the context (orange dotted
arrow) and mechanisms (solid blue arrow),
the latter being possibly influenced by the
former (green dashed arrow).
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coupled afterwards. Dissociating the phenomena can prove a complex

task. So practitioners may find it necessary to admit hypotheses on

one of the components, such as mass transport that follow Fickian dif-

fusion or chemical reactions that follow Arrhenius law, to reduce the

field of possibilities to a level suitable to the available data and acces-

sible testing situations. In such instances, we recommend choosing

hypotheses that hold valid in most—if not all—cases (anomalous diffu-

sion, enzymatic reactions). Many examples of reaction–diffusion sys-

tems illustrate the biochemistry prediction of foods. During food

storage, humidity (Zhao et al., 2019) and oxygen are major factors in

the loss of product qualities, whether directly, such as produce respi-

ration (fruits and vegetables) (Badillo & Segura-Ponce, 2020) or oxida-

tion leading to the color shift of myoglobin in red meat, or through

microorganisms (Kern et al., 2021). The very concept of transforma-

tion equates to change, and for food, biochemical reactions can play a

large part in it, for example, oxidation of polyunsaturated fats at high

temperature (Touffet et al., 2021) or Maillard reactions (Kocadagli &

Gokmen, 2016). Likewise, digestion can be viewed as a series of trans-

formations in which acidification is combined with the enzymatic

action of pepsin in the stomach (Sicard et al., 2018).

Mechanistic predictions have been applied to a wide variety of

food engineering situations (three examples in Table 1). The first

example, reported by Teixeira et al. (1969), was a pioneer in food

engineering. Bacterial destruction in cans was inferred numerically

from the solution of the heat conduction equation in a cylinder. The

reliability of the predictions led to extensions in other aspects of food

safety and quality, as shown in examples 2 and 3 of Table 1.

For example, plate heat exchangers used in milk thermal treatments

are prone to rapid fouling, and clean-in-place cycles produce large

amounts of waste. After decades of research, fouling prediction is still a

challenge for the milk industry to manage optimal production. It has

been shown that knowledge of the denaturation kinetics helps predict

fouling mass and should be more frequently determined (Bansal &

Chen, 2006; Blanpain-Avet et al., 2016; Donato & Guyomarch, 2009;

Loveday, 2016), especially for building a robust predictive deposition

model. The recent model proposed by Sharma and Macchietto (2021)

and improved by Alhuthali et al. (2022) offers a good compromise

between computational time and prediction’ quality. Figure 3 presents

the scale-progression strategy applied to fouling prediction in plate

exchangers. This dynamic 2D model introduced sophisticated condition-

based logic in each phase and in fine enables detailed simulation of foul-

ing and cleaning kinetics through a combination of equation-based

models at different scales. Dimensionless process relations are used to

solve the computationally time-consuming flow and heat transfer in the

bulk. Equations were solved using differential methods for heat transfer

and deposit growth in the plates and deposit layers. These models were

obtained by going down dimension scales to understand critical details

of the mechanisms involved. Fouling or cleaning models were refined by

computational fluid dynamics simulations and molecular representations

of protein aggregation. These models showed that the heating/cleaning

cycle can be optimized for maximum productivity to find trade-offs

between fouling and cleaning. The model was validated using various

experimental data (temperature and pressure-drop, global and local mass

distributions per channel) for a large variety of dairy derivatives and

operating conditions. Computation time takes only a few minutes. The

model has proven effective for optimizing the operation of complete

plate heat exchangers, including typical heating and cleaning policies.

Predicting deposit distribution on the plates with a high degree of confi-

dence is also helpful for monitoring, diagnosis, and control purposes,

and is now directly accessible to the industry.

TABLE 1 Examples of prediction in foods.

Prediction problem Example Risk Benefits

Exact quantitative value

P = R or P ≈ R

1. The core temperature of a

product during sterilization to

estimate the minimum

sterilization value.

(Teixeira et al., 1969)

Consumer

hazard

The predictions replace difficult temperature

measurements during retort sterilization and/or

spore viability measurement and counting.

The method paved the way to new sterilization

processes: high-temperature short-time

processing preserves nutrients and vitamins better

while providing better food safety.

Conservative estimate with a safety

margin (SF)

P > R or P-R > SF

Alternatively, probability

p(R-P) < SF% (e.g., 5%)

2. Mass transfer of a packaging

substance into food.

(Vitrac & Hayert, 2005).

Consumer

hazard

Product

recall

The predictions replace time-consuming testing

(10 days) and enable extrapolation to realistic

conditions (time and temperature). Only available

method to evaluate recycled plastic materials in

contact with food.

Safety considerations and sustainability are

integrated numerically for rapid prototyping of

food packaging.

Causality

B is an effect of A

A is a cause of B

The cause may be contributory,

necessary, and sufficient.

3. Cause of oil uptake during deep

frying and product removal from

fryer.

(Touffet et al., 2020)

Unhealthy

food

Input for new designs (e.g., modified deep-fryers),

process control strategies or formulations to

reduce the cause (e.g., low-fat products).

Notes: The Prediction (P) can have various relationships to Reality (R). This table illustrates some of these possible relationships. For each case, an example

is provided with the risk associated with the error in prediction and the potential benefits of correct prediction.
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3.2.3 | Limitations

Mechanistic prediction tools are developed in settings that are some-

times far removed from the transformation of bioproducts, so they

require substantial adaptation efforts. Many of the developments

have been obtained from various collaborative research contracts

with either academics or the industry. This construction limits the dis-

semination and sharing of the latest data and models, creating a bot-

tleneck for generic developments.

Note that generic commercial or open-source software packages

largely fail to consider unit operations specific to food, biochemical or

microbiological reactions for bio-substrates/food, macroscopic prop-

erties (e.g., food) and microscopic geometries (e.g., fibers) are poorly

described. Physical, physicochemical, and thermodynamic properties

remain under-reported. The natural variability of the raw materials

and the evolution of the processed material also add a layer of

complexity.

Among mechanical, heat, and mass transfer problems, fracture,

mixing, wetting, phase separation and multiphasic flow problems with

dynamic and free surfaces are not readily manageable using the

numerical strategies cited above, as they involve complex descriptions

at more than one length or time scale. Several extensions using parti-

cle or Lagrangian descriptions have been proposed to describe mass

transfers at the food-structure scale (Vitrac & Hayert, 2020) or the

coupling between oxidation reactions and anisothermal oil flow

(Touffet et al., 2021). It is still an active field of research, and the

available software packages are still under-intuitive and require some

level of coding.

Mechanistic prediction relies on theory and physical laws to

describe physical, mechanical, chemical, biochemical, and biological

phenomena. So they generally struggle to incorporate craft know-

how, and critical phenomena associated with food consumption, such

as food perception and consumer choices, are still out of reach.

3.3 | Data-driven predictive models

3.3.1 | Description and advantages

As computational capabilities increase and more data become avail-

able, automated techniques for prediction are slowly gaining popular-

ity. These approaches are suited for applications where the underlying

fundamental mechanisms are unclear or multiple physical and chemi-

cal phenomena co-occur and lead to nontrivial interactions. The unify-

ing idea behind these approaches is to transform the prediction

problem into an optimization problem and solve it by resorting to

established optimization techniques.

The classical paradigm for obtaining data-driven predictive

models in this domain is illustrated in Figure 4. Meaningful features

can be extracted, designed, or inferred from raw data. The resulting

data set containing these features will then be split into a training and

validation set to help the practitioner tune the hyperparameters of

F IGURE 3 Scale-progression strategy. Also called “V strategy” in mechanistic simulations, applied to protein fouling in plate heat exchangers.
Working down from the process conditions, the model describes finer and finer mechanisms, potentially down to molecular scale, until it informs
on the problem. Understanding the finest-scale phenomena is then scaled back up toward process scale to evaluate the consequences and predict
desired outcomes. Relevant outputs can be obtained at each step of the upscaling strategy.
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the machine learning method. Once the parameters are adjusted, a

final check will be performed on a separate test set, and a candidate-

tuned model is selected to perform predictions on unseen data.

Machine learning describes a set of computer algorithms that

automatically create models and improve their performance if given

more training data to learn from (Samuel, 1959). Machine learning

algorithms can be applied to various tasks. The traditional taxonomy

divides them into supervised, unsupervised, semi-supervised, and

reinforcement learning, depending on the availability of training labels

and how the training samples are generated. In the present article, we

focus primarily on supervised machine learning and, particularly, on

“classification” and “regression” tasks.
Machine learning techniques range from simple paradigms like lin-

ear (Pearson, 1896) and logistic regression (Cox, 1958; Gu

et al., 2007) or decision trees (Breiman et al., 1984) to more complex

techniques such as random forests (Breiman, 2001; Jimenez-Carvelo

et al., 2019), support vector machines (Bahamonde et al., 2007;

Platt, 1999) and symbolic regression (Schmidt & Lipson, 2009), and on

to artificial neural networks (Hinton, 1990; Yang & Chen, 2022). New

developments known as deep learning (Goodfellow et al., 2016) have

made it possible to create larger, more effective models, although they

usually require vastly more data to be properly trained.

The past decade has seen remarkable advances in deep learning

fueled by big data and powerful computational resources (in particular

graphics processing units), which have revolutionized many fields in

science. Deep learning models are artificial neural networks with

several connected layers that can learn multiple levels of data abstrac-

tions. The most common frameworks learn how to transform inputs

into features amenable to predicting the corresponding outputs in a

supervised way. The mapping from inputs to outputs is learned from a

sizeable input–output data set by tuning each layer's parameters via a

back-propagation algorithm. Once trained, the network can be used

to make predictions on new and unseen data.

In deep learning, the computers learn to build useful features

automatically, directly from the data. However, the automatic feature

extraction carried out by deep learning methods is costly, both in

computational resources and in the amount of training data. Popular

examples of deep learning architectures are feed-forward neural net-

works (Mwaura & Kenduiywo, 2021; Rumelhart et al., 1986), convolu-

tional neural networks (Kamilaris & Prenafeta-Boldu, 2018; Le Cun

et al., 1990), recurrent neural networks (Mandic & Chambers, 2001;

Okada et al., 2016), and generative adversarial networks (Goodfellow

et al., 2014; Rawal et al., 2021), but there are many more.

3.3.2 | Techniques used and application areas

Predictive machine learning techniques have been widely adopted

across various domains, with several success stories for bioresource

transformation processes.

Techniques ranging from artificial neural networks to fuzzy logic

have been successfully applied to the forecasting of fruit sensory

properties (Salehi, 2020) and ripeness (B. Li et al., 2018) and fruit

micronutrient content (Huang et al., 2021). Likewise, the prediction of

organic solid waste treatment outcomes has been tackled using artifi-

cial neural networks, support vector machines, and ensembles of deci-

sion trees (Guo et al., 2021). Artificial neural networks have also been

applied to predict higher heating values in fuels obtained from renew-

able biomasses (Vardiambasis et al., 2020). In other cases, machine

learning models can replace costly experiments by predicting features

of hypothetical products: Szczypi�nski et al. (2021), for example,

reviews machine learning approaches to screening synthesizable

organic materials.

Machine learning techniques can also provide complex metrics,

such as tenderness, firmness, and springiness, from noninvasive

hyperspectral imaging analysis of protein-rich foods (Cheng

et al., 2017). Recent developments in deep learning also paved the

way for generative models able to produce images or text. In an ele-

gant application to food processes, Chen et al. (2019) predicted the

appearance of laser-browned dough for cookies.

The detailed example concerns the deep learning methods have

also brought significant advances in protein structure modeling and

engineering (Gao et al., 2020; Ovchinnikov & Huang, 2021; Pearce &

Zhang, 2021; Torrisi et al., 2020), which is crucial for developing bio-

transformation processes. Deciphering the structure–function rela-

tionships of proteins and designing macromolecules such as enzymes

with novel optimized capabilities is essential to developing innovative

and efficient bioprocesses for biotechnologies. The recent application

of deep neural networks to protein structure prediction has

F IGURE 4 From training to prediction in machine learning.
Paradigm for obtaining predictive models through machine learning
and achieving predictive capability. Data-driven approaches generally
require a large initial data set (pink-filled box). Data transformation or
feature extraction (black-bordered box) is helpful to get more
descriptive inputs that are potentially related more directly to the
target. The steps to obtain models are indicated (pink-bordered box)
in the “training” part. Evaluations on a validation set are often used to
tune the hyperparameters of the method, while experiments on a test
set are usually the final step to validate the model (dashed-blue

boxes). Prediction happens when the selected model is applied to
new, unseen data (green-filled box) to achieve the target (green dash-
dotted box).
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revolutionized the field. The latest version of AlphaFold (AlphaFold2;

Jumper et al., 2021), developed by the Google DeepMind team has

achieved unprecedented modeling accuracy in the challenging 14th

Critical Assessment of protein Structure Prediction (CASP14), demon-

strating its ability to predict protein structure with atomic-scale accu-

racy even in cases where no similar structure is known. This deep

learning approach is competitive with experimental approaches and

outperforms all other computational methods. It incorporates physical

and biological knowledge about protein structure and exploits multi-

sequence alignments. In parallel, for the protein design problem—that

can be conceptually regarded as the inverse of protein structure

prediction—advances in the field of deep learning have led to a prom-

ising set of approaches. Exciting results have been achieved for the

redesign or de novo design of proteins by exploiting sequence or

structure protein data (Ovchinnikov & Huang, 2021; Wu et al., 2021).

Deep learning-based approaches can be expected to dramatically

accelerate and improve success rates in protein engineering.

3.3.3 | Limitations

From a theoretical point of view, the main drawback of machine learn-

ing is arguably overfitting, that is, the tendency to create models that

fit the training data too closely, thus involuntarily including a portion

of the residual variation/noise and ultimately leading to models that

deliver poor predictions on unseen data. A precise measure of the

overfitting of a trained model can only be gained once new data

becomes available, but it is still possible to obtain an estimate by split-

ting the available data into parts and training the algorithms on some

parts while testing them on others that were unseen during the train-

ing process. Popular techniques for this aim include k-fold and leave-

one-out cross-validation.

In most practical cases, another critical issue is getting available

data in sufficient quantity and quality. Large data sets are not enough:

the data should also represent all possible variations of a process of

interest. A machine learning model will extrapolate poorly to unseen

conditions if the available data were not representative enough. Sta-

tistical techniques such as bootstrapping (Efron, 1992) and conformal

predictors (Balasubramanian et al., 2014) can indirectly estimate the

reliability of the training data by computing confidence intervals

around predictions. Tight confidence intervals, indicating reliable pre-

dictions, often come from relevant and representative training data.

Finally, even when the predictions provided by machine learning

are satisfactory, the black-box nature of the models may prove a fur-

ther drawback. Most machine learning models, especially deep learn-

ing ones, are so intricate and contain so many parameters that

understanding why a model delivers a specific result which is often

beyond human capabilities. However, knowing the reason behind a

given prediction can be as fundamental as having a correct prediction

for many real-world applications. Explainable artificial intelligence

algorithms “open” the black boxes and attempt to provide at least

some explanations for decisions made by machine learning models

(see Adadi & Berrada, 2018 for a recent review of the field).

4 | FUTURE TRENDS

The accessibility of prediction methods, primarily mechanistic and

machine learning prediction, continues to grow as more and more

software solutions become available, opening up opportunities for

everyone to run a prediction—including novices. Hence, prediction

progressively shapes both food and bioproduct technologies and pub-

lic policies. This newfound appreciation goes along with legitimate

concerns regarding validity and means of control. To this end, a stan-

dardization of practices would be greatly beneficial.

Furthermore, new and current users should keep questioning

the suitability of prediction even as it encompasses many applica-

tions. The areas where prediction is relevant will evolve as technol-

ogies evolve: new domains of application appear while others

become obsolete. This is the case for microstructures and nanos-

tructures previously “seen” through predictions. In contrast, today,

it may be faster to observe them with an advanced microscope than

to run predictions without preexisting models. Mechanistic models

are liable to generate realistic outputs, but it is not easy to obtain

these outputs. It is essential to understand when prediction is

worthwhile.

Likewise, as needs evolve, it will sometimes be more reasonable to

start with a new simple model rather than complexify a previous one.

There are good practices to avoid poor model design and misuse of

models to influence decision-making. Verifying predictive capability

(consistency, stability, accuracy, validity, and suitability for decision-

making problems) reduces—but does not eliminate—the risk of bad

decisions. Misuse of models and risk-taking bias in human decision-

making must also be minimized by proper training of end-users. In the

context of bioresources and food products, generalizing or extrapolat-

ing the outputs of simple models beyond the initial explored domain

can lead to unreliable predictions. Conversely, coupling models from

various fields of study and at different spatial and temporal scales may

build resilience to changing contexts (e.g., for new raw materials, new

process routes, or environmental conditions) and allows for systemic

predictions. Fernandez-Mena et al. (2020) proposed innovative tools to

explore the co-benefits and trade-offs of improving flow circularity in

agro-food systems at different scales. Circularity and environmental

performance were studied by implementing a network approach com-

bining agent-based model showing how different sustainability solu-

tions across a farming region could result in very different outcomes.

The so-called take-make-dispose paradigm in the agri-food sector

has several limitations, including environmental degradation, resource

depletion, health and safety concerns, and socioeconomic impacts

(Esposito et al., 2020; Falcone et al., 2022). Innovation toward circu-

larity involves collaboration between stakeholders (Bloise, 2019), pol-

icy changes, technological advancements, changes in consumer

behavior, and business models shift (De Bernardi et al., 2022). Hybrid-

izing the prediction capabilities is the key to reaching complex sustain-

able goals: resource forecasting, waste reduction, supply chains and

preventive maintenance optimization.

The concept of digital twins, virtual replica of the real process

operation (Verboven et al., 2020), offers a robust approach for
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merging real-time data feeds and making linked decisions based on

multiple criteria, in order to organize food manufacturing (Datta

et al., 2022; Defraeye et al., 2021; Mangers et al., 2023). However,

the fusion of measurement, prediction, and decision-support tools is

still in its infancy. Further case-specific implementations must be

reported to establish priorities and standards (Preut et al., 2021).

Institutions and industry working together to achieve the United

Nations goal of ensuring sustainable consumption and production pat-

terns require multidisciplinary contributions. To achieve this, lifecycle

analysis can be combined with predictions from technoeconomic, pro-

cess, and system dynamics models (Yao, 2017). Due to the availability

of data and resources, the current contribution of analytics to achiev-

ing development goals varies by region, but the use of the presented

methods is a common factor (Orhan & Guajardo, 2022). Emerging

food trends, such as fortified and functional foods, additive

manufacturing technologies, cultured meat, precision fermentation,

and personalized food, will rely on massive amounts of information

from and to the consumer that is not currently available (Hassoun

et al., 2022).

Whatever the prediction process followed, every step may lead

to uncertainties, and the decision-making should consider these

uncertainties. It is good practice to directly evaluate these uncer-

tainties in the modeling phase (Acar et al., 2021; Peng & Zhao, 2009).

However this can prove a difficult task, especially when elementary

models from different scientific branches are linked together

(e.g., microbiology with heat and mass transfer in food processes) and

the propagation pathways become complex (Kirchner et al., 2021).

Safety factors and worse-case minimization are indirect ways to deal

with uncertainty.

Ultimately, no measure can guarantee prediction accuracy. You

may make no mistakes yet still fail. The effort must be proportionate

to the cost of failure, and there must always be provision for risk man-

agement, so that you can try again.
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