
HAL Id: hal-04047617
https://cnrs.hal.science/hal-04047617

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependency Matrices for Multiplayer Strategic
Dependencies

Dylan Bellier, Sophie Pinchinat, François Schwarzentruber, François
Schwarzentruber

To cite this version:
Dylan Bellier, Sophie Pinchinat, François Schwarzentruber, François Schwarzentruber. Dependency
Matrices for Multiplayer Strategic Dependencies. FSTTCS 2022, 42nd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, Dec 2022, Madras, India.
pp.162 - 177, �10.4230/LIPIcs.FSTTCS.2022.31�. �hal-04047617�

https://cnrs.hal.science/hal-04047617
https://hal.archives-ouvertes.fr

Dependency Matrices for Multiplayer Strategic
Dependencies
Dylan Bellier !

Univ Rennes, IRISA, CNRS, France

Sophie Pinchinat !

Univ Rennes, IRISA, CNRS, France

François Schwarzentruber !

Univ Rennes, IRISA, CNRS, France

Abstract
In multi-player games, players take their decisions on the basis of their knowledge about what
other players have done, or currently do, or even, in some cases, will do. An ability to reason in
games with temporal dependencies between players’ decisions is a challenging topic, in particular
because it involves imperfect information. In this work, we propose a theoretical framework based on
dependency matrices that includes many instances of strategic dependencies in multi-player imperfect
information games. For our framework to be well-defined, we get inspiration from quantified linear-
time logic where each player has to label the timeline with truth values of the propositional variable
she owns. We study the problem of the existence of a winning strategy for a coalition of players,
show it is undecidable in general, and exhibit an interesting subclass of dependency matrices that
makes the problem decidable: the class of perfect-information dependency matrices.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Logic and verification; Theory of computation → Automata over infinite objects

Keywords and phrases Temporal dependency, Delay games, Strategic reasoning, Temporal logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.31

Supplementary Material
InteractiveResource: https://francoisschwarzentruber.github.io/fsttcs2022/
Software (Source Code): https://github.com/francoisschwarzentruber/fsttcs2022

archived at swh:1:dir:eed0f57a83b2979abe84fd80bd804a6d730539b3

1 Introduction

In perfect-information multi-player games, decisions of players depend on their knowledge
about what other players have done so far. This setting is adopted in various logics for
strategic reasoning such as Alternating-time Temporal Logics [2] and Strategy Logic [4]. A
strategy for a player assigns to each history the next action to play. In imperfect-information
games, a player may have partial knowledge about what other players did, enforcing her
strategy to depend only on her knowledge about the current history.

However, there are situations where dependencies involve the knowledge about the future
of a play. For instance, Grove and Clarkson in [7] developed an online algorithm for the
bin packing problem with a look-ahead that takes advantage of information on some future
items. Look-ahead also exists in parsing: for LL(1) (for Left to right, Leftmost derivation)
grammars, the production rule to be chosen depends on the next symbol in the read word [1].
The extreme case occurs when the decisions depend on the entire future of the play. This is
the case for offline algorithms, where the future is finite (for bin packing it is given by the
sequence of all incoming items). It also appears for an infinite future, such as in Quantified
Propositional Linear-time Temporal Logic (QPTL) [14]: for a formula ∀a∃bφ, the choice of
the truth values of proposition b depends on all those of proposition a.

© Dylan Bellier, Sophie Pinchinat, and François Schwarzentruber;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dylan.bellier@irisa.fr
https://orcid.org/0000-0003-4763-5655
mailto:sophie.pinchinat@irisa.fr
mailto:francois.schwarzentruber@ens-rennes.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.31
https://francoisschwarzentruber.github.io/fsttcs2022/
https://github.com/francoisschwarzentruber/fsttcs2022
https://archive.softwareheritage.org/swh:1:dir:eed0f57a83b2979abe84fd80bd804a6d730539b3;origin=https://github.com/francoisschwarzentruber/fsttcs2022;visit=swh:1:snp:3e00a31cd21f0c178301f30a704bcd665c98e052;anchor=swh:1:rev:0a380664b92a8c41edb67fa7b6da0fda3aa39a41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Dependency Matrices for Multiplayer Strategic Dependencies

In addition, players may experience delays to receive information. For instance, a
proponent may have to play without having received yet information about the last three
moves of her opponent. Klein et al. in [8] formalized delay games as an extension of
Gale-Stewart games [6], i.e. two player infinite games with perfect information.

Our paper proposes a unifying theoretical framework to specify dependencies. To this
aim, we define the notion of a dependency matrix D. The entry D[a, b] is a generalized
integer (i.e. in Z ∪ {−∞,+∞}) so that

“Player a’s decision at time-step tcurrent depends on Player b’s
decisions up to time-step tcurrent +D[a, b]”.

The semantics of a dependency matrix relies on an involved machinery based on an imperfect-
information multi-player game, called the meta game. The positions of the game, called
configurations, are all the possible partial labelings of the timeline by the players – and are
thus in infinite number. The dynamics of the meta game is involved because the dependencies
may desynchronize players in their choices for labeling a time point.

Moreover, some matrices encode circular dependencies between players, leading to dead-
locked situations where none of the players can progress anymore in the meta game, preventing
them from completing their labeling of the timeline. Upon the study of this phenomenon,
we introduce the class of progressing matrices, that guarantee that any play in the meta
arena provides a full labeling of the timeline for each propositional variable. We establish an
effective property that characterizes these matrices. Thus, plays can be qualified as winning
or losing according to some linear-time formula, here an LTL formula.

We then study the problem called EWS (Existence of Winning Strategies) of deciding,
given a dependency matrix, a coalition (subset of players) and an LTL formula, the existence
of a joint strategy for the coalition such that any play brought about by this strategy satisfies
the LTL formula. Importantly, the imperfect-information feature of the meta game addresses
two issues: first, this game is not determined in general, and second, winning strategies for
the coalition need being uniform, a non-trivial notion in our rich setting since players may
be desynchronized.

Although we prove that EWS is unsurprisingly undecidable, we exhibit the subclass
of so-called perfect information dependency matrices for which EWS turns to a decidable
problem. We first consider the perfect information property for matrices whose values range
over Z and show how EWS can be reduced to solving a two-player perfect-information parity
game, yielding a 2-Exptime-complete complexity. We then generalize the perfect-information
property to arbitrary matrices and provide a decision procedure for EWS that generalizes
the one for QPTL [14], thus a non-elementary complexity.

To our knowledge, our proposal offers the first framework amenable for merging many,
and yet remote, game settings such as concurrent or turn-based games [2], (two-player) delay
games [8, 9, 16], logic QPTL [14], and Church Synthesis Problem (see the survey [5]) – it
can be shown that our framework also subsumes DQBF (Dependency Quantified Boolean
Formulae) [10].

Outline. In Section 2, we define dependency matrices, and show that they embed several
settings of games. Section 3 contains the necessary background. In Section 4, we present
the formal machinery to define an arena specified by a dependency matrix. In Section 5, we
address the problem EWS of the existence of winning strategies and show its undecidability
in the general case. Next, in Section 6, we design the decision procedure for EWS when
restricted to a perfect-information matrix input. We conclude our contribution in Section 7.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:3

2 Dependency Matrices and Examples

In this section, we propose the generic notion of dependency matrix and show that it subsumes
several classic settings in games. We denote players by lowercase letters such as a, b, c, etc.
A dependency matrix specifies the mutual dependencies between players’ decisions in a game
where each player owns an atomic proposition and aims at filling the whole timeline with a
valuation for it at each time point. Formally,

▶ Definition 1. A dependency matrix (or simply a matrix) over a finite set P of at least
two players is a matrix D = (D[a, b])a ̸=b∈P , and whose values range over Z ∪ {−∞,+∞}.

In a dependency matrix (D[a, b])a̸=b∈P over P , the value D[a, b] describes how Player a’s
decisions depends on Player b’s: Player a’s decision for choosing the valuation at time point
t depends on the ones chosen by Player b at all time points in the interval [0, t+D[a, b]]. As
such, whenever D[a, b] < 0, Player a’s decision at time point t is independent of the decisions
made by Player b up to some time point before t. In particular, if D[a, b] = −∞, Player a’s
decisions is independent of any of Player b’s.

On the contrary, when D[a, b] ≥ 0, Player a’s decision at t depends on some Player b’s
decisions up to some time point after t, so that Player a is not able to make her decision
without this required information. In particular, if D[a, b] = +∞, Player a’s decisions do
depend on the decisions of Player b’s over all the timeline.

Because it is natural to consider that a player is aware of her own decisions so far, values
on the diagonal D[a, a] are irrelevant and are left undefined. As such, the matrix line D[a, .]
specifies the dependencies of Player a with respect to all other players, and her ability to
make a decision is constrained by all these dependencies. Unsurprisingly, some matrices may
yield blocking situations for some players, an issue that we address in the sequel.

Beforehand, we illustrate how several settings in games can be captured with matrices.

▶ Example 2 (Concurrent Game). In a standard concurrent game (as in logics ATL, ATL*),
players have to concurrently choose a move. Thus the move of one player can only depend
on the strict past of the history of moves. The corresponding matrix for 3 players is D1,
where strict past is reflected by the value −1.

D1 =


a b c

a · −1 −1
b −1 · −1
c −1 −1 ·



▶ Example 3 (Round Robin Game). In a Round Robin game, players play in turn: first
Player a, then b, then c. The matrix is D2: decisions of Player a depend on the strict past,
hence the values −1 in the a-row; decisions of b depend on the non-strict past of a (hence the
value 0), and the strict past of c (hence the value −1); decisions of c depend on the non-strict
past of the other players.

D2 =


a b c

a · −1 −1
b 0 · −1
c 0 0 ·



FSTTCS 2022

31:4 Dependency Matrices for Multiplayer Strategic Dependencies

▶ Example 4 (QPTL). In QPTL, dependencies stem from the order of the quantifiers: in the
formula ∃a∀b∃cφ where φ is an LTL-formula, Player a plays first on the full timeline and
independently of the others. Then b only depends on what Player a did. Finally, c depends
on what both Players a and b did. All this is reflected by matrix D3.

D3 =


a b c

a · −∞ −∞
b +∞ · −∞
c +∞ +∞ ·


▶ Example 5 (Church Synthesis). The Church Synthesis problem (see the survey [5]) consists
in responding to a stream of inputs by a stream of outputs, so that a given property holds. If
Player a and Player b are in charge of the output, Player c and Player d are in charge of
the input, the players dependencies are captured by matrix D4: output Players a and b only
depend on the past values of the input players, and that input Players c and d see all values
and have to respond on the spot.

D4 =


a b c d

a · −1 −1 −1
b −1 · −1 −1
c 0 0 · −1
d 0 0 −1 ·


▶ Example 6 (Fixed Delay games). A delay game is a two-player game, say between Player a
and Player b. Player a must make a given finite number k of moves beforehand and then,
Players a and b play in a turn based manner, hence maintaining the delay between them (see
Klein et al. [8]). 1 This setting is represented by the matrix D5.

D5 =
(a b

a · −k
b k − 1 ·

)
In the next section, we fix some notations and recall some useful definitions to develop

our theory around matrices.

3 Background

Given a finite alphabet Σ, we use the standard notations Σ⋆, Σω and Σ∞ for the set of
finite words, infinite words and their union respectively, and ε to denote the empty word.
Given two words u,w ∈ Σ⋆, we write u · w for their concatenation. Given a non-empty word
u = u0u1 · · ·un, we let |u| := n+ 1 be its length and set |ε| = 0. For k ≤ n, we write u[k] for
the letter uk, u[: k] for the k-th prefix u0 · · ·uk and u[k :] for the k-th suffix uk · · ·un.

We now recall the basics of Linear-time Temporal Logic (LTL) [13]. An LTL formula φ
(over a set AP of propositions) is evaluated on a labeling of the (discrete) timeline N, called
an LTL assignment2 λ ∈ ({⊤,⊥}ω)AP. We classically write λ |= φ whenever λ satisfies

1 In their setting, the delay is defined with a delay function that gives at each round the number of moves
the input Player has to make. However, Klein et al. mainly studied the fixed delay setting where the
function is set to 1 after the first round.

2 also named trace in the model-checking setting.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:5

φ (we omit the semantics here and refer to [13]). Alternatively, an LTL assignment can
be seen as an infinite word over the alphabet {⊤,⊥}AP, which makes a tight connection
between logic and automata: given an LTL formula φ, one can build – via the Vardi-Wolper
construction [17] together with the Safra-like translation from Büchi to parity acceptance
condition [11] – a deterministic infinite-word parity automaton Aφ whose language L(Aφ) is
composed of all LTL assignments that satisfy φ.

Noticeably, LTL can be extended with propositional quantifications to Quantified Pro-
positional Temporal Logic (QPTL), which enjoys the prenex normal form [15]. Therefore,
we can assume that QPTL formulas are all of the form Q⃗ φ, where Q⃗ is a finite sequence of
propositional quantifications (∃a or ∀a, where a ∈ AP) and φ is an LTL formula.

In this paper, we consider vectors of words over the alphabet {⊤,⊥}, indexed by a finite
subset P of AP. Given a vector U = (U a)a∈P of words over {⊤,⊥} and a player b ∈ P , we
denote by U (b) the b’s component of U . We extend all notations for words to word vectors
with their meaning component-wise. In addition, we introduce the notation U+au for the
word vector obtain by concatenating the word u to U (a).

As we will see, in our framework, the set AP of propositions for logics LTL and QPTL
will be the breeding ground to pick the finite set P of players for our matrices.

4 The Formal Setting of Dependency Matrices

From a matrix D over P , a coalition Γ ⊆ P and an LTL formula φ, we derive the meta game
⟨D,Γ, φ⟩ that specifies how players can progress to label the timeline with truth values for
thier proposition, what the coalition is, and what the winning condition is. Precisely, the
goal of the coalition is to make φ true.

The arena for the meta game, fully determined by the matrix D, is a modified multiplayer
Gale-Stewart arena [6] taking into account the information flow between players according
to D. We distinguish progressing matrices that yield arenas with only infinite plays where
no player is blocked, thus resulting in an LTL assignment. We also provide a graph-based
polynomial-time algorithm to characterize progressing matrices.

Sticking to progressing matrices, we develop the proper notions of (player and coalition)
strategies, along with the property of uniformity of a strategy that takes into account the
imperfect information feature of our games. Intuitively, a strategy in the meta game is
uniform if it depends only on the informations prescribed by the matrix. For pedagogical
purposes, we start with bounded-value matrices, then consider arbitrary ones.

4.1 The Meta Arena of a Matrix

We fix a matrix D with values in Z and we describe the meta arena of D. A position in
the meta arena is called a configuration, that is a word vector C that reflects the labeling
over {⊤,⊥} chosen so far by each player of P. The set of configurations is denoted by
C := ({⊤,⊥}⋆)P and the initial configuration C0 is the empty vector, namely εP .

▶ Example 7. Figure 1 shows the configuration C in which Player a played the word
C (a) = ⊤⊤⊥⊤⊥, Player b played C (b) = ⊥⊥⊤, and Player c played C (c) = ⊥⊥⊤⊤.

We define the dynamics of the game, namely which player can play/progress, in a given
configuration and which moves are available to her. Here is an intuitive example of those
dynamics with a Round Robin matrix.

FSTTCS 2022

31:6 Dependency Matrices for Multiplayer Strategic Dependencies

0 1 2 3 4 5

a
b
c

⊤ ⊤ ⊥ ⊤ ⊥
⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊤

Figure 1 A configuration C where Player a has chosen her labeling up to time point 4, Player b

up to time point 2 and Player c up to 3.

▶ Example 8. For the matrix D2 of Example 3 and for the first round, only Player a can
make a move of length 1. Then, assuming Player a chooses ⊤, the dependencies for each
player are depicted separately below: in each picture, the squares identify expected information
for the considered player to make her decision about the question mark (?).

Dependencies of Player a Dependencies of Player b Dependencies of Player c
0 1 2

a
b
c

⊤ ?

0 1 2

a
b
c

⊤
?

0 1 2

a
b
c

⊤

?

Observe that, here, neither Player a, nor Player c can make a move as the labeling of
Player b at time point 0 is not set. On the contrary, Player b is able to progress.

A move of a Player a is a word ua ∈ {⊤,⊥}⋆ that is to extend her labeling along the
timeline. For Player a to progress in configuration C , all her dependencies must be fulfilled.
This is formalized as follows: in order to make a move (necessarily starting at the time point
t = |C (a)|), Player a needs to access the labeling of Player b up to time point t + D[a, b],
included. Therefore, the value αC

a,b := |C (b)| − (D[a, b] + |C (a)|) characterizes the length
of a move available to Player a with regard to her dependency on Player b only. Thus, the
overall progress value of Player a, written αC

a , takes into account all quantities αC
a,b for b ̸= a

in a conjunctive manner, leading to consider the most restrictive one. Formally:

αC
a

def= max(0,min
b ̸=a

(αC
a,b)) (1)

As such, αC
a is the maximum number of steps that Player a can perform in configuration C .

Note that, if some αC
a,b is negative (including 0), then Player a is stuck in C because Player b

has not yet provided the expected information.
Based on the progress value, a legitimate move for Player a in a configuration C is a

word in {⊤,⊥}αC
a . Then, a legitimate joint move in C is a vector of words u ∈ ({⊤,⊥}⋆)P

such that, for every Player a, u(a) is a legitimate move for a. We can now define the move
function between configurations:

∆ : C × ({⊤,⊥}⋆)P ⇀ C

(C, u) 7→
{
C · u when u is a legitimate joint move in C

undefined otherwise

with u a legitimate joint move. Remark that all players that can move have to play
concurrently and greedily (i.e. their maximum number αC

a of actions). A configuration C is
said reachable if there is a finite sequence of legitimate joint moves that leads to C from the
initial configuration C0.

▶ Proposition 9. Every reachable configuration, has a unique predecessor by ∆.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:7

Proof. Suppose that there are two reachable configurations C1 and C2 and two legitimate
joint moves u1 and u2 such that C1 · u1 = C2 · u2. Then, consider a reachable configuration
C ′ that is a prefix of both C1 and C2. Suppose toward contradiction that there are legitimate
joint moves u1′ ̸= u2′ with C1′ = C ′ · u1′ prefix of C1 and C2′ = C ′ · u2′ prefix of C2. Since
u1′ ≠ u2′, there is t ∈ N and a ∈ P such that C1′(a)[t] ̸= C2′(a)[t]. By definition, Ci′

is a prefix of Ci for i ∈ {1, 2}. Hence C1(a)[t] ̸= C2(a)[t] which is in contradiction with
C1 · u1 = C2 · u2. In conclusion, if C1 · u1 = C2 · u2, then C1 = C2 and u1 = u2. ◀

By Proposition 9, the meta arena of reachable configurations is a tree and every reachable
configuration contains all moves since the start of the game.

Observe that some meta arenas have reachable configurations C where for every Player
a, we have αC

a = 0. This happens because of cyclic dependencies. Here is an example.

▶ Example 10. Consider the matrix D6 on the right. Observe that Player b cannot make
any move because she needs Player a’s labeling at time point 1, but for Player a to label time
point 1, she needs the label of Player b at time point 0. This deadlocked situation is depicted
in Figure 2. However, observe that Player c can progress independently up to time point 3.

D6 =


a b c

a · −1 −1
b +1 · −1
c −4 −4 ·


0 1 2 3 4 5

a
b
c

⊤ ?
?
⊥ ⊥ ⊤ ⊤

Figure 2 Player a wants to know the moves of Player b and reciprocally.

Situations where some players eventually get stuck can be characterized by analyzing some
graph: for the case of Example 10, the graph is depicted below, and interestingly, it contains
the cycle (a, b, a) whose weight is 0, a positive value. We will see in the next section, where the
graph is formally defined, that such a cycle provides evidence that Players a and b eventually
get stuck.

a b

c

GD6 :
1−

−1

1

−1−5
−5

4.2 Progressing Matrix
We aim at characterizing matrices where no player gets stuck because of cyclic dependencies,
so that each play yields an assignment of the timeline in order to interpret the LTL winning
condition. Such matrices are called progressing and can be identified by means of their
adjacency weighted graph, here called the dependency graph.

▶ Definition 11. Given a matrix D = (D[a, b])a̸=b∈P , the dependency graph of D is the
weighted directed graph GD = (V,E, r) where:

FSTTCS 2022

31:8 Dependency Matrices for Multiplayer Strategic Dependencies

V = P is the set of vertices,
E = {(a, b)|a ̸= b} is the set of edges,
r(a, b) = D[a, b] is the weight of the edge (a, b).
The following proposition gives a characterization of progressing matrices.

▶ Proposition 12. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

The graph GD6 of Example 10 has a non-negative 0-weight cycle (a, b, a), so, matrix D6
is not progressing. As a corollary, we have the following:

▶ Theorem 13. Deciding if a matrix is progressing is in PTIME.

Proof. The size of the dependency graph is linear in the size of the matrix and finding a
non-negative cycle is polynomial in the size of the graph. ◀

From now on, unless stated otherwise, we only consider progressing matrices, that we
keep calling “matrices” for simplicity. On the basis of such matrices, only infinite-horizon
plays take place that consist in consecutive applications of the move function ∆ in the meta
arena (see page 6):

▶ Definition 14. A play in the meta arena associated to a matrix is an infinite sequence of
configurations (Cn)n∈N where C 0 is the empty configuration, and for every n ∈ N, Cn+1 is
the successor of Cn.

The interested reader can explore the dynamics of plays at:

https://francoisschwarzentruber.github.io/fsttcs2022

Notice that along a play (Cn)n∈N, Cn+1 extends Cn, so that to the limit, the play naturally
yields a temporal assignment λ of the timeline: for every t ∈ N, and every Player a, we let
λ(t)(a) def= Cn(a)(t), for a sufficiently large integer n so that Cn(a)(t) is defined.

The next section focuses on strategies and winning strategies in the meta arena, where
we discuss how a strategy complies with a matrix.

4.3 Strategies in the Meta Arena
In this section, we fix a matrix D over P , a coalition Γ ⊆ P and an LTL formula φ. Classically,
a strategy maps histories to moves. However, since in our setting, a configuration fully
characterizes a history (Proposition 9), we can equivalently define strategies as mappings
from configurations to moves. A strategy for Player a ∈ Γ is a function f : C → {⊤,⊥}⋆

where f(C) prescribes a legitimate move for Player a.
Furthermore, we define a joint strategy for the Γ as a function F : C → ({⊤,⊥}⋆)Γ such

that F (C)(a) is a legitimate move for Player a ∈ Γ. A joint strategy F provides a strategy
Fa for each Player a ∈ Γ defined by: Fa(C) def= F (C)(a).

Given a joint strategy F for a coalition Γ, a play (Cn)n∈N is an outcome of F if for any
n ∈ N and any Player a ∈ Γ, we have Cn+1(a) = Cn(a) · Fa(Cn). We denote by out(F) the
set of outcomes of F . A joint strategy F is winning φ whenever all assignments associated
to the plays in out(F) satisfy φ.

However, in our dependency-based setting, a strategy is relevant only if it is uniform, in
the sense that they only rely on the information available to the player. We illustrate this
important feature in Example 15.

▶ Example 15. Consider matrix D7 and configurations C1 and C2 below.

https://francoisschwarzentruber.github.io/fsttcs2022

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:9

0 1

D7 =
(a b

a · −2
b −2 ·

)
C1 =

a
b

⊤ ⊤
⊥ ⊥

0 1

C2 =
a
b

⊤ ⊤
⊥ ⊤

When Player a in C1 comes to label time point 2, and since at time point 2, she can only
access Player b’s labeling up to time point 0, she cannot distinguish it from C2. However,
once she labels time point 2, she is able to access Player b’s label at time point 1, and is
allowed to take this information into account before choosing her label at time point 3. Now,
according to the matrix D7, we have αC1

a = αC2

a = 2. Although Player a cannot distinguish
between C1 and C2, she is allowed to choose different 2-length moves that only differ in their
second letters. Indeed, her choice at time point 2 has to be uniform (and therefore the same
in both configurations C1 and C2). On the contrary, she may play differently for her choice
at time point 3. For instance, the overall move in C1 can be ⊤⊥ while it is ⊤⊤ in C2.

We formalize the phenomenon described in Example 15 with equivalence relations between
configurations. In the example, Player a has to choose a move u0u1 but C1 and C2 are
indistinguishable for her when it comes to choosing the first letter u0 . However, they can be
distinguished for the choice of the second letter u1. Then, we need multiple relations, one for
each letter of a move.

Formally, we introduce an equivalence relation between configurations parameterized by a
scope k: two configurations C1 and C2 are k-indistinguishable for Player a, denoted C1 a∼

k

D

C2, whenever |C1(a)| = |C2(a)|, and for every Player b ̸= a and every t ≤ |C1(a)|+D[a, b]+k,
we have:

either both C1(b)(t) and C2(b)(t) are undefined (meaning k is greater than the progress
of b in both configurations), or
C1(b)(t) = C2(b)(t).

We resort to relations a∼
k

D to formalize the notion of uniform strategies in our framework,
where the parameter k is meant to range over [0,min(αC1

a , αC2

a)[.

▶ Definition 16. A strategy f for Player a is D-uniform whenever for any two configurations
C1 and C2, and any natural number k ≤ min(αC1

a , αC2

a),

C1 a∼
k

D C2 implies f(C1)[: k] = f(C2)[: k].

Observe that C1 a∼
k+1
D C2 implies C1 a∼

k

D C2. We generalize Definition 16 to joint
strategies in a natural way by requiring the uniform property for every individual strategy of
the joint strategy. For the rest of the paper, all strategies are implicitly D-uniform.

Before addressing the central decision problem of the existence of a winning joint strategy,
we extend our setting to allow matrices with infinite values.

4.4 Arbitrary Matrices
Recall, by Definition 1, that a value D[a, b] = −∞ indicates that Player a’s decision are
independent from Player b’s. In particular, if the matrix line D[a, .] is all filled with value
−∞, Player a fills the whole timeline in the first round. On the contrary, D[a, b] = +∞
forces Player a to wait until Player b has entirely filled the timeline.

A typical example of a matrix with infinite values is provided by the matrix D3 of
Example 4, and is reminiscent of what is expressed in the setting of the logic QPTL: in
this example, a play takes place as follows. First, Player a chooses an a-assignment of the

FSTTCS 2022

31:10 Dependency Matrices for Multiplayer Strategic Dependencies

timeline. Second, since Player a is done and Player b is independent from Player c, Player b
has all the required information for choosing the b-assignment over the timeline. Third and
finally, Player c can proceed for the c-assignment, and the play ends.

For the cases that mix finite and infinite value, we consider first Example 17
▶ Example 17. Consider matrix D8 below. In a play, Player b and Player c’s mutual
dependencies enforce them to proceed in turn for choosing their respective labeling, while
Player a cannot play until the other two have labeled the whole timeline.

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·


As observed in Example 17, (Z ∪ {−∞,+∞})-valued matrices may yield to “transfinite”

configurations (i.e. with possibly components in {⊤,⊥}ω instead of {⊤,⊥}⋆). As a result, a
play may now be a finite sequence of (possibly infinite) sequences of configurations. We can
adapt the notion of reachable configuration accordingly – since this is routine, we omit the
precise definition here.

From now on, unless stated otherwise, we consider arbitrary matrices. In the next section,
we address the decision problem EWS of the existence of a winning strategy.

5 Undecidability of EWS

We consider the following central decision problem EWS of deciding the Existence of a
Winning (uniform) Strategy for a coalition of players (EWS for short):
▶ Theorem 18. Let EWS be the following problem:
Input: A matrix D, a coalition Γ and an LTL-formula φ.
Output: “Yes” if and only if there is a D-uniform joint strategy for Γ that is winning for φ.
EWS is undecidable.

This reslut is unsurprising, given the imperfect-information nature of our multi-player
game.

Theorem 18 is proved by reducing the Tiling problem [3] to EWS. Recall that the Tiling
problem takes in input a finite set of square tiles and two binary connectivity relations
over the tiles, that specify which pairs of tiles may be adjacent (resp. horizontally and
vertically). The output is the answer to the question whether there exists a tiling of the
plane, that is a mapping from N2 to the set of tiles such that any two of adjacent tiles
respect the connectivity constraints. In a nutshell, our reduction involves four players τ1, τ2
(tilers) and c1, c2 (challengers): in a round, Challenger c1 chooses a place (x, y) in N2 and
privately communicates it to his tiler companion τ1 by playing ⊤x⊥⊤y⊥ω. Tiler τ1 then
responds by choosing a tile t independently of the choice of Challenger c2 and plays ⊤t⊥ω,
and symmetrically for Players τ2 and c2. This way, the two tilers play independently. The
two different Challengers are used to test the binary relations by choosing adjacent places.
The following matrix encodes this situation.

DTiling :=


c1 c2 τ1 τ2

c1 · −∞ −∞ −∞
c2 −∞ · −∞ −∞
τ1 +∞ −∞ · −∞
τ2 −∞ +∞ −∞ ·

.
In the next section, we present a decidable sub-case.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:11

6 Decidability of EWS for perfect-information Matrices

A close inspection of the proof of Theorem 18 reveals that not being able to circumvent
the amount of information hidden to players is a matter. We introduce the subclass of
perfect-information matrices where every player always has full information about the current
configuration before proceeding, yielding a meta game that is turn-based with perfect
information.

6.1 Definition and Properties
A meta game is perfect-information as long as two reachable configurations are not k-
indistinguishable, for every k. Actually, not being 0-indistinguishable is sufficient, since
k-indistinguishability are nested (see Section 4.3). Furthermore, for the meta arena to be
turn-based, we must guarantee that in each round, only one player can progress. This yields
the following definition.

▶ Definition 19. A matrix D is perfect-information if for every reachable configuration C :
for every player a and reachable configuration C ′ ̸= C , we have C ̸ a∼

0
D C ′ and

there is exactely one player a such that αC
a ≥ 1.

Remark that, by Definition 19, every move of a single player, from a reachable configuration
that is not the initial one, is necessarily of length 1. Indeed, if a player could make a move of
length strictly greater than 1, we could create another reachable configuration that would be
0-indistinguishable from the first one, a contradiction.

▶ Lemma 20. Let D be a perfect-information matrix, then αC
a ≤ 1 for any non-initial

reachable configuration C and every Player a.

Proof. By contradiction, suppose that there is a non-initial reachable configuration C1 with
αC1

a ≥ 2 for some Player a. Because D is progressing and perfect-information, there is a
unique Player b that can progress in ∆−1(C1). If b = a, we would not have αC1

a ≥ 2 because
players play greedily. Then, we have a ̸= b.

We now exhibit a reachable configuration C2 ̸= C1 such that C1 a∼
0
D C2. Let u1 be

the joint move leading to C1, that is ∆(∆−1(C1), u1) = C1. As exactly one player moves,
u1(c) = ε for every Player c ≠ b. We define the joint move u2 as follows: for every
Player c ̸= b, let u2(c) = ε and u2(b) = fliplast(u1(b)) where fliplast flips the last letter of
the word (mapping ⊤ to ⊥, and ⊥ to ⊤). For C2 = ∆(∆−1(C1), u2), we have |C1(a)| =
|C2(a)|, and C1(c) = C2(c) for Player c ̸= b. We have αCi

a,b ≥ 2 for i ∈ {1, 2}. Then, by
definition, |Ci(b)| − (D[a, b] + |Ci(a)|) ≥ 2, whence (D[a, b] + |Ci(a)|) ≤ |Ci(b)| − 2. Now,
let t ≤ |C1| + D[a, b]. By transitivity, t ≤ |Ci(b)| − 2. However, C1(b)[t] = C2(b)[t] for
t ≤ |C1(b)| − 2 since only the last letter of C1(b) differs from C1(b). Therefore, C1 a∼

0
D C2

which is a contradiction. ◀

▶ Corollary 21. Let D be a perfect-information matrix, and C a non-initial reachable
configuration, there is Player a with αC

a = 1 and for every other Player b, we have αC
b = 0.

We can use this result to establish a characterization of perfect-information matrices. Let
C be a reachable non-initial configuration and let Player a be the player that can progress
in C . By Corollary 21, we have αC

a = 1 and αC
b = 0 for every Player b ̸= a. We first make a

claim:

▷ Claim 22. αC
a,b = 1 and αC

a,b ≤ 0

FSTTCS 2022

31:12 Dependency Matrices for Multiplayer Strategic Dependencies

Using this claim, we obtain |C (b)|−(D[a, b]+|C (a)|) = 1 and |C (a)|−(D[b, a]+|C (b)|) ≤ 0.
Then, D[a, b] +D[b, a] ≥ −1. Since the matrix is progressing, we have D[a, b] +D[b, a] ≤ −1
and then D[a, b] +D[b, a] = −1. In fact, we show that this necessary condition is a precise
characterization of the perfect-information matrices.

▶ Theorem 23. A matrix D is perfect-information if and only if for all players a and b,
with a ̸= b we have D[a, b] +D[b, a] = −1.

We now show the reciprocal, namely, if D satisfies D[a, b] + D[b, a] = −1, then D is
perfect-information. The first step is to prove that, the associated meta arena is turn based.

▶ Lemma 24. For D with D[a, b] + D[b, a] = −1 whenever a ̸= b, there is at most one
Player a with αC

a ≥ 1 in every configuration C .

Proof. By contradiction, suppose αC
a,b ≥ 1 and αC

b,a ≥ 1. Then, αC
a,b +αC

b,a ≥ 2. Since αC
a,b =

|C (b)|−(D[a, b]+|C (a)|) and αC
b,a = |C (a)|−(D[b, a]+|C (b)|), we obtainD[a, b]+D[b, a] ≤ −2

which contradicts the assumption on D. ◀

It is left to prove that any two different reachable configurations are not a∼
0
D-equivalent

for any a. We here just give an intuition of the proof by contradiction. Suppose that
there are two different reachable configurations C1 and C2 such that C1 a∼

0
D C2. We can

assume without loss of generality that they are immediate successors of the same reachable
configuration C . We compare the progress values of Player a with the one of the only player
that can progress in C , and prove that the configurations C1 and C2 are equal.

6.2 A Parity Game to solve the Existence of a Winning Strategy
For perfect-information matrices, we establish a reduction from EWS to solving a parity
game, thus attaining decidability (Theorem 30). Consider a perfect-information matrix D, a
coalition Γ and a formula φ. We define the parity game G(D,Γ, φ) where the coalition Γ has
a winning D-uniform strategy if, and only if, Player 0 has a winning strategy in G(D,Γ, φ)
against Player 1.

The parity game G(D,Γ, φ) is built up from the deterministic parity automaton Aφ for
φ (see Section 3). Its plays simulate runs of automaton Aφ on the sequence of growing
configurations along a play in the meta arena. Positions in the parity games are pairs
composed of states of Aφ and buffers: a buffer β is a word vector (βa)a∈P with at least one
empty component. Formally, the set of buffers is:

{(βa)a∈P ∈ ({⊤,⊥}⋆)P | βb = ε for some b ∈ P}.

The buffer of a configuration is the “pending part” of the configuration, namely its greatest
suffix that is a buffer.

▶ Example 25. Consider the perfect-information matrix D9 below where a reachable config-
uration C and its buffer are depicted.

0 1 2 3 4

D9 =


a b c

a · 2 3
b −3 · −1
c −4 0 ·


C =

a
b
c

⊤ ⊤
⊤ ⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊤

buffer

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:13

We say that a buffer is reachable if it is the buffer of some reachable configuration. We
can show that in a reachable configuration, the single player that can progress only depends
on the buffer β of this configuration, and we write pβ this player.

We denote by B the set of reachable buffers, by B∃ the set of buffers β in B where
pβ ∈ Γ, and we let B def= B\B∃. Although our matrix is perfect-information, we remark that,
by Lemma 20, for the particular case of the empty buffer β0 (of the initial configuration),
Player pβ0 might be playing a long move. Moreover, it can be shown that the reachable
buffers are finitely many1 and that their number is exponential in the values of the matrix
(this is because the longest component of a reachable buffer is given by the biggest absolute
value in the matrix).

We now informally describe the parity game with its two players Player 0 and Player 1.
As said, a position in the parity arena is pair (q, β) composed of a state q of the automaton
and a buffer β . Position (q, β) belongs to Player 0 whenever β ∈ B∃, otherwise β ∈ B∀ and
it belongs to Player 1.

In a given position (q, β), only pβ progresses by choosing a move u ∈ {⊤,⊥}. We consider
the word vector obtained by catenating u to pβ ’s component in buffer β , that we write
β+pβ

u in the following.
If β+pβ

u is still a buffer we update the position to (q, β+pβ
u). Note that this is always

the case for the initial buffer β0. Otherwise, the first letter of word vector β+pβ
u is all filled

with labels on every component, and thus can be read by automaton Aφ. We then update
the position to the new current state of Aφ and to the buffer obtained by removing the first
letter of β+pβ

u (which is a buffer as β is not initial).
Formally, the parity game is the following.

▶ Definition 26. Given a perfect-information matrix D, a coalition of players Γ and a
deterministic parity automaton Aφ = (Q, q0,Σ, δ, par) with Σ = {⊤,⊥}P , we define the
parity game G(D,Γ, φ) = ⟨P0, P1, s0,→, parG⟩ where:

P0 = Q×B∃ is the set of positions for Player 0,
P1 = Q×B∀ is the set of positions for Player 1,
s0 = (q0, β

0) is the initial position,
(q, β) → (q′, β ′) when there is a legitimate move u for pβ in the meta arena such that:

1. either β+pβ
u is a buffer and q = q′ and β ′ = β+pβ

u.
2. or q′ = δ(q, (β+pβ

u)[0]) and β ′ = (β+pβ
u)[1:] and pβ is the only player s.t. βpβ

= ε;
parG(q, β) = par(q), that is the priority of a position (q, β) is the priority of the state q
in the automaton Aφ.

Note that the number of positions in the parity game is the product of the number of states
in the automaton and the number of buffers, and that the game has the same priorities as
the automaton.

▶ Proposition 27 (For a perfect-information matrix D). ⟨D,Γ, φ⟩ is a positive instance of
EWS if, and only if, Player 0 has a winning strategy in G(D,Γ, φ).

Proposition 27 gives us an upper bound complexity of EWS by the following algorithm.
1. Compute the deterministic parity automaton Aφ (accepting the models of φ);
2. Compute the parity game G(D,Γ, φ);
3. Solve G(D,Γ, φ).

1 Actually the set of reachable configurations is a regular language that can be recognized by a word
automaton with buffers as states.

FSTTCS 2022

31:14 Dependency Matrices for Multiplayer Strategic Dependencies

In the following, the size of the matrix D is the quantity |D| =
∑

a̸=b |D[a, b]|. Observe
that we can build Aφ by using the Vardi-Wolper construction [17] with the Safra-like
translation from Büchi to parity acceptance condition [11], so that parity game of Step 2 has
O(22|φ| × 22|D|) positions and O(2|φ|) priorities, hence a 2-Exptime decision procedure for
EWS.

The next subsection, we show that this algorithm is essentially optimal by a reduction of
the Church Synthesis problem.

6.3 Reduction from the Church Synthesis problem
For the lower bound, we reduce the Church Synthesis for LTL properties [5, 12]. Our
Example 5 (page 4) illustrates the reduction.

▶ Definition 28. Given a coalition Γ, a Church matrix is a matrix D where for any two
players a ̸= b, we have:

D[a, b] =
{

0 if a /∈ Γ and b ∈ Γ
−1 otherwise

In essence, for Church matrices, players have the same knowledge about the current
configuration, allowing them to foresee their allies moves.

Observe that Church matrices may not be perfect-information, since the moves of every
player in a team (coalition or opponents) are concurrent. Nonetheless, we can “transform”
any Church matrix D into a linear sized perfect-information Round Robin matrix D′ (see
Example 3 and Definition 29) such that ⟨D,Γ, φ⟩ is a positive instance of EWS if, and only
if, ⟨D′,Γ, φ⟩ is a positive instance of EWS.

▶ Definition 29. A Round Robin matrix is a matrix D such that there exists a total order
≺ over P, where

D[a, b] =
{

−1 if a ≺ b

0 otherwise

The total order ≺ describes the order in which players will play (the player that is minimal
for ≺ plays first). Remark that D[a, b] +D[b, a] = −1 for any two players a ̸= b then every
Round Robin matrix is perfect-information (by Theorem 23). Given a Church matrix, we
can choose order ≺ so that all players in the coalition play before their opponents.

By summing up, we polynomially reduce2 a Church synthesis problem to a EWS problem
for a Church matrix and that is in turn linearly reduced to a EWS problem for a Round
Robin matrix. From this latter reductions, we can state the following.

▶ Theorem 30. EWS for perfect-information matrices is 2-Exptime-complete in the size of
the LTL formula.

In the next section, we extend the class of perfect-information matrices to allow some
matrices with infinite values, while keeping the decidability of EWS for the resulting superclass.
In particular, QPTL matrices (see Example 4 on page 4) falls into this class.

2 The size of the Church matrix is quadratic in the number of propositions of the Church synthesis
problem

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:15

6.4 Perfect-Information Matrices with Possibly Infinite Values
The proof of Proposition 27 can be extended to QPTL formulas instead of LTL formulas.
The following example illustrates a procedure for matrices with infinite values that yields a
generalization of the perfect-information property (see Definition 32).

▶ Example 31. Consider the following matrices where the latter is perfect-information:

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·

 and D′
8 =

(b c

b · −1
c 0 ·

)

According to D8, Player a depends on the whole labeling of Player b and Player c. Given
an LTL formula φ and say coalition {a, b}, we can answer the EWS on instance ⟨D8, {b}, φ⟩
as follows: we can first answer EWS for ⟨D′

8, {b},∃a φ⟩ (since D′
8 is perfect-information).

If no, then return no for ⟨D8, {b}, φ⟩. Otherwise, each outcome of the winning strategy for
Player 0 in ⟨D′

8, {b},∃a φ⟩ reflects a play ρ in ⟨D′
8, {b},∃a φ⟩. From play ρ, exhibit a unique

accepting run in A∃aφ. By tracing back this run inside Aφ, reconstruct Player a’s response
to the play ρ.

The procedure employed in Example 31 applies to arbitrary matrices as long as they
fulfill the Definition 32.

▶ Definition 32. An arbitrary matrix D is perfect-information if for any a ̸= b:
1. D[a, b] ∈ Z implies D[a, b] +D[b, a] = −1;
2. D[a, b] ∈ {−∞,+∞} implies D[a, b] = −D[b, a];
3. D[a, b] = +∞ implies D[a, c] ∈ {−∞,+∞}, for all c ̸= a.

Observe that the procedure is in fact non-elementary in the number of players with
+∞ dependencies. Moreover, since the validity problem for QPTL [14] reduces to EWS for
arbitrary perfect-information matrices, we have the following.

▶ Theorem 33. EWS is non-elementary for arbitrary perfect-information matrices.

7 Conclusion

We presented the expressive framework of dependency matrices that can capture several
game settings such as concurrent and turn-based games [2], (two-player) delay games [8,9,16],
logic QPTL [14], and Church Synthesis Problem [5].

We proved that the existence of a winning strategy for a coalition to achieve an LTL
formula (EWS) is undecidable for arbitrary matrices.

We then exhibited the subclass of perfect-information bounded-value matrices for which
the problem EWS is 2-Exptime-complete in the size of the formula.

Finally, we extended the class of perfect-information matrices with a narrow use of infinite
dependencies allowing to re-use known techniques of automata projection for QPTL. For
these matrices, EWS becomes non-elementary. Still our complexity analysis of EWS needs
beeing refine regarding the matrix parameter: we do not know yet the lower bound complexity
when the LTL formula is fixed.

A first track to continue this work concerns EWS for the whole class of bounded-
value matrices. We conjecture it is decidable, since, for a bounded-value matrix, each
k-indistinguishable equivalence class of a reachable configurations has a bounded size.

FSTTCS 2022

31:16 Dependency Matrices for Multiplayer Strategic Dependencies

A second track regards our transformation of Church matrices into perfect-information
Round Robin ones. We believe that our approach can generalize to a class of bounded-values
matrices enlarging the one of Church matrices.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986. URL: https://www.worldcat.org/oclc/12285707.

2 Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time temporal logic.
Journal of the ACM (JACM), 49(5):672–713, 2002.

3 Robert Berger. The undecidability of the domino problem. American Mathematical Soc., 1966.
4 Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Strategy logic. Information

and Computation, 208(6):677–693, 2010.
5 Bernd Finkbeiner. Synthesis of reactive systems. Dependable Software Systems Engineering,

45:72–98, 2016.
6 David Gale and Frank M Stewart. Infinite games with perfect information. Contributions to

the Theory of Games, 2(245-266):2–16, 1953.
7 Edward F. Grove. Online bin packing with lookahead. In Kenneth L. Clarkson, editor,

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, USA, pages 430–436. ACM/SIAM, 1995. URL: http://dl.
acm.org/citation.cfm?id=313651.313781.

8 Felix Klein and Martin Zimmermann. What are strategies in delay games? borel determinacy
for games with lookahead. arXiv preprint, 2015. arXiv:1504.02627.

9 Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
Logical Methods in Computer Science, 12, 2017.

10 Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications, 41(7-8):957–
992, 2001.

11 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3, 2007.

12 A Pnueli and R Rosner. On the synthesis of reactive systems. POPL, Austin, Texas, pages
179–190, 1989.

13 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

14 A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2-3):217–237,
1987.

15 Aravinda Prasad Sistla. Theoretical issues in the design and verification of distributed systems.
Harvard University, 1983.

16 Wolfgang Thomas, Lukasz Kaiser, and Michael Holtmann. Degrees of lookahead in regular
infinite games. Logical Methods in Computer Science, 8, 2012.

17 Moshe Y Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183–221, 1986.

A Proofs of Section 4

Given a matrix D, we say that a player a is eventually blocked if there is a natural k ∈ N
such that for all reachable configurations C , we have |C (a)| ≤ k. First we prove a lemma on
non-negative cycles. Intuitively, this lemma helps to find a player that can never progress in
a non-negative cycle.

https://www.worldcat.org/oclc/12285707
http://dl.acm.org/citation.cfm?id=313651.313781
http://dl.acm.org/citation.cfm?id=313651.313781
http://arxiv.org/abs/1504.02627

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:17

Given two vertices ci and cj of a non-negative cycle c = (c0, . . . , c|c|) (with c0 = c|c|), we
denote by wi the label r(ci, ci+1) and Wi,j the circular sum of the labels between ci and cj :

If i < j, then Wi,j = wi + · · · + wj−1;
else, Wi,j = Wi,|c| +W0,j .

Remark that for every index i, Wi,i is the sum of all labels of the cycle. So, for a non-negative
cycle, Wi,i ≥ 0. Furthermore, we denote by W ⋆

i the minimal sum W ⋆
i = minj(Wi,j).

▶ Lemma 34. Given a matrix D with a non-negative cycle c = (c0, . . . , c|c|), for all player
ci in the cycle, for all reachable configuration C , we have the following.

|C (ci)| ≤ max(0,−W ⋆
i)

Proof. We do the proof by induction on reachable configuration.
(base case) In the initial configuration C0, the property is obvious.
(inductive case) Consider a configuration C ′ = ∆(C, (ua)a∈P) for some joint move (ua)a∈P

and a reachable configuration C such that |C (ci)| ≤ max(0,W ⋆
i) for every ci ∈ c. Consider

i ∈ J0, . . . , |c|K.

|C ′(ci)| = |C (ci)| + αC
ci

= |C (ci)| + max(0,mina̸=ci
(αC

ci,a))
≤ |C (ci)| + max(0, αC

ci,ci+1
)

≤ |C (ci)| + max(0, |C (ci+1)| −D[ci, ci+1] − |C (ci)|)
≤ max(|C (ci)|, |C (ci+1)| − wi)
≤ max(max(0,−W ⋆

i),max(−wi,−W ⋆
i+1 − wi))

The last inequality is obtained thanks to the inductive hypothesis. We now prove
that −W ⋆

i ≥ max(−wi,−W ⋆
i+1 − wi). Since wi = Wi,i+1, we have −W ⋆

i ≥ −wi. Let
j0 ∈ J0, . . . , |c|K such that W ⋆

i+1 = Wi+1,j0 . We now do a case study on j0.
if j0 = i+ 1, then, because c is non-negative, −W ⋆

i+1 − wi ≤ −wi.
if j0 ̸= i+ 1, then, −W ⋆

i+1 − wi = −Wi,j0 ≤ −W ⋆
i

Then we have |C ′(ci)| ≤ max(0,−W ⋆
i).

We have proven the property by induction. ◀

We now state a lemma to prove the other way around: that non-negative cycles are
necessary for a matrix not to be progressing.

▶ Lemma 35. Given a bounded matrix D, if there is a player that is eventually blocked, then
every player is eventually blocked.

Proof. Consider a bounded matrix D where there is a player a and a natural number k ∈ Z
such that for every reachable configuration C , we have |C (a)| ≤ k. We prove by induction
on reachable configurations that for each Player b, we have |C (a)| ≤ max(0, k −D[b, a]).
(base case) In the initial configuration C0, the property is obvious.
(inductive case) Consider a configuration C ′ = ∆(C, (ua)a∈P) for some joint move (ua)a∈P

and a configuration C such that |C (a)| ≤ k−D[b, a] for every b. Then, for every Player b
we have the following.

FSTTCS 2022

31:18 Dependency Matrices for Multiplayer Strategic Dependencies

|C ′(b)| = |C (b)| + αC
b

= |C (b)| + max(0,minc ̸=b(αC
b,c))

≤ |C (b)| + max(0, αC
b,a)

≤ |C (b)| + max(0, |C (a)| −D[b, a] − |C (b)|)
≤ max(|C (b)|, |C (a)| −D[b, a])
≤ max(max(0, k −D[b, a]), k −D[b, a])
≤ max(0, k −D[b, a])

We have proven the property by induction. ◀

Now, when all players are blocked, we use the next well known result of graph theory to
find our non-negative cycle.

▶ Lemma 36. Given a directed graph G with no self loop, if every vertex is the source of an
edge, then, there is a cycle in the graph.

Now, we can give a proof for Proposition 12.

▶ Proposition 12. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

Proof. Given a matrix D with a non-negative cycle, then, by Lemma 34, we immediately
have that every player in the cycle is eventually blocked.

In a second time, consider a matrix D that is not progressing. Then, by Lemma 35,
for every player a, there is an integer ka such that for every reachable configuration C , we
have |C (a)| ≤ ka. Consider a configuration C such that every player is blocked. Then, by
immediate contradiction, for every player a, there is a player qa ̸= a such that αC

a,qa
≤ 0

(otherwise, there would be a player that can progress). The graph G = ⟨V,E⟩ with the vertices
V = P are the players of the matrix and the edges are defined as E = {(a, qa) | a ∈ P}.
Since, G is a directed graph with no self loop, by Lemma 36, there is a cycle c = (c0, . . . , c|c|)
in the graph thus, for every i ∈ J0, . . . , |c| − 1K, we have ci+1 = qci and c|c| = c0. We have
the following.∑|c|−1

i=0 αC
ci,ci+1

=
∑|c|−1

i=0 |C (ci+1)| −D[ci; ci+1] − |C (ci)|
= −

∑|c|−1
i=0 D[ci; ci+1]

Since αC
ci,ci+1

≤ 0 for every i ∈ J0, . . . , |c|K, we have proven that c is a non-negative cycle. ◀

B Proofs of Section 6

We now address the proof of Theorem 23. The first direction states that a perfect-information
matrix D satisfies that for every different Players a and b, we have D[a, b] +D[b, a] = −1 and
is presented in Section 6.1. We just need to prove Claim 22. Recall that C is a reachable
non-initial configuration and Player a is the player that can progress in C . By Corollary 21,
we have αC

a = 1 and αC
b = 0 for every player b ̸= a. We consider a player b ̸= a.

▷ Claim 22. αC
a,b = 1 and αC

a,b ≤ 0

Proof. First we prove that αC
a,b ≤ 0. Remark that, in C , Player a has two legitimate moves:

⊤ and ⊥. Let C1 = ∆(C, (⊤)a) and C1 = ∆(C, (⊥)a). Note that C1 and C2 are reachable.
Toward contradiction, assume that αC

a,b > 0. We prove the contradiction C1 b∼
0
D C2. We

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:19

have αC
a,b = |C (a)| − (D[b, a] + |C (b)|) > 0. Then |C (a)| > D[b, a] + |C (b)|. Therefore, for

all t ≤ D[b, a] + |C (b)|, we have t < |C (a)|. And because C1(a)(t) = C (a)(t) = C2(a)(t), we
conclude that C1 b∼

0
D C2.

Then we prove that αC
a,b = 1. By definition, αC

a,b ≥ 1. Toward contradiction, suppose
αC

a,b > 1. Let C ′ be the configuration defined by C ′(c) = C (c) for all c ̸= b and C ′(b) =
fliplast(C (b)). We have that C ′ is reachable and, by the same kind of reasoning than previous
point, we have C a∼

0
D C ′, which is in contradiction with the assumption on D. ◁

Let us prove the other direction, namely that a matrix D is perfect-information if
D[a, b] + D[b, a] = −1 for every pair of different Players a and b. Lemma 24 states that
the meta game of such a matrix is turn based. Now, we need to prove that two different
reachable configurations are not 0-indistinguishable. To do so, we first show two results on
0-indistinguishable relations. These results allow us to consider the “first time” at which two
configurations diverge while being 0-indistinguishable.

▶ Lemma 37. Given a matrix D and two reachable configurations C and C ′, with (Ck)k≤n

and (C ′k)k≤m such that Cn = C and C ′m = C ′. If n ≥ m then, for every Player a we have
|C (a)| ≥ |C ′(a)|.

Proof. The proof is done by induction on n−m.
(base case) If n = m, we do an induction on n.

(base case) If n = m = 0, then C = C ′ = C0, the property is immediate.
(induction) Suppose the property holds for some n,m ∈ N with n = m. Consider
C and C ′ reachable. There are (Ck)k≤n+1 and (C ′k)k≤m+1 with Cn+1 = C and
C ′m+1 = C ′. By inductive hypothesis, we have |Cn(a)| = |C ′m(a)| for every Player a.
Then, αCn

a = αC ′n

a and so, |C (a)| = |C ′(a)|.
(induction) Suppose the property holds for some n,m ∈ N with n ≥ m. Consider C and

C ′ reachable: there are (Ck)k≤n+1 and (C ′k)k≤m with Cn+1 = C and C ′m = C ′. By
inductive hypothesis, for every Player a |Cn(a)| ≥ |C ′m(a)| and because |Cn+1(a)| ≥
|Cn(a)|, we have |Cn+1(a)| ≥ |C ′m(a)|.

We have proved the property by induction. ◀

▶ Lemma 38. Given a dependency matrix D, and two reachable configurations C and C ′

that are non-initial, if C a∼
0
D C ′, then, one of the following holds.

1. ∆−1(C) a∼
0
D C ′

2. C a∼
0
D ∆−1(C ′)

3. ∆−1(C) a∼
0
D ∆−1(C ′)

Proof. Consider two reachable configurations C and C ′ such that C a∼
0
D C ′. By definition,

|C (a)| = |C ′(a)|, and for every Player b ̸= a, every t ≤ |C (a)| +D[a, b], we have C (b)(t) =
C ′(b)(t). Since C and C ′ are reachable, there are two sequences of successive configurations
(Ck)k≤n and (C ′k)k≤m such that Cn = C and C ′m = C ′. By symmetry we can assume
n ≥ m. We do a case study.
If n = m, then ∆−1(C) and ∆−1(C ′) are also reachable and their sequences have the same

length. By Lemma 37 for every player b, we have that |∆−1(C)(b)| = |∆−1(C ′)(b)|. Imme-
diately, |∆−1(C)(a)| = |∆−1(C ′)(a)| and because C a∼

0
D C ′, for every t ≤ |∆−1(C)(a)| +

D[a, b] ≤ |C (a)| +D[a, b], we have ∆−1(C)(b)(t) = C (b)(t) = C ′(b)(t) = ∆−1(C ′)(b)(t).
Hence, ∆−1(C) a∼

0
D ∆−1(C ′)

FSTTCS 2022

31:20 Dependency Matrices for Multiplayer Strategic Dependencies

If n > m then ∆−1(C) is reachable with a sequence of length n−1 ≥ m as ∆−1(C) = Cn−1

then, by Lemma 37, for every player b, we have |∆−1(C)(b)| ≥ |C ′m(b)|. And, because
C

a∼
0
D C ′, we have |C (a)| = |C ′(a)|, then |∆−1(C)(a)| = |C ′(a)|. Furthermore, for

every t ≤ |∆−1(C)(a)| +D[a, b], if both ∆−1(C)(b)(t) and C ′(b)(t) are defined, we have
∆−1(C)(b)(t) = C (b)(t) = C ′(b)(t). Finally, we prove that C (b)(t) is defined if and only
if C ′(b)(t) is defined. By Lemma 37, we already have that |∆−1(C)(b)| ≥ |C ′m(b)|, and
if ∆−1(C)(b)(t) is defined, so is C (b)(t), and by hypothesis, so is C ′m(b)(t).

We have proved the property. ◀

We now prove the theorem.

▶ Theorem 23. A matrix D is perfect-information if and only if for all players a and b,
with a ̸= b we have D[a, b] +D[b, a] = −1.

Proof. The first direction is presented in Section 6.1. For the other direction, consider D
such that D[a, b] +D[b, a] = −1. By Lemma 24, there is only one player that can progress in
any reachable configuration. Is left to prove that for any two reachable configurations C and
C ′ with C ̸= C ′, for every player a, we have C ̸ a∼

0
D. The proof is done by contradiction.

Suppose that there are two different reachable configurations C1 and C2 with C1 a∼
0
D C2.

Then, by Lemma 38, we can assume that ∆−1(C1) = ∆−1(C2) = C . Let b the player that
can progress in C . Then, for all c ̸= b, we have C (c) = C1(c) = C2(c) and, for all t < |C (b)|,
we have C (b)(t) = C1(b)(t) = C2(b)(t). Because C1 ̸= C2, then we necessarily have the
following.

C1(b)(t0) ̸= C2(b)(t0) for some t0 ∈ {|C (b)| − αC
b , |C (b)| − 1} (2)

Since αC
b,a ≥ αC

b , we have |C (a)| − (D[b, a] + |C (b)|) ≥ αC
b . As Player a does not progress

in C , we obtain |C1(a)| − (D[b, a] + |C (b)|) ≥ αC
b . By hypothesis D[b, a] = −1 −D[a, b], we

have |C1(a)| + 1 +D[a, b] − |C (b)| ≥ αC
b and because |∆−1(C1)(b)| +αC

b = |C1(b)|, we have:

|C1(a)| +D[a, b] ≥ |C1(b)| − 1 (3)

Finally, since C1 a∼
0
D C2, we have that C1(b)(t) = C2(b)(t) for every t ≤ |C1(a)| +D[a, b].

In particular, thanks to Equation (3), we can take t = t0, and we have C1(b)(t0) = C2(b)(t0),
in contradiction with Equation (2). ◀

C Reduction from Church matrices to Round Robin matrices

We now prove the claim made in Section 6.3 that Church matrices can be reduced to Round
Robin matrices.

From a Church matrix D for a coalition Γ, we define a Round Robin matrix Rob(D) as
follows. We take an arbitrary order ≺ on the players such that for every Player a ∈ Γ and
every Player b /∈ Γ, it holds a ≺ b. Rob(D) is the Round Robin matrix for this order.

▶ Lemma 39. Given an LTL formula φ and a Church matrix D, there is a winning joint
D-uniform strategy iff there is a winning joint strategy Rob(D).

Proof. Suppose that there is a winning joint strategy F for Γ that is Rob(D)-uniform. Only
the moves of players of the coalition can make F non-D-uniform. But, given the joint strategy
for the whole coalition, we cannot reach two configurations that are equal on everything
except a labeling of a player of the coalition because our strategies are deterministic. Thus,
in practice, F is D-uniform.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:21

Conversely, consider two configurations C1 and C2 such that C1 a∼Rob(D) C
2 for some

a ∈ Γ. We denote by k the length of C1(a). Then for every b ∈ P, if a ≺ b, we have
C1(b)[: k − 1] = C2(b)[: k − 1] and otherwise, C1(b)[: k] = C2(b)[: k]. Because we chose the
order so that a ≺ b for every a ∈ Γ and b /∈ Γ, we have that C1 a∼D C2. Thus every strategy
D-uniform is Rob(D)-uniform. ◀

D Proof of Theorem 33

▶ Theorem 33. EWS is non-elementary for arbitrary perfect-information matrices.

Proof. In this proof, we use the notation F↾P\{a} to denote the function F restrained to the
domain P\{a}. Given a dependency matrix D, we decompose the set of Players P as follows.

P∞ := {a ∈ P | There is b ∈ P such that D[a, b] = +∞}
PZ := {a ∈ P | For all b ∈ P it holds D[a, b] < +∞}

We reason by induction on the size of P∞. The base case is |P∞| = 0. In this case, we
can apply Theorem 30.

Suppose that we can decide the EWS problem for matrices with |P∞| = n for some n ∈ N.
We now prove that we can decide the problem for matrices with |P∞| = n+ 1. Consider a
matrix D such that |P∞| = n+ 1, a coalition Γ and a QPTL formula ψ. We define an order
≺ on P∞ that is given as follows. a ≺ b iff for all c ∈ P , if D[b, c] = +∞, then D[a, c] = +∞.
Intuitively, a ≺ b means that Player a is to play after Player b. Consider Player a, the
smallest player for this order. For all players b different than a we have D[a, b] = +∞. We
now construct a new instance of the problem by projecting out Player a.
If (a ∈ Γ) we state Γ′ = Γ\{a} and ψ′ = ∃a. ψ. By inductive hypothesis, we can decide

whether there is a joint strategy winning for the entry ⟨D′,Γ′, ψ′⟩. Let us prove that
⟨D′,Γ′, ψ′⟩ is a positive instance iff ⟨D,Γ, ψ⟩ is a positive instance. If there is a joint
strategy F ′ for the coalition winning for the entry ⟨D′,Γ′, ψ′⟩, then, for every play
(Cn

1)n, . . . , (Cn
k)n in the meta game of D′, the assignment λ which is the limit of that

play satisfy ⟨D′,Γ′, ψ′⟩. Therefore, there is an infinite word uλ such that λ[a 7→ uλ]
satisfies ψ′. Then we define the joint strategy F as follows. For every Player b ̸= a, we
set Fb = F ′

b. For Player a, consider a configuration C such that αC
a > 0. Because of the

dependencies of Player a, it holds that |C (b)| = +∞ for every Player b ̸= a. Let λ be the
temporal assignment on P\{a} defined by C . We set Fa(C) = uλ. This joint strategy is
winning. The converse follows the same idea: if there is F winning for the entry (D,Γ, ψ)
then, the joint strategy F ′ = F↾P\{a} is winning for the entry (D′,Γ′, ψ′).

If (a /∈ Γ) we state ψ′ = ∀a. ψ. We then decide the instance ⟨D′,Γ, ψ′⟩. Joint strategies for
the coalition translate naturally between the two instances. If F ′ is winning for ⟨D′,Γ, ψ′⟩,
then every play in the outcome of F ′ satisfies ∀aψ. Then, by defining F (C) = F ′(C ↾P\a)
we define a wining strategy for ⟨D,Γ, ψ⟩. The converse is similar. ◀

FSTTCS 2022

	1 Introduction
	2 Dependency Matrices and Examples
	3 Background
	4 The Formal Setting of Dependency Matrices
	4.1 The Meta Arena of a Matrix
	4.2 Progressing Matrix
	4.3 Strategies in the Meta Arena
	4.4 Arbitrary Matrices

	5 Undecidability of EWS
	6 Decidability of EWS for perfect-information Matrices
	6.1 Definition and Properties
	6.2 A Parity Game to solve the Existence of a Winning Strategy
	6.3 Reduction from the Church Synthesis problem
	6.4 Perfect-Information Matrices with Possibly Infinite Values

	7 Conclusion
	A Proofs of Section 4
	B Proofs of Section 6
	C Reduction from Church matrices to Round Robin matrices
	D Proof of Theorem 33

