N

N

Inferring linguistic transmission between generations at
the scale of individuals
Valentin Thouzeau, Antonin Affholder, Philippe Mennecier, Paul Verdu,

Frédéric Austerlitz

» To cite this version:

Valentin Thouzeau, Antonin Affholder, Philippe Mennecier, Paul Verdu, Frédéric Austerlitz. Inferring
linguistic transmission between generations at the scale of individuals. Journal of Language Evolution,
2022, 7 (2), pp.200-212. 10.1093/jole/lzac009 . hal-04050627

HAL Id: hal-04050627
https://cnrs.hal.science/hal-04050627
Submitted on 29 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://cnrs.hal.science/hal-04050627
https://hal.archives-ouvertes.fr

Inferring linguistic transmission between generations at the scale of
individuals

Valentin Thouzeau', Antonin Affholder’, Philippe Mennecier’, Paul Verdu', Frédéric Austerlitz &

TCNRS, MNHN, Université de Paris, UMR 7206 Eco-Anthropologie, Paris 75016, France
* Laboratoire de Neurosciences Cognitives, Département d’études cognitives, ENS, PSL, Research
University, Paris, France

™ Corresponding author: frederic.austerlitz@mnhn. fr



Abstract

Historical linguistics strongly benefited from recent methodological advances inspired by
phylogenetics. Nevertheless, no available method uses contemporaneous within-population linguistic
diversity to reconstruct the history of human populations. Here, we developed an approach inspired
from population genetics to perform historical linguistic inferences from linguistic data sampled at
the individual scale, within a population. We built four within-population demographic models of
linguistic transmission over generations, each differing by the number of teachers involved during the
language acquisition and the relative roles of the teachers. We then compared the simulated data
obtained with these models with real contemporaneous linguistic data sampled from Tajik speakers
from Central Asia, an area known for its large within-population linguistic diversity, using
approximate Bayesian computation methods. Under this statistical framework, we were able to select
the models that best explained the data, and infer the best-fitting parameters under the selected models.
The selected model assumes that the lexicon of individuals is the result of a vertical transmission by
two teachers, with a specific lexicon for each teacher. This demonstrates the feasibility of using
contemporaneous within-population linguistic diversity to infer historical features of human cultural

evolution.



1. Introduction

Several recent studies have used linguistic data under a computational framework aiming at
reconstructing various aspects of the cultural history of human populations (Atkinson, 2011;
Bouckaert et al., 2012; Gray and Atkinson, 2002; Pagel et al., 2013; Thouzeau et al, 2017). They rely
on data mainly consisting in a set of presence or absence of linguistic items, within a given set of
contemporaneous languages, which can be found, for example, in databases such as the World Atlas
of Language Structures WALS (Dryer and Haspelmath, 2013), or the Global Database of Cultural,
Linguistic and Environmental Diversity D-PLACE (Kirby et al., 2016). Thus, most studies consider
languages at a macro-evolutionary scale, i.e. they deal only with differences among languages,
neglecting the variability within each language. For instance, Gray and Atkinson (2002) used a set of
Swadesh lists obtained for 87 languages to investigate the origin of the Indo-European linguistic
family. Atkinson (2011) considered the number of phonemes used in 504 languages worldwide to test
the hypothesis of a serial founder effect due to the Out-Of-Africa expansion. Reesink et al. (2009)
used the linguistic diversity of the ancient Sahul continent (present-day Australia, New Guinea, and
surrounding islands) among 121 languages to infer the history of the structural characteristics of these
languages.

These approaches rely implicitly on several assumptions. They require primarily a clear separation
between several differentiated languages. This notion of distinct languages is, nevertheless, often
irrelevant at local scale, in particular in contexts of dialectal continua or linguistic contacts (Heeringa
and Nerbonne, 2001; Livingstone and Fyfe, 1999). Furthermore, most of these studies do not take
into account within-population linguistic diversity, since traditional linguistics often considers
languages as unique and coherent systems (Pateman, 1983). This assumption implies the loss of a
large amount of information, knowing that demographic phenomena occurring at population level —
different population sizes, bottlenecks, expansions — are expected to play a major role in language

evolution (Vogt, 2009). The inclusion of contemporaneous within-population linguistic diversity in



the reconstruction of demographic history of human populations at local scale is thus expected to
open a completely new dimension in the field of historical linguistic inferences.

In this context, Croft (1996) argued for the replacement of the ‘essentialist’ theory of language
changes by a ‘population’ approach, and later proposed a detailed review of the “evolutionary
linguistic” field and underlying paradigms (Croft, 2008). Nevertheless, very few studies have dealt
with the contemporaneous within-population linguistic diversity in a historical reconstruction
perspective. Rodriguez-Larralde and Barrai (2000) used surnames of telephone users in Austria as
linguistic contemporaneous information, showing that Austrian towns are subdivided into five main
clusters with uniform levels of endogamy. Verdu et al. (2017) contrasted the proportion of African
words in free speech among Cape Verdean Kriolu speakers with their proportion of African genetic
admixture, showing that Cape Verdean genetic and linguistic admixture processes followed parallel
histories, with possible co-transmission of genetic and linguistic variation. Darlu et al. (2012)
reviewed the analyses of paternally-inherited family names distributions, a linguistic variant whose
dynamics depend on the kinship system, as an analogy to Y chromosomes, for historical inferences.
This last example shows that the dynamics of evolution can be very different depending on the
linguistic elements considered. None of these studies developed an inferential approach that would
allow researchers to distinguish among different historical mechanistic models and to infer their
constitutive parameters.

In order to perform such historical linguistic inferences from observed linguistic data, we need to
assume one or several possible models of linguistic transmission between generations, and a possible
set of historical scenarios that produced the observed data. Nevertheless, there is no consensus
framework that allows handling within-population linguistic diversity data, in order to infer historical
scenarios and evolutionary mechanisms. It requires first to build an explicit mechanism of linguistic
evolution, and then to study the range of historical scenarios that could have produced the observed

linguistic data. Nevertheless, the validity of the historical conclusions will depend on the validity of



the assumed mechanism. It is, therefore, crucial to first determine the most relevant mechanism of
linguistic evolution of a given set of linguistic objects, in order to produce, ultimately, valid inferences.

We evaluated here a series of models of linguistic evolution between generations at the individual
scale. We did not study the history of higher-order objects such as “the languages”, but the history of
the linguistic diversity carried by individuals within a population, among which communication
events may occur over time. We aimed at understanding how the evolution of linguistic diversity
among generations was affected by demographic parameters such as population sizes (the number of
individuals of a given speech community), and thus to assess whether it was possible to infer the best
demographic scenario and its corresponding parameters from a set of linguistic data.

Approximate Bayesian Computation methods (ABC, Beaumont et al., 2002; Tavaré et al., 1997)
provide a particularly well-adapted framework to tackle this problem. In this paper, we used the
recently developed Approximate Bayesian Computation via Random Forest (ABCRF) algorithm to
assess, among a set of possible competing scenarios, the scenario that best explained the observed
data, and to estimate the posterior parameters of this scenario (Breiman, 2001; Pudlo et al., 2016,
Raynal et al., 2017).

For this purpose, we implemented an individual-based simulation program, which simulates the
evolution of word variation among generations, under different modes of linguistic transmission.
These simulated data allowed us to perform the ABCRF procedure on a real dataset from Central Asia.
This dataset consisted of 30 individuals interviewed for 185 words across 10 villages in Tajikistan.
We aimed at inferring the most probable models of linguistic transmission mechanisms between
linguistic generations, under a range of population size variation from expansion, contraction, and
stable population size.

We proposed four transmission models. The “Clonal model” assumed that each individual learns
his/her linguistic words from only one teacher. The “Sexual model 1” assumed that each individual
learns his/her words from two teachers, with specific words transmitted only by one teacher and others

transmitted only by the other teacher. The “Sexual model 2” assumed that each individual learned



his/her words from two parents (one “male” and one “female”), without specific words belonging to
males or females. The transmitting parent was drawn independently for each word, so that the set of
words of an individual was a recombination between the sets of his/her two parents. Finally, the
“Social model” assumed that each individual learns his/her words from the entire population. We
aimed, then, at inferring, with ABC, the best-fitting parameters under the winning scenario: linguistic
mutation rates, and population sizes. We demonstrated thus the feasibility of using contemporaneous

within-population linguistic diversity to infer historical features in human linguistic evolution.

2. Materials

We chose to study Tajik speakers, the official language of Tajikistan, spoken by over 80% of the
inhabitants. Tajik populations practice mainly sedentary agriculture, and perform unions via
geographic endogamous marriages (Marchi et al., 2018). Population genetics studies show an increase
in the effective size of ancestral Tajik populations since the invention of agriculture, reaching today
between 4000 and 6000 individuals (Aimé et al., 2013). It should be noted here that the effective sizes
do not represent the actual population size, with many demographic phenomena causing a gap of
several orders of magnitude between the two (Palstra & Fraser, 2012).

There are several language communities in Central Asia. The number of current Tajik speakers is
estimated at approximately 6 million people. The ways of speaking of individuals differ across regions,
and this variation is recognized by the speakers, which indicates that Tajik is divided into several
dialectal forms. Nevertheless, individuals are able to understand each other.

We studied here two components of linguistic diversity: lexical and etymological diversities.
Depending on the speakers, several words may be used to designate the same meaning, and it is very
common to observe individuals using different words from other individuals in this populations. We
used cognate variation (185 words from an adapted Swadesh list) for a total of 30 individuals from
10 Tajik villages in Central Asia (Figure 1), assuming that all villages belonged to a single linguistic

population. Individuals were asked to state the most frequently used word for the associated meaning.
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We considered as cognate a group of words with the same etymological origin and the same meaning,
such words being more likely to be related by a common ancestry (Atkinson et al., 2005). The
meanings in Swadesh's list are taken from the basic vocabulary, which is rarely borrowed between
groups and is likely to be present in all human groups. They include meanings like "eat", "sun",
"mother" or "one". Speakers sometimes invent new words to designate these meanings, and these new
words can either quickly disappear, be used by a part of the population, or end up replacing entirely

pre-existing forms.

[Figure 1 — About here]

3. Principle of ABCRF method

ABC methods were first introduced by Tavaré¢ et. al. (1997) and Beaumont et al (2002), in order to
encompass the limitation of Markov chains Monte Carlo (MCMC) methods. For simple models,
analytical formulas may be derived to compute the likelihood of the data under a given model.
However, for complex models and/or large datasets, computing the likelihood may be highly difficult
and/or highly time consuming. ABC allows circumventing these problems by approaching the
likelihood instead of exactly computing its value. It is thus a particularly well-suited statistical
framework for developing within-population linguistic historical inferences tools, allowing to specify
complex and explicit processes of linguistic interactions among a large set of agents.

ABC consists first in defining a set of models that could fit the observed data. Each model is
characterized by several parameters, such as, but not limited to, effective population sizes and time
of change in population sizes. A prior distribution for each parameter is chosen by the user, and
corresponds to the range of values that are realistic for this parameter. A large number of simulations
are then performed in order to generate data sets under the different models. For each simulation, each
parameter of the model is drawn at random in its prior distribution. Sets of summary statistics are
then computed on each simulated data set, each corresponding, therefore, to a given set of model
parameters. In the ABCRF method (Pudlo et al. 2016), a random forest (RF) procedure is then applied
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to choose the best-fitting model. In short, the aim of the RF method is to produce a set of decision
trees from the simulated data sets. Each tree is built by performing a supervised categorization of the
whole set of simulations, according to the models which produced those simulations, and each one
using a different subset of their summary statistics. These subsets of summary statistics are selected
randomly for each tree in order to improve classifications, because using the full set of summary
statistics can lead to overfitting. The curse of dimensionality is also reduced by the RF procedure
(Pudlo et al. 2016).

Then, the full set of summary statistics are computed on the real data, and this “observed” set of
summary statistics is independently evaluated by each decision tree. Each one votes for a model, and
the final decision is the majority of votes from the forest. Then, an error rate is computed to assess
the confidence of this final decision. At this step, several models are usually rejected by the random
forest.

Another random forest is then constructed to estimate the parameters of each selected model. The
principles of ABCREF regression are analogous to the principles of ABCRF classification (Raynal et
al., 2017), but in this case, the trees use the summary statistics in order to predict the value of
transformed scalar parameters. The forest is then built on the simulated summary statistics, in order

to estimate the mean, median, and quantiles of the distributions of the real parameters.

4. Models

4.1. Production of utterances

We considered a linguistic population as a group of individuals that may potentially interact through
linguistic communication. The mechanisms of linguistic communication and transmission may follow
different modalities, which correspond to different models of linguistic evolution. In all cases, we
considered that the unit of linguistic communication is the utterance, a production of words associated

with a meaning (Croft, 1996).



We developed a general model of word transmission, which we applied in particular to the case of
cognates, which correspond to words with the same etymological origins that express the same
meaning. For example, the Spanish word “Flor” and French word “Fleur” are two words with the
same meaning (“Flower” in English) and the same etymological origin, and classified as the same
cognate. The Spanish word “Mariposa” and French word “Papillon” are two words with the same
meaning “Butterfly”, but with a different etymological origin. They are thus considered as different
cognates. We considered here that cognates can vary among individuals within a population. This
differs from the assumptions made in previous studies (Bouckaert et al., 2012; Gray et al., 2009;
Thouzeau et al., 2017) where cognates are sampled at the language scale and for which individuals

are considered as users rather than producers of the language.

4.2. Four models of acquisition of a new language

We developed a new C++ simulation software that implements an individual-based forward-in-
time simulation model with discrete linguistic generations, in which we assumed that populations
were composed of only two types of individuals: “learners” and “teachers”. The linguistic generation
time corresponded to the time required for an individual between learning a language from teachers
and teaching this language to learners at the following generation. We did not specify the linguistic
generation time in our models, allowing it to be completely decorrelated from the reproductive
generation time, and possibly much smaller. We assumed a neutral model in the sense that, even if
the number of teachers per learner varied across models, the learners selected their teachers at random
in the previous generation, with equal probabilities. We assumed that the rules of utterance
productions of a teacher depended only on the utterances that he/she heard when he/she was a learner.
We assumed that each learner chose only one word for each meaning during the learning phase. Two
learners could choose the same word. After the whole learning phase, all teachers were discarded and
all learners became teachers. Then, at the following generation, new learners appeared. The

proportions of males and females were exactly 50%/50% at each generation. The models of linguistic



acquisition differed by the number of teachers involved for each learner in his/her language

acquisition process, and the relative roles of these teachers (Figure 2).

4.2.1. Clonal Model

In the first model, named the “Clonal” model, each learner had only one teacher, which was drawn
at random in the teacher population. The learner copied “in a clonal way” every word that the teacher
produced. This would correspond, in genetics, to a clonal reproduction model, as observed e.g. for
bacteria or for mitochondrial DNA and non-recombining regions of the Y chromosome in humans

and other mammals.

4.2.2. Sexual Model 1

In the second model, named the “Sexual 1” model, two different teachers (one “male” and one
“female”) were drawn at random within the population for each learner respectively. The learner then
copied directly the first half of the words produced by teacher 1, and the second half of the words
produced by teacher 2. Thus, half of the words were always transmitted by one teacher, and the other

half by the other teacher, the two different sets being always the same for all generations.

4.2.3. Sexual Model 2

In the third model, named the “Sexual 2” model, two different teachers (one “male” and one
“female’) were attributed to each learner at random. For each word, the learner copied at random
either the word from teacher 1 or teacher 2, with equal probabilities ('%, /2). Thus, no particular word
had a teacher-specific transmission; every word was transmitted from one of the two teachers chosen

at random. This is analogous, in genetics, to a sexual reproduction model with free recombination.
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4.2.4. Social Model

In the fourth model, named the “Social”” model, for each meaning each learner copied a word drawn
at random from all the words produced by all the teachers in the population. Thus, each learner learned
his/her set of words randomly from the entire speech community, or rather, from all possible utterance

variants of teachers for a given meaning at a given generation.

[Figure 2 — About here]

4.3. Mutation model

For each model, we assumed that errors could occur during the transmission of each word, leading
to the creation of a completely new word. We denoted such errors “linguistic mutations”. The mean
mutation rate per linguistic generation puL was drawn in a log-uniform prior distribution, between 10
6 and 10" mutations per word per generation. For each word, its mutation rate was subsequently
drawn in a beta distribution with mean p and shape parameter f = 2, allowing us to simulate a set of

words each with different rates of change over time.

4.4. Historical scenario

We focused here on a single linguistic population, defined as the number of individuals that
contributed significantly to the currently observed linguistic diversity, where the utterances of a
sample of individuals have been obtained using a linguistic questionnaire in the final generation. This
linguistic population evolved under a historical scenario (Figure 3), in which there was first an
ancestral population with a constant size No individuals involved in linguistic exchanges during to=
5%No generations. It corresponds to a stable population that evolved in order to reach a balance
between the production of linguistic diversity through mutation, and the reduction of this diversity
through random sampling (i.e. linguistic drift). As we visually checked, to = 5xNo was sufficient to

reach an equilibrium.
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Then, this population underwent an instantaneous change of population size, reaching a new size
N1, and it remained at this size during t1 generations. This rapid population change is one of the
possible means to model demographic changes. Several choices are possible to model these changes
(linear increase, exponential increase, etc.) without any one being more relevant than another. Here,
we chose to use a simple model that limits the number of model parameters.

This model allowed simulating a range of histories, depending on the relative values of the
parameters No and N1 and on the value of ti. No and N1 were drawn in a uniform prior distribution
bounded between 100 and 1000 individuals, this upper bound being set to limit the large computation-
time requirements for completing forward-in-time simulations. These prior distributions reflected the
uncertainty in the number of individuals that contributed significantly to the linguistic diversity
observed in the sampled population. The size of this ancestral population was indeed completely
unknown. Indeed, even if some information could be obtained on the census size of the current
population, it likely does not reflect the ancestral linguistic census sizes. Time t1 was drawn in a
uniform prior distribution between 0 and 1000 generations. The median, the minimum, the maximum,
and the 5% quantiles of the priors are summarized in Table 1. Note that the number of cognates per
meaning is an emergent property of the model, as it results from the balance between the loss of
cognates through drift and their creation through mutation. It will depend on the parameters of the

model (No, N1, w, 1),

[Figure 3 — About here]

S. Analyses

5.1. Simulations
For each model, we performed 10,000 simulations using our newly-developed software. We
performed these simulations on two computer clusters, amounting to approximately 90,000 CPU

hours. Most of this computation time was spent during the phase to reach equilibrium between
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mutation and drift at to = 5xNo generations. During the process of sampling words from our
simulations, we simulated missing values (6.75% of the dataset, distributed across all words and
individuals with no structure, as in the real data) by transforming cognates drawn at random into
missing values; the total number of simulated missing values was set to the number of missing values

in the real data set, to avoid the bias they may induce in the following ABC procedures.

5.2. Summary statistics

We constructed a new set of population linguistic summary statistics. We computed pij, the
proportion of individuals using the word j of the meaning i, and then computed the linguistic diversity
of ameaning Di = 1 — Z; pi,j%, analogous to genetic diversity (Nei, 1987). We also computed chi-square
values, over 200 pairs of randomly sampled meanings: y% = % (Ojj — Eij)/Eij. The observed value Oijj
corresponds to the number of individuals for which a pair of words j is observed for meaning i. The
expected value Eij corresponds to the number of individuals for which this pair of words j would be
observed for meaning i if the words were randomly distributed among individuals. We computed
correlation coefficients values, over 200 pairs of meanings randomly sampled, as r = (piijj - Pij Pi’j’)
/T pij (1 -pij) pri (1-pirj) V2 with piij the proportion of pairs of individuals using the word i of
the meaning j and the word i’ of the meaning j’. We then computed the frequency spectrum of the
number words per meaning, F. Finally, we performed a linear discriminant analysis (Estoup et al.
2012), a method close to principal component analysis allowing to classify the data from a set of
variables associated to categories by projecting the main classification axes.

Then, we computed across all words:

- The mean linguistic diversity, D;

- The range of linguistic diversity, R(D);

- The variance of linguistic diversity, V(D);

- The mean number of words per meaning, N;

- The variance of the number of words per meaning, V(N);
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- The mean number of different words between two individuals, X;

- The range of the number of different words between two individuals, R(X);
- The variance of the number of different words between two individuals, V(X);
- The mean of the chi-square values, y2;

- The range of the chi-square values, R(y2);

- The variance of the chi-square values, V(y2);

- The mean of the correlation coefficients values, r;

- The range of the correlation coefficients values, R(r);

- The variance of the correlation coefficients values, V(r);

- The minimum of the frequency spectrum, min(F)

- The maximum of the frequency spectrum, max(F)

- The mean of the frequency spectrum, F

- The mode of the frequency spectrum, mode(F)

- The range of the frequency spectrum, R(F)

- The 25™ quartile of the frequency spectrum, F2s

- The median of the frequency spectrum, Fso

- The 75™ quartile of the frequency spectrum, F7s

- The three axis of the linear discriminant analysis of the previous statistics, LD1, LDz, LDs.

5.3. Power analysis on simulated data

We performed a power analysis of the model selection procedure, to evaluate the impact of the
number of sampled individuals, the number of sampled words, and the number of simulations on the
prior error rate, i.e. the number of cases in which a wrong model was selected among the four possible
models by the ABCRF model-choice procedure. This was done for a total of 61 situations in which
we varied the number of sampled individuals between 2 and 100, the number of sampled words per

individuals between 2 and 300, the number of simulations between 1,000 and 10,000. This maximal
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value of 10,000 simulations was due to the high computational cost of forward-in-time simulations.
In each case, we computed the prior error rate through cross-validation using the function abcrf of
the R package abcrf. This procedure considers, in turn, each simulation under each competing model
as a pseudo-observed data, and performs the ABCRF model-choice using all other simulations in the

reference table for training the random forest.

5.4. Model selection on real data

Before model selection, we performed a goodness-of-fit test to check whether the simulations were
able to produce data close to the real data using the function gfit from the R package abc (Csilléry et
al., 2012). We performed model selection using the R package abcrf with the RF algorithm and the
function abcrf (Pudlo et al., 2016). We graphically checked if a forest of 500 trees allowed a
convergence of the error rate. We computed the variables importance, indicating which variables have
the most predictive power. We also performed a cross-validation analysis using an out-of-bag
approach implemented in the function abcrf of the package abcrf, evaluating how the algorithm a
priori distinguished between the four models.

For the selected model, we then selected the 100 simulations which were closest to the real data,
based on the Euclidean distance of the statistics that were standardized for a mean of 0 and a variance
of 1. We then tested whether the random forest algorithm was able, in this region of simulated data

close to the real data, to correctly select the true model.

5.5. Parameters estimation on real data

We used the RF algorithm with the function regAbcrf of the package abcrf (Raynal et al., 2017) to
estimate the expectation, median, variance and 5% quantiles of the parameters N1, No, t1, pr and of
the composite-parameters Nixur, Noxpur and tixpr. Note that the RF algorithm does not estimate the
entire posterior distribution of the parameters directly, but estimates the quantiles of this distribution

instead.
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6. Results

6.1 Power analysis

Using simulated data under the four competing linguistic transmission models, we showed that an
increase in the number of words sampled beyond 185 words increased moderately the power of the
analyses (Figure 4). We found also that the decrease in error followed an exponential decay profile
(Figure S1). Increasing the words sampling effort by several orders of magnitude would therefore be
necessary to significantly reduce model selection error. Increasing the number of sampled individuals
beyond 30 individuals increased only slightly the statistical power of the analysis (Figure 5), which
converged towards a limit value. An increased sampling effort on the number of individuals could
also, therefore, only moderately reduce the model selection error. Finally, we showed that the model-
selection prior error rate converged with 10000 simulations (Figure 6), which indicated that increasing

the number of simulations could not lead to a lower error.

[Figure 4 — About here]
[Figure 5 — About here]

[Figure 6 — About here]

6.2. Model selection

Using the goodness-of-fit test, we verified that there was no significant differences between the
real and simulated datasets (p-value = 0.71, with 1000 replications). We performed the RF analysis
using 500 trees, and verified graphically that the error rate converged. The number of trees voting for
the second model was 487 out of 500 (Table 2). The RF analysis thus rejected the Clonal, Sexual 2
and Social models, and selected the Sexual 1 model for the real data with a posterior probability p =
94.4%.

[Table 2 — About Here]
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The variable importance analysis showed that the main statistics used by the RF procedure to select
the models were the first two axes of the linear discriminant analysis LD and LD;, the variance of
the number of different words between two individuals V(X), and the variance of the correlation
coefficients values V(r) (Figure S2).

The cross-validation analysis on simulated datasets (Table 3) indicated a good a priori
differentiation between the Clonal model and other models, with about 76% of simulated datasets
under this clonal model correctly assigned to the true model. Similarly, the Sexual 1 model was
correctly attributed for about 76% of the simulated datasets. On the other hand, the Sexual 2 model
and the Social model were difficult to distinguish a priori, as the simulated datasets from these two

models were arbitrarily attributed to one or the other by the cross-validation procedure.

[Table 3 — About here]

The RF algorithm assigned to the correct model 100% of the simulations produced by the Sexual 1
model which were closest to the real data. Compared to the global cross-validation results, this
indicated that the method performed better in selecting the correct model in the region of the

parameter space occupied by the real data than in the entire space occupied by simulations.

6.3. Parameter estimation

For the selected model (Sexual 1), we could estimate the linguistic mutation rate (uL) on the real
data: the quantiles of its posterior distribution were much narrower than the quantiles from its prior
(Table 4). We estimated that this rate ranged between 1.61x10“and 1.50x10” mutations per cognate
per linguistic generation at the 95% credibility level. Conversely, we could not estimate the
demographic parameters (N1, No, and t1), for which posterior quantiles did not differ substantially
from prior quantiles. However, we could estimate the composite parameters Nixur, Noxpr and tipe,

for which posterior quantiles were substantially narrower than those of their respective priors. There
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was no clear evidence of expansion or contraction, since the confidence intervals of Nixur and NoxpL

overlapped.

[Table 4 — About here]

7. Discussion

In this study, we built individual-based models simulating the linguistic evolution of a
population, under given demographic scenarios, considering four possible types of linguistic
transmission between generations. We used an ABCRF framework (Pudlo et al, 2016, Raynal et al,
2019) to compare the simulated data with a real dataset of 30 individuals in Central Asia typed for
185 words, in order to estimate which model fitted best the data and estimate the parameters of the
selected model.

ABC relies on approximating the likelihood of the data by that of a set of summary statistics,
a priori informative about the historical process to be inferred. ABC was initially developed with
summary statistics explicitly linked to the parameters of interest, and therefore highly informative for
accurate ABC inference (Tavaré 1997). However, for most case studies, it is not known, a priori,
which summary statistics will be informative for ABC inference (Blum et al. 2013). Several complex
statistical approaches have been developed, therefore, to select a priori sets of relevant summary
statistics for ABC inference and to overcome the curse of dimensionality and parameter posterior
identifiability issues, which result from considering very large numbers of summary statistics,
possibly correlated and unevenly informative (Csilléry et al. 2012; Blum et al. 2013; Prangle 2019).
Importantly, ABCRF model choice inference is unaffected by the dimensionality curse faced by most
other ABC model-choice frameworks, as each decision tree is built with random subsets of summary
statistics (Pudlo et al. 2016). However, the accuracy of model parameter inference in ABC, whether

using RF or another approach, still relies on finding minimal subsets of highly informative summary
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statistics (Raynal et al. 2017), which therefore requires empirical case-by-case testing of novel sets
of summary statistics.

A main advantage of the ABC framework is its high flexibility, which will allow researchers,
in future work, to include more sophisticated models with additional parameters of interests to
linguistic evolution. Moreover, ABC offers a model selection procedure that has no equivalent under
an analytic framework, and it offers also the possibility to compute the credibility interval of the
inferred parameters, which would require a fully stochastic approach in an analytical framework. We
showed, first, that some of our models were able to produce simulated data close to the
contemporaneously observed data. Therefore, our approach implements realistic individual-based
linguistic transmission, consistent with the observed linguistic diversity of the sampled populations.

We also provided inferences on some features of linguistic history of Tajik-speaking
individuals, selecting the most plausible mechanisms of linguistic transmission among the competing
options tested, and estimating the parameters of the selected models for our sample. Sexual model 1
had higher posterior probabilities compared to the other models. In particular, in Sexual model 2,
each word was inherited indifferently from the first or second teacher. There was therefore no
association between specific words in the lexicon. In contrast, in Sexual model 1, words were
separated into two different non-overlapping groups: the group of words inherited from the first
teacher, and the group of words inherited from the second teacher. There was thus a systematic
association between some variants that are found together more often than others.

It indicates that the mechanisms of linguistic acquisition followed, in this study-case, a process
of linguistic transmission from two teachers with their own vocabulary. In other words, we inferred
that these individuals did not learn their basic vocabulary from only one individual, nor from two
individuals without “sex”-specific vocabulary, nor from the whole speech community. We estimated
that they learn their vocabulary from two individuals with “male”-specific and “female”-specific
words. To simplify understanding, the model has been described with terms related to the sexes of

both parents. This case is possible, but the model can also correspond to alternative transmission
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mechanisms. For example, it is possible that the lexicon is transmitted by two categories of teachers,
on the one hand the family acting as a first vector of lexicon, and on the other hand the school teachers
acting as another vector of lexicon. The model therefore did not strictly require that (1) only two
teachers were present, (2) that these teachers were a man and a woman, and (3) that they were the
individual's parents.

This linguistic-transmission mechanism may reflect the fact that Tajik populations are
cognatic (Krader, 1966), i.e. they inherit social status and material goods from their two parents. This
symmetric role of parents in cultural transmission across generations appears thus to be reflected
linguistically, as learners appear to receive specific words from both parents. Future studies on
populations with other lineage and kinship descent systems, such as patrilineal or matrilineal descent
rules, will allow better understanding how social-descent rules and features may influence linguistic
transmission processes in a given population.

Our estimates of the mean linguistic mutation rate of the words of the Swadesh list in this
population ranged between 10 and 10 mutations per word per generation. Interestingly, the
mutation rate estimated here fell in the same range as the mutation rate estimated in previous macro-
evolutionary linguistic studies (Pagel et al., 2007). Considering that languages at a global scale
emerge from the interactions among individuals, we may thus hypothesise that the mutation rate
estimated globally emerges from the mutation rate at a local scale. Under this assumption, further
studies could investigate whether macro-evolutionary linguistic processes (i.e. processes occurring at
the scale of a whole language or a linguistic variety), may also emerge from micro-evolutionary
linguistic processes (i.e. at the scale of the individuals within a population).

Population genetics effective population sizes estimated differ from census population sizes
(Palstra and Fraser 2012). Similarly, the estimated linguistic population size in our model did not
necessarily reflect the real size of the community, and effective linguistic populations are possibly
much smaller in size than empirical groups of speakers. Our posterior estimates of the number

individuals that contributed significantly to the observed linguistic diversity did not differ from the
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priors of the simulations. It meant that our method could not directly estimate the number of
individuals in the current and ancestral linguistic populations, but only synthetic parameters such as
Nop. In this context, a perspective might be to design specific summary statistic to improve our ability
to infer the number of individuals that contributed significantly to the observed linguistic diversity.
Another promising approach might be to sample individuals in the population at different moments
in time, separated by at least several decades, analogously to what is done in population genetics,
where it is the most efficient method for estimating recent population sizes, independently of mutation
rate (Foll et al., 2014).

In this study, unlike most other studies focusing on within-population linguistic diversity
(Baxter et al., 2009; Danescu-Niculescu-Mizil et al., 2013; Kandler et al., 2010), we only used
contemporaneous linguistic diversity. This method allowed us to perform historical inferences based
only on sampling campaigns conducted in existing populations. The amount of available information
depended only on the sampling effort, and not on the availability of dense historical records, which
are unavailable for numerous languages. It would be of great interest in future works to be able to
distinguish among the Sexual 2 model (with only two teachers) and the Social model (with a whole
community as a teacher). As we showed in the power analysis, increasing the sampling effort (in
terms of number of individuals or in term of number of words) was not sufficient to reliably
distinguish between these two models, using our set of summary statistics. As for the inference of
demographic parameters, developing new summary statistics and/or designing multi-generational
studies might be the best solution to further distinguish among closely related linguistic transmission
modes in future work.

Our approach could be extended in several other ways. First, the linguistic acquisition models
that we proposed here did not integrate the particular constraints of communication processes. In
particular, we assumed a neutral production of variants without any constraints on linguistic
communication. Some evolutionary linguists would argue for an integration of the particularity of

languages as communication systems, associated with a strong set of constraints (Beckner et al., 2009).
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Indeed, individuals maximize their probability of being understood, while minimizing their
communication costs, two features that strongly affect linguistic evolutionary processes (Tamariz and
Kirby, 2015). These constraints are particularly strong in the case of phonological, morphological, or
syntactical systems, and we may wonder whether lexical variants are also subjected to these
constraints. If so, these particularities of linguistic systems may be at odds with inferences based on
a model of neutral evolution, and should thus be taken into account for a more accurate model of
linguistic evolution at the individual scale, for historical inferences purposes.

Moreover, social mechanisms could be studied with this approach. For example, it has been
proposed that the prestige of individuals or variants can lead to the diffusion of their linguistic
characteristics (Tamariz et al., 2011). It has also been proposed that the frequency of variants can
affect linguistic change, either positively (more frequent variants are favored) or negatively (rarer
variants are favored) (Newberry et al., 2022). The integration of these alternative dynamics could be
the subject of future studies, aiming at detecting whether there is a deviation from neutrality, and
which type of deviation best explains the resulting linguistic diversity.

It will also be of interest to study the transmission model of other types of linguistic objects,
for instance focusing on other types of words such as food lexicon, or very recently acquired
technological lexicon. Those different types of words could be transmitted differently, and our results
could be different in the case of these particular lexical elements. Other types of linguistic data could
also be obtained, like phonetic productions or syntactic rules, and it could be then assessed whether
these linguistic elements are transmitted or not in the same way as the words of the Swadesh list. In
addition, individuals may know more variants than those they use most frequently. It may then be
possible in future works to model also the evolution of word usage, in order to take into account a
greater part of the lexical diversity of languages.

In our model, linguistic variants are transmitted only once during an individual's life, in
childhood. If this assumption is respected, the generation time of our model is equivalent to the

biological generation time. Nevertheless, this model ignores the impact of communications between
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individuals of the same generation. Moreover, we did not consider global media such as books, radio,
internet, or television. These phenomena could bias the generation time assumed by the model. We
will thus consider in further investigations several alternative models of language evolution, where
the acquisition of language results from a series of interactions between individuals, who would
update their language during each conversation.

Finally, note that the formalism of our models are close to the formalism of population genetics.
This should allow us to develop joint inferences coupling genetic and linguistic data for the same set
of populations and individuals. However, some theoretical limits remain. We may wonder whether a
speech community (a “linguistic population”) is identical to a reproductive group (a “genetic
population™). It is far from obvious that human reproductive boundaries overlap language boundaries
among human groups. Indeed, the clusters of individuals likely to marry and have children with each
other do not necessarily overlap with the clusters of individuals likely to communicate with each other.
A joint model between genetics and linguistics would thus require clarifying and articulating
rigorously the concepts of population genetics with the concepts of population linguistics to propose

robust joint inferences.

Data availability statement

The linguistic data used in this study were obtained in previous works (Mennecier et al., 2016;
Thouzeau et al., 2017). They are provided along with the PLS2 program at

https://github.com/ValentinThouzeau/PLS2
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Figure and Table legends
Figure 1 — Geographical distribution of the 10 sampled units under study.

Figure 2 — Four models of linguistic transmission between generations. Each circle represents an
individual. The utterances that individuals produce depend only on the utterances that their teachers
produced at the previous generation, and on the mutations induced during the transmission. Four
transmission modalities were considered: (a) a “Clonal” model with only one teacher per learner,
(b) a “Sexual 1” model with two teachers associated with a distinct set of vocabulary for each sex,
(c) a “Sexual 2” model with two teachers without a distinct set of vocabulary for each sex, and (d) a
“Social” model with the whole population as teacher for each learner.

Figure 3 — Example of possible historical scenarios depending on the parameters t1, No and Ni. If

No = N1, we assumed a scenario of constant population size. If No < N1, we assumed a scenario of
expansion of the population. If No > N1, we assumed a scenario of contraction of the population.

Figure 4 — Prior error rate depending on the simulated number of sampled words, with 30 sampled
individuals and 10000 simulations. The red dashed line indicates the number of words of the real
sample.

Figure 5 — Prior error rate depending on the simulated number of sampled individuals, with 185
sampled words and 10000 simulations. The red dashed line indicates the number of individuals of the
real sample.

Figure 6 — Prior error rate depending on the number of simulations, with 30 sampled individuals and
185 sampled words. The red dashed line indicates the value used for the analyses.

Table 1 — Summary of the prior distributions of the parameters for the four models
Table 2 — Proportion of votes for the four models of linguistic evolution.

Table 3 — Confusion matrices from the out-of-bag cross-validation analysis of the four models, using
10 000 pseudo-observed data.

Table 4 — Summary of the posterior distributions of the parameters, assuming a Sexual 1 scenario.
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Median

Min Max Variance Quantile 2.5% Quantile
97.5%

No 550 100 1000 67645 122 978
N1 550 100 1000 67645 122 978
t1 500 0 1000 83490 25 975

pL 3.165x10* 10°¢ 10! 3.58x10* 1.35x10° 7.73%10%2
Noxpr 0.150 10+ 100 141.91 5.25x10* 44.5
NixprL 0.150 10+ 100 139.05 5.25%10* 44.5
tixpL 0.116 0 100 129.55 2.80x10* 42.0




Clonal Sexual 1 Sexual 2 Social

11 487 1 1




True model

Clonal Sexual 1 Sexual 2 Social
Selected | Clonal 7620 1785 282 313
model g oxual 1 1358 7698 439 505
Sexual 2 283 816 4782 4119
Social 276 805 4200 4719




Expectation Median Variance Quantile 2.5%  Quantile 97.5%

No 489 523 70157 112 928

N1 541 547 69571 105 949

to 548 541 99439 48 985

nL 5.42x10* 4.14x10* 1.8x107 1.61x10* 1.50x1073
NoxpL 0.250 0.139 0.081 0.036 0.967
NixpL 0.178 0.155 4.35x107 0.098 0.347
tixpL 0.358 0.215 0.148 0.010 1.15



Prior error rate

Figure S2 — Variable importance in the random forest built for the model selection.
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Figure S1 — Prior error rate as a function of the decimal logarithm of the number of sampled words, with 30
sampled individuals and 10000 simulations. The red dashed line indicates the number of words of the real sample.
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