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SOME FOUR MANIFOLDS WITHOUT EINSTEIN METRIC

We proved using our Gravitational Monopole equation the following theorem Theorem 0.1. Let Σ be a minimal complex algebraic surface of general type, and let M = Σ#kCP 2 be obtained from Σ by blowing up k > 0 points. Then M does not admit Einstein metrics if

and find a new lower bound for k, namely 3 16 (c 1 (Σ)) 2 , previously as far as the knowledge of the author goes, the lower bound was 32 48 (c

The improved bound is 9 48 (c 1 (Σ)) 2 = 3 16 (c 1 (Σ)) 2 .

Introduction

In previous articles Mostow Rigidity and the Gravitational Monopoles [cf.4], we proved

(1.1) 1 72π 2 M s 2 ≥ (c 1 (Σ)) 2 = p 1 (Σ) = 2χ + 3σ.
and in another article The Dimension of the moduli space of solutions of the Gravitational Monopole Equations via the Atiyah-Singer Index theorems[cf.2], we showed via the Atiyah-Singer index theorem that the dimensions of the moduli space of solutions of the Gravitational monopole equations are (see the Appendix §4)

(1.2) c 1 ( √ L) 2 + 57σ(X) -30χ(X) 4 .
Based on the above information we can define basic classes for Gravitational Monopoles (see the Definition (2.1)), and can show for certain algebraic surfaces no Riemannian metric can be assigned. In Theorem [3.6] we showed Theorem 1.1. Let Σ be a minimal complex algebraic surface of general type, and let M = Σ#kCP 2 be obtained from Σ by blowing up k > 0 points. Then M does not admit Einstein metrics if

(1.3) k ≥ 3 16 (c 1 (Σ)) 2 .
What is new in the above statement? The answer to the above question is, one can compare this result with the Theorem 3 of [cf .7]. One also notes that our lower bound for k is finer than LeBrun's [cf .7].

In their paper they proved the Theorem (3.6) for k ≥ 2 3 (c 1 (Σ)) 2 compared to our k ≥ 3 16 (c 1 (Σ)) 2 , taking least common multiple of 16 and 3, we can compare the fractions, namely, Lebrun's k had a lower bound 32 48 up to multiple of (c 1 (Σ)) 2 and our lower bound for k is 3 16 up to multiple of (c 1 (Σ)) 2 .

Technicalities

Let (M 4 , g) is a four-dimensional Riemann manifold (pointwise norms are calculated with respect to the metric g, and dµ g is the metric volume form. We will omit g from dµ g and simply denote it by dµ), ψ is a section of a Spin C -bundle S + over M . If a Spin C -structure exists then we know that the second Stiefel-Whitney class w 2 is a reduction of an integral class c ∈ H 2 (M, Z) that corresponds to a complex line bundle L. Let λ αβ is a U (1)-valued transition function with local square-root √ λ αβ (the square-root may not exists globally), however, we recall that Spin(n) is the universal cover of SO(n), with Spin C (n) := (Spin(n) × U (1))/Z 2 , we have Spin C (n) as an extension

(2.1) 1 → Z 2 → Spin C (n) → SO(n) × U (1) → 1,
with the corresponding exact sequence of sheaf-cohomology

(2.2) • • • H 1 (M ; Spin C (n)) → H 1 (M ; SO(n)) ⊕ H 1 (M ; U (1)) δ -→ H 2 (M ; Z 2 ).
Since H The Gravitational Monopole equation is

(2.5) i(W + ) = q(ψ) :=, / ∂ A ψ = 0,
as one can see, our scheme for the Gravitational monopole changed a bit from the original [cf.3] for the sake of calculating the index of the corresponding elliptical complex [cf.2]. We twist the original bundle of spinors as appeared in [cf.3] by L or by some appropriate power of L to get a Dirac operator that annihilates ψ and may specialize to d + d * . Actually, the twisting does not change the main fact that we need only strictly negative scalar curvature for the Gravitational Monopoles. The following proposition says, as long as we have the Dirac operator, the index of the Dirac operator vanishes for the spin compact manifolds with non-negative scalar curvature. Compared to [cf.3] we pull out the imaginary i = √ -1 out of q(ψ) for the sake of calculations, it is equivalent to the original formulation of [cf.3]. Proposition 1. Let M is a compact spin manifold with non-negative scalar curvature, and strictly positive at at least one point, then the kernel of the Dirac operator on the spin bundle S vanishes, in particular, the index is zero

Proof. Let D = d + d * then for f ∈ Γ(M, S) (2.6) M ⟨Df, f ⟩dµ = M ∥∇f ∥ 2 dµ + 1 4 M s M ∥f ∥ 2 dµ. Df = 0 =⇒ ∇f = 0, s M f = 0. Therefore ⟨f, f ⟩ is constant on M so f = 0.
The same proof applies to / ∂ A . □

The Gravitational Monopole equation that we will use here is the following, with Φ ∈ Γ(M, S + ) (although for the sake of better understanding, we made a "twist" to the original equation (4.2), we ask the reader to consult the Appendix of this paper, namely §4, subsection §4.1, and corresponding equation 4.2 for an equivalent version of the Gravitational Monopole, to compare this with author's original work one can look into the reference written by the author in [cf.3]), however, we can now write the equivalent Gravitational monopole as

(2.7) i(W + ) = σ(Φ) := φ, / ∂Φ = 0, implies, (2.8) |φ| 2 = 1 8 |Φ| 4 , |∇ϕ| 2 ≤ 1 2 |Φ| 2 |∇Φ| 2 .
An elementary calculation gives

2χ + 3σ = p 1 (M ) = 1 8π 2 M (|W + | 2 -|W -| 2 ) ≤ 1 8π 2 M (|W + | 2 + |W -| 2 ) ≤ 1 8π 2 M (|W + + W -| 2 ) = 1 8π 2 M |W | 2 (2.9) also 2χ + 3σ = p 1 (M ) = 1 8π 2 M (|W + | 2 -|W -| 2 ) ≤ 1 8π 2 M |W + | 2 (2.10)
2.1. The invariants. In reference [cf.2] the author calculated formally the dimension of the moduli space of solutions of the Gravitational Monopole equation, the same is derived in the Appendix (see the section §4 and the consequent subsection §4.3)

(2.11) d Global √ L := 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X)
Since we now have the moduli space of solutions of Gravitational Monopole equation (4.2) modulo the action of the Gauge group Aut( √ L) which is just U (1), we can define the Gravitational invariant G which assigns an integer to each collection (L, ξ, [g]) with L is the defining line-bundle, ξ the corresponding Spin Cstructure, and [g] the conformal class of metric on M . The moduli space M(L, ξ, [g]) is oriented with respect to a choice of an orientation of H 1 (M ; R) and H 2 + (M ; R), more precisely, we need to choose an orientation of

H 1 (M ; R) ⊕ H 2 + (M ; R). Definition 2.1. [The basic class] We call (L, ξ, [g]) a basic class if G ̸ = 0
This, however, corresponds to the fact that the index of the linearized equation and corresponding ellipticcomplex of the Gravitational Monopole equation is non-negative, namely (2.12) (c 1 (

√ L)) 2 + 57σ(X) -30χ(X) 4 ,
for a global choice of √ L (if it exists), the above equals to

(2.13) 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X) .
where χ(M ) and σ(M ) are the Euler characteristics and index of the four-manifold M . Let us now assume M is a complex surface the Hirzebruch signature formula implies

(2.14) 2χ(Σ) + 3σ(Σ) = K 2 Σ . Thus, for a basic class (2.1) (c 1 ( √ L) 2 ≥ 30χ(X) -57σ(X) 4 = 3 4 (10χ(X) -19σ(X)) using K 2 Σ = 2χ(Σ) + 3σ(Σ), we get, (c 1 ( √ L) 2 ≥ 3 4 5K 2 Σ -15σ(Σ) -19σ(Σ) = 3 4 5K 2 Σ -34σ(Σ) .
(2.15)

We will use the above results in the following section by implicitly assuming G >≥ 0. In a future paper, we shall discuss various restrictions on G and its Complex Geometric consequences on the theory of complex surfaces.

Applications

Let (M, J, g) be a compact Kähler surface for which the Kähler class [ω] such that c 1 (L) • ω < 0. The relationship c 1 (L) • ω < 0 informally implies the scalar curvature s of (M, g) be negative "on average," due to the Gauss-Bonnet type formula (3.1)

M sdµ = 4πc 1 • [ω]. Definition 3.1.
[Polarizations] Let M be a smooth compact oriented 4-manifold. A polarization of M is a maximal linear subspace H + ⊂ H 2 (M, R) for which the restriction of the intersection form is positivedefinite.

As the intersection form is non-degenerate, every polarization determines an orthogonal complement H - with respect to the intersection form. We also assume the intersection form is negative-definite on this orthogonal complement, that is on H -. Therefore, polarizations of the 4-manifold M and of the reverseoriented manifold 4-manifold M in one-to-one correspondence. Let us define b ± := dim H ± , and b ± are homeomorphism invariant. The signature σ = b + -b -. If a polarization is given, then we have the following canonical decomposition

(3.2) H 2 (M, R) = H + ⊕ H -,
so that for any α ∈ H 2 (M, R) there are unique α ± ∈ H ± such that α = α + + α -. We will say that a Riemannian metric g is adapted to the polarization H ± if H ± (g) = H ± . A polarization will be called a metric polarization if there is at least one metric adapted to it. For a Kähler manifold, we say that the polarization H + (g) of Kähler metric determines the Kähler class [ω] if the complex structure J and total volume 1 2 ω ∧ ω are specified. The Hodge * -operator is conformally invariant on middle-dimensional forms, hence polarization is conformally invariant; that is, H + (g) = H + (f g) for any smooth positive function f . That is any result about metrics adapted to a fixed polarization will also imply results about global conformal invariants.

Definition 3.2. [Special Polarisation]

We call a harmonic self-dual 2-form ω ∈ H 2 + (M ) on a Gravitational Monopole (M, g) specially polarized if the following equality is allowed, namely there is a ψ ∈ Γ(M, S + ) and satisfies the Gravitational monopole equation with |ω| 2 = |ψ| 2 . Theorem 3.3. Let (M, H + ) be a polarized smooth compact oriented 4-manifold, and suppose that there is a Spin C -structure c on M . let c 1 (L) ∈ H 2 (M, R) denote the anti-canonical class of this structure, and let c + 1 be its orthogonal projection to H + with respect to the intersection form. Then every H + -adapted Riemannian metric g satisfies

(3.3) 1 72π 2 M s 2 ≥ (c 1 (L)) 2 = 2χ + 3σ.
Proof. If X is harmonic on a Riemannian manifold, then if we denote by R the Weitzenboch operator, then

(3.4) 0 = 1 2 ∆|X| 2 + |∇X| 2 + ⟨RX, X⟩.
Similarly, for a Harmonic Weyl tensor, we get for the self-dual part W + the following the Weitzenboch formula (Besse, Proposition 16.73, Page 454, [cf.6])

(3.5) ∆|W + | 2 = -2|∇W + | 2 -s|W + | 2 + 36det ∧ + W +
In the following we assume the manifold is specially polarised (see the definition (3.2)), that is the existence of a harmonic self-dual 2-form ω ∈ H 2 + (M 4 ) such that |ω| 2 = |ψ| 2 , and corresponding Witzenböck formula [cf.5] gives

(3.6) 1 2 ∆|ω| 2 = |∇ω| 2 + 1 3 s|ω| 2 -2W + (ω, ω). 0 ≤ ∆|ω| 2 = 2⟨∇ * ∇ω, ω⟩ -2⟨∇ω, ∇ω⟩ ≤ 2⟨∇ * ∇ω, ω⟩ = - 2 3 s|ω| 2 + 4⟨W + (ω, ω)Φ, Φ⟩ = - 2 3 s|ω| 2 -4 • |Φ| 4 2 = - 2 3 s|ω| 2 -2 • |Φ| 4 = -s|ω| 2 -3 • |Φ| 2
Using the condition |ω| 2 = |Φ| 2 we get

3|Φ| 2 + s ≤ 0 =⇒ |Φ| 2 ≤ - s 3 (3.7)
Therefore we have by using (2.8)

(3.8) |W + | 2 = 1 8 |Φ| 4 ≤ s 2 72 .
So, (3.8) with adjunction of (2.10) give

(3.9) 2χ + 3σ = p 1 (L) = 1 8π 2 M (|W + | 2 -|W -| 2 )dµ ≤ 1 8π 2 M |W + | 2 ≤ 1 72π 2 M s 2 dµ □ We know χ(M ) = 1 8π 2 M |W + | 2 + |W -| 2 + s 2 24 - |Ric 0 | 2 2 dµ g σ(M ) = 1 12π 2 |W + | 2 -|W -| 2 dµ g (3.10)
where Ric 0 is the trace-free Ricci tensor. We proved the following Theorem in [cf.1] Theorem 3.4. If W + is degenerate for a compact Hermitian integral Gravitational monopole if and only if the integral Gravitational monopole is Kähler.

The following result is parallel to the result due to LeBrun in [cf.7] Theorem 3.5. Let Σ be a minimal complex algebraic surface of general type, and let M = Σ#kCP 2 be obtained from Σ by blowing up k > 0 points. Then any Riemannian metric on M satisfies

(3.11) 1 78π 2 M s 2 dµ ≥ 2χ + 3σ + k.
We know

χ(M ) = 1 8π 2 M |W + | 2 + |W -| 2 + s 2 24 - |Ric 0 | 2 2 dµ g σ(M ) = 1 12π 2 |W + | 2 -|W -| 2 dµ g (3.12)
where Ric 0 is the trace-free Ricci tensor. We assume M is Einstein and therefore Ric 0 = 0. We therefore have (3.13) 2χ

± 3σ = 1 4π 2 M 2|W ± | 2 + s 2 24 dµ
Now for a Riemannian metric g on M , we get using Theorem (3.5), we get (3.14) this however implies that,

(c 1 (Σ)) 2 -k = 2χ + 3σ = 1 4π 2 M 2|W + | 2 + s 2 24 dµ > 78π 2 4 • 24π 2 (2χ + 3σ + k) = 13 16 (c 1 (Σ)) 2 ,
(3.15) 3 16 (c 1 (Σ)) 2 > k =⇒ (c 1 (Σ)) 2 > 16 3 k.
We, therefore, conclude our main theorem Theorem 3.6. Let Σ be a minimal complex algebraic surface of general type, and let M = Σ#kCP 2 be obtained from Σ by blowing up k > 0 points. Then M does not admit Einstein metrics if

(3.16) k ≥ 3 16 (c 1 (Σ)) 2 .
One can compare this result with the Theorem 3 of [cf.7]. One also notes that our lower bound for k is finer than LeBrun's [cf.7]. In their paper they proved the Theorem (3.6) for k ≥ 2 3 (c 1 (Σ)) 2 compared to our k ≥ 3 16 (c 1 (Σ)) 2 , taking least common multiple of 16 and 3, we can compare the fractions, namely, Lebrun's lower bound is 32 48 and our lower bound for k is 3 16 up to a multiple of (c 1 (Σ)) 2 .

Appendix

4.1. The Gravitational Monopole Equations. In [cf.3] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fibre at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomprphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c :

T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s. Definition 4.1. The twisted Dirac operator associated to (E, ∇ E ) is the operator, (4.1) / ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j , or, c (W + g ) ijkl e i ∧ e j = 1 4 ⟨e k • e l ψ, ψ⟩. (4.2) 
4.2. Linearization of Self-Dual (Anti-Self-Dual) Weyl tensors. We recall that the linearization of W ± is given by

(4.3) D : C ∞ Hom(Ω ± , Ω ∓ ) → Ω ± ⊗ Sym so(3) ± .
It is a second-order differential operator. We can rewrite it into the following form:

Linearization of W + : D 2 : Γ(Ω 2 + ⊗ Ω 2 -) = Γ(S 2 -⊗ S 2 + ) π+ --→ Γ(S 4 -) φ A ′ B ′ AB → ∇ A (C ′ ∇ B D ′ φ A ′ B ′ )AB Linearization of W -: D 2 : Γ(Ω 2 -⊗ Ω 2 + ) = Γ(S 2 + ⊗ S 2 -) π- --→ Γ(S 4 + ) φ ABA ′ B ′ → ∇ A ′ (C ∇ B ′ D φ AB)A ′ B ′ (4.4) 
Let X be an oriented Riemannian manifold of even dimension 2l and we also assume X is a spin manifold, that is the first and second Stiefel-Whitney classes vanish. We denote by ∧ p the bundle of exterior p-forms with A p = Γ(∧ p ) its space of smooth sections. The Hodge star operator * ∧ p → ∧ 2l-p is defined by,

(4.5) α ∧ * β = (α, β)ω ∈ ∧ 2l
where α, β ∈ ∧ p , (α, β) is the induced inner product on p-forms and ω is the volume form.

From now everything will be 4-dimensional unless otherwise stated. We start with the symmetry of the equations, namely the Lie algebras. The Lie algebra so(4) of the special orthogonal group SO(4) is not simple. It can be decomposed into the direct sum of two copies of the Lie algebra so(3) of the group SO(3):

(4.6)
so( 4) ∼ = so(3) ⊕ so(3).

In terms of the group theory, one understands the above decomposition corresponds to the fact that the universal covering group of SO( 4) is the product of the two copies of SU (2). This fact in quantum mechanics corresponds to ± 1 2 spins of an electron for each factor SU (2). In terms of the geometry of the vector bundles, the decomposition so(4) ∼ = so(3) ⊕ so(3) induces the following decomposition (for a choice of g on X 4 ) for the vector bundle 2 T * X → X,

(4.7) ∧ 2 T * X ∼ = ∧ + ⊕ ∧ -,
as a Whitney sum of two oriented 3-plane bundles. One can choose an oriented orthonormal frame for T * U X for an open set U ⊂ X. One therefore has, (4.8)

∧ ± = Span (e 1 ∧ e 2 ± e 3 ∧ e 4 ), (e 2 ∧ e 3 ± e 1 ∧ e 4 ), (e 3 ∧ e 1 ± e 2 ∧ e 4 ) .

We now use the unique Levi-Civita connection ∇ on ∧ 2 T * X to find a suitable decomposition of the curvature tensor under the action of O(4). The first step towards it is to note that ∇g = 0, this however means that ∇ is covariantly constant, that is ∇ maps sections of ∧ ± into ∧ ± ⊗ T * X; there is no mixed term mapping ∧ + into ∧ -⊗ T * X. The curvature of the Levi-Civita connection defines a section of ∧ 2 T * X ⊗ 2 T * X, correspondingly a decomposition of ∧ 2 T * X ⊗ 2 T * X into four matrix-blocks of size 3 × 3, more precisely, the Riemann curvature tensor defines, in general, a self-adjoint linear transformation R : ∧ 2 → ∧ 2 such that, (4.9)

R(e i ∧ e j ) = 1 2

k,l
R ijkl e k ∧ e l , relative to the decomposition ∧ 2 = ∧ + ⊗ ∧ -, the operator R has the following form, (4.10)

R = A B B t C
where, B ∈ Hom(∧ -, ∧ + ) (is the traceless Ricci curvature) 0 Ric, and

A ∈ End(∧ + ), that is A is symmetric about its diagonal, that is A t = A, similarly for C ∈ End(∧ -) we have C t = C.
This representation of the curvature tensor R gives us a complete decomposition of it into irreducible components, namely

(4.11) R → (Tr A, B, A - 1 3 Tr A W + , C - 1 3 Tr C W - ) T rA = Tr C = 1 4
s where s is the scalar curvature. More elaborately, if the basis of ∧ ± in (4.8) is denoted by {x i ± } 3 i=1 , then the curvature tensor R has the following expansion (4.12)

R = W + ij x i + ⊗ x j + + W - ij x i -⊗ x j -+ B ij x i + ⊗ x j -+ B t ij x i -⊗ x j + - s 12 (x i + ⊗ x j -+ x i -⊗ x j + ).
If we denote the projection operator by, (4.13)

P ± := 1 2 (1 ± * ) : ∧ → ∧ ± , then, (4.14) W ± = P ± • Rm • P ± - s 12 Id ± 4.
3. The construction of the Elliptic complex. To get an elliptic complex corresponding to the data of the Gravitational monopole equations, we modify the data a little bit. So, we assume, A is a spin connection on the smooth 4-manifold X. ψ is a section of S + , so we relace the Dirac data ψ ∈ ker(d + d * ) to ψ ∈ ker D A .

In this way, the Dirac operator becomes dependent on A and we get a more general context. Let A be the induced connection on the line bundle L → X. We denote by F A the curvature corresponding to the connection A. We put no restriction on F A . All the restrictions are on the self-dual part of the Weyl tensor of X.

In the case of a line bundle, the gauge group G = M(X, U (1)) as a space of maps is well-defined as it is only dependent on the transition functions. The action of G on the pair (A, ψ) is given in the following way: We verify the following:

(4.17)

D A-λ -1 dλ (λψ) = λD A ψ + dλ • ψ -dλ • ψ.
The self-dual part F + A of the curvature tensor F A also remains invariant (4.18)

F + A-2λ -1 dλ = F + A -2d + (λ -1 dλ) = F + A .
Since the metric g ij → g AA ′ BB ′ = ε AB ε A ′ B ′ , corresponding U (1)-action on the metric is just multiplication by |λ| 2 = 1, therefore W + remains invariant, on the other hand (4.19) ⟨e i e j λψ, λψ⟩ = |λ| 2 ⟨e i e j ψ, ψ⟩ = ⟨e i e j ψ, ψ⟩, as |λ| = 1. Now we study the kernel of the linearized operator T g W + : T g M → Γ(Sym 2 0 ∧ 2 + ). The deformations we shall consider will be represented by the first cohomology of the complex (4.20) Γ(T X) ⊕ Γ(R)

τ * -→ Γ(Sym 2 0 ∧ 2 + )
T W + ---→ Γ(Sym 2 0 ∧ 2 + ), where R represents trivial R-bundle over X. Γ(Sym 2 T * X) = T g M = Hom(∧ 2 + , ∧ 2 -)⊕R. But Hom(∧ 2 + , ∧ 2 -) ∼ = ∧ 2 + ⊗ ∧ 2 -. If we want to mod out the trivial line bundle R then we must work with M/C ∞ + , and the section space Γ(R) is replaced by the orbit space C ∞ + (g). The problem is not underdetermined as the Gravitational monopole equation (4.2) gives additional restriction on the scalar curvature, that is s = s g < 0, hence a linearization at g gives the following complex 

( 4

 4 .15) λ : (A, ψ) → (A -λ -1 dλ, λψ),and on A by (4.16)A -2iλ -1 dλ.

2 .

 2 The complex (4.21) is elliptic with index equals to

  X)| -15χ(X)),where χ(X) is the Euler characteristic of X and σ(X) are the signature of X.By the index theorem for the twisted Dirac operator (4.23)Index(D A ) = -X ch( √ L) A(X).The Chern character is known to be(4.24) ch( √ L) = 2(1 + c 1 (L) 2 + • • • )

  1 (M, Z 2 ) represents the equivalence class of principal Z 2 -bundles (same is true for more general principal G-bundles over M , that is elements of H 1 (M ; G) represents the equivalence class of principal G-bundles), the connecting homomorphism δ is given by(2.3) δ : (P SO(n) , P U (1) ) → w 2 (P SO(n) ) + c 1 (P U (1) )with c 1 (P U (1) is the mod 2-reduction of the first Chern class of the principal U (1)-bundle P U (1) .

			This
	reduction however implies that the product	√	
	(2.4)	g αβ	λ αβ

is a cocycle, where g αβ are the cocycle of the SO(n)-frame fundle F r over M , and g αβ are the cocycle for the corresponding Spin(n)-bundle S over M . Therefore g αβ √ λ αβ are the cocycle for S = S ⊗ √ L, one also gets S ± = S ± ⊗ √ L. Let us now assume A be the Spin C -connection and A is the induced connection on L with curvature F A .

the A-genus is (4.25)

Therefore we have the following theorem (see also author's work in [cf.2])

Theorem 4.3. The moduli space of solutions of the Gravitational monopole equation has dimension (assuming the index σ(X) ≥ 0)

(c 1 (L)) 2 + 57σ(X) -30χ(X) (4.28)