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A NOTE ON BÉZOUT TYPE INEQUALITIES FOR MIXED VOLUMES AND
MINKOWSKI SUMS.

CHEIKH SALIOU NDIAYE

Abstract. In this note, we study Bézout type inequalities for mixed volume and Minkowski

sum of convex bodies in R
n. We first give a new proof and we extend inequalities of Jian

Xiao on mixed discriminants. Then, we use mass transport method to deduce some Bézout

type inequalities for mixed volumes. Finally, we apply these inequalities to obtain Bézout type

inequalities for Minkowski sums.

Mathematics Subject Classification: 52A39, 52A40.
Keywords: Mixed volume, Minkowski sum, Convex body, optimal transport, Alexandrov-
Fenchel, Bézout inequality.

1. Introduction

In 1779, Bézout gave the first version of his theorem about the number of intersection points
of algebraic hypersurfaces having no component in common: if H1, . . . ,Hn are algebraic hyper-
surfaces in C

n, then

#(H1, . . . ,Hn) ≤ deg(H1)× · · · × deg(Hn). (1)

From the Bernstein-Kushnirenko-Khovanskii theorem (see [5, 14, 15]), the quantities appearing in
this inequality may be written in terms of mixed volumes of convex bodies. For any K1, . . . ,Km

convex bodies in R
n, their mixed volume is defined as

V (K1, . . . ,Kn) =
1

n!

n
∑

k=1

(−1)n+k
∑

i1<···<ik

|Ki1 + · · · +Kik |,

where Ki1 + · · ·+Kik := {xi1 + · · ·+xik |xij ∈ Kij} is the Minkowski sum and | · | is the Lebesgue
measure. Minkowski showed that for t1, . . . , tm ∈ R+, |t1K1 + · · · + tmKm| can be extended as
a polynomial function (see section 5.1 of [19]):

|t1K1 + · · · + tmKm| =
∑

|i|=n

n!

i1!i2! · · · im!
V (K1[i1], . . . ,Km[im])ti11 · · · timm ,

where K[ij ] is K taken ij times. Soprunov and Zvavitch showed in [20] that the inequality (1)
can be rewritten in the following way: for 2 ≤ r ≤ n, and for all P1, . . . , Pr convex bodies,

|∆|r−1V (P1, . . . , Pr,∆[n− r]) ≤
r
∏

i=1

V (Pi,∆[n− 1]), (2)

where ∆ is a n−dimensional simplex. IfH1, . . . ,Hr are generic hypersurfaces in (C∗)n, P1, . . . , Pr

their Newton polytope and Hr+1, . . . ,Hn are generic linear forms, then the standard simplex
conv{0, e1, . . . , en} is the Newton polytope of Hr+1, . . . ,Hn and by the Bernstein-Kushnirenko-
Khovanskii theorem, #(H1 ∩ · · · ∩ Hn) = n!V (P1, . . . , Pr,∆[n − r]), for all i ∈ {1, . . . , r},
deg(Hi) = n!V (Pi,∆[n− 1]) and for all i ∈ {r + 1, . . . , n},
deg(Hi) = 1. Therefore, in this case, the inequality (1) becomes (2) by replacing n! by 1/|∆|.
Soprunov and Zvavitch [20] conjectured that if A satisfies

|A|r−1V (B1, . . . , Br, A[n − r]) ≤
r
∏

i=1

V (Bi, A[n − 1]),
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for all convex bodies B1, . . . , Br, then A is an n−dimensional simplex and some positive partial
answers are given in [18, 20, 21]. In [20], an inequality in the same flavour where A can be an
arbitrary convex body was also studied and the question of the best constant bn,r such that for
all convex bodies A,B1, . . . , Br in Rn,

|A|r−1V (B1, . . . , Br, A[n− r]) ≤ bn,r

r
∏

i=1

V (Bi, A[n − 1]) (3)

was considered. Inspired by the works of Fradelizi, Giannopoulos, Hartzoulaki, Meyer, and

Paouris in [9, 12], it was proved in [20] that bn,r ≤ (nr)r

r! . Xiao used the inequality (7) below

to show that bn,r ≤ nr−1 in [23]. Brazitikos, Giannopoulos and Liakopoulos [4] showed that

bn,r ≤ 22
r−1−1. Our first main result is the following improvement of the preceding bounds. We

show that

bn,r ≤ min
k∈{1,...,r}

{

2
k(k−1)

2
nr−k

(r − k)!

}

. (4)

In particular, for k = 1, this gives bn,r ≤ nr−1

(r−1)! and for k = r, we get bn,r ≤ 2
r(r−1)

2 . Our main

tools are improved Xiao’s argument and the following Fenchel’s inequality ([8], see also inequality
(7.76) in [19]):

V (A[2],K1, . . . ,Kn−2)V (B,C,K1, . . . ,Kn−2)

≤ 2V (A,B,K1, . . . ,Kn−2)V (A,C,K1, . . . ,Kn−2), (5)

for any A,B,C,K1, . . . ,Kn−2 convex bodies in Rn. We establish (4) by using mixed discriminants
which are defined in the following way: for M1, . . . ,Mm be semi-definite positive symmetric
matrices in R

n and t1, . . . , tm ∈ R+.

det (t1M1 + · · ·+ tmMm) =
∑

|i|=n

n!

i1!i2! · · · im!
D(M1[i1], . . . ,Mm[im])ti11 · · · timm ,

the coefficient D(M1[i1], . . . ,Mm[im]) is the mixed discriminant. The mixed discriminants are
non negative and for any linear invertible map T ,

D(TM1, . . . , TMn) = det(T )D(M1, . . . ,Mn), (6)

(see section 5.5 of [19]). In [23], Xiao proved the following inequality which we extend (7) in
theorem 1 below: for any integers k, n such that 1 ≤ k ≤ n and any positive definite symmetric
matrices A,B,M1, . . . ,Mn−k, we have

det(A)D(B[k],M1, · · · ,Mn−k) ≤
(

n

k

)

D(A[n− k], B[k])D(A[k],M1 , · · · ,Kn−k). (7)

Our second main theorem is the application of these new Bézout type inequality for mixed
volumes to establish a new Bézout type inequality for Minkowski sums. Let cn,m be the smallest
constant such that for any convex bodies A,B1, . . . , Bm ⊂ Rn,

|A|m−1|A+B1 + · · · +Bm| ≤ cn,m

m
∏

k=1

|A+Bk|.

Bobkov and Madiman established in [6] that cn,m ≤ (m+1)n. Fradelizi, Madiman and Zvavitch

used a consequence of (7) in [11] to show that
(

4
3 + o(1)

)n ≤ cn,2 ≤ ϕn where ϕ is the golden
ratio. They also gave more precise bounds for small dimensions: c2,2 = 1 c3,2 = 4/3 and they
conjectured that c4,2 = 3/2. There are several similar results for Minkowski sums of zonoids in
[10].

In Section 2, we give an extension of inequality (7) and then, we use optimal transport as
introduced in [1] and developed in [16, 23] to deduce the same type of inequality for mixed
volumes. In Section 3, we establish our Bézout inequality for mixed volumes (4) and we conclude
with some Bézout type inequalities for Minkowski sums in Section 4.
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2. Xiao type inequalities

Our first theorem is the following extension of inequality (7) due to Xiao [23].

Theorem 1. Let m ≥ 1, n ≥ 2 and |i| := i1+· · ·+im ≤ n be integers. Then, for any semi-definite
positive symmetric matrices A,B1, . . . , Bm, M1, . . . ,Mn−|i|,

|i|!
i1! . . . im!

det(A)mD(B1[i1], . . . , Bm[im],M1, . . . ,Mn−|i|)

≤ D(M1, . . . ,Mn−|i|, A[|i|])
m
∏

k=1

(

n

ik

)

D(Bk[ik], A[n − ik]). (8)

Proof: We do this proof by induction on m. The first step is a consequence of (7) of which we
give a new proof inspired in ideas from [3].
Case m = 1: (Xiao [23]) If m = 1, B1 = B and i1 = k ≤ n, (8) becomes (7). Since A and B1

are semi-definite positive symmetric matrices, by simultaneous orthogonalization, there exists an
invertible matrix P and a diagonal matrix Λ such that A = PP t and B1 = PΛP t. Using (6) it
is enough to assume in (7) that A = I,B = diag(λ1, . . . , λn) and to prove that

D (B[k],M1, . . . ,Mn−k) ≤
(

n

k

)

D (B[k], I[n − k])D (I[k],M1, . . . ,Mn−k) .

For any semi-definite positive symmetric matrices C1, . . . , Cn, the polarization formula of the
mixed discriminant is

D(C1, . . . , Cn) =
1

n!

∑

σ∈Sn

det
(

C1
σ(1), . . . , C

n
σ(n)

)

,

where Cj
i denotes the j − th column of Ci (see section 5.5 of [19]). Taking C1 = · · · = Ck = B

and for i ∈ {k + 1, . . . , n}, Ci =Mi−k and expanding the discriminants, one has

D(B[k],M1, . . . ,Mn−k) =
1

n!

∑

|K|=k

k!
∏

j∈K
λj

∑

σ∈Sn

det

{σ(1),...,σ(k)}=K

(

(

MKc

σ(k+1)

)1
, . . . ,

(

MKc

σ(n)

)n−k
)

=
1
(n
k

)

∑

|K|=k

∏

j∈K
λj D(MKc

1 , . . . ,MKc

n−k),

where for any K subset of [n] := {1, . . . , n} of cardinality k and any n-dimensional matrix M ,
MKc

is the (n−k) dimensional matrix defined by MKc

= (Mi,j)i,j∈[n]rK and D(MKc

1 , . . . ,MKc

n−k)
their mixed discriminant in dimension n− k. In the same way, we have,

D(I[k],M1, . . . ,Mn−k) =
1
(n
k

)

∑

|K|=k

D(MKc

1 , . . . ,MKc

n−k)

and D(I[k], B[n − k]) =
1
(

n
k

)

∑

|J |=k

∏

j∈J
λj.

It follows that
(

n

k

)

D(I[n− k], B[k])D(I[k],M1, . . . ,Mn−k) =
1
(n
k

)

∑

|J |=k

∏

j∈J
λj
∑

|K|=k

D(MKc

1 , . . . ,MKc

n−k)

≥ 1
(n
k

)

∑

|K|=k

∏

j∈K
λj(M

Kc

1 , . . . ,MKc

n−k)

= D(B[k],M1, . . . ,Mn−k).
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Hence, the case m = 1 is proved.
Induction step: Let us assume that inequality (8) is true for m − 1. We can assume that
A = I,Bm = diag(δ1, . . . , δn) and we need to prove that

(n− im)!

i1! . . . im−1!(n− |i|)!
∑

|Jm|=im

∏

j∈Jm
δj D

(

B
Jc
m

1 [i1], . . . , B
Jc
m

m−1[im−1],M
Jc
m

1 , . . . ,M
Jc
m

n−|i|

)

≤
∑

|J |=|i|
D(MJc

1 , . . . ,MJc

n−|i|)
m
∏

k=1

∑

|Jk|=ik

det(Bjk
k )

=
∑

|Jm|=im

∏

j∈Jm
δj
∑

|J |=|i|
D(MJc

1 , . . . ,MJc

n−|i|)
m−1
∏

k=1

∑

|Jk|=ik

det(Bjk
k ).

Thus, by comparing term by term, it is enough to prove that for each Jm,

(n− im)!

i1! . . . im−1!(n− |i|)!D(B
Jc
m

1 [i1], . . . , B
Jc
m

m−1[im−1],M
Jc
m

1 , . . . ,M
Jc
m

n−|i|)

≤
∑

|J |=|i|
D(MJc

1 , . . . ,MJc

n−|i|)
m−1
∏

k=1

∑

|Jk|=ik

det(Bjk
k ). (9)

But the induction allows to say that, for such a fixed Jm,

(n− im)!

i1! . . . im−1!(n− |i|)!D(B
Jc
m

1 [i1], . . . , B
Jc
m

m−1[im−1],M
Jc
m

1 , . . . ,M
Jc
m

n−|i|)

≤
∑

|J |=|i|
Jc⊂Jc

m

D(MJc

1 , . . . ,MJc

n−|i|)
m−1
∏

k=1

∑

|Jk|=ik
Jk⊂Jc

m

det(Bjk
k ),

which implies (9). ✷

Remark 2. The method that we have used in the previous proof allows to answer positively to
the Remark 3.6 in [16] where the author conjectured that for |i| ≤ n and for any semi-definite
positive symmetric matrices A,B1, . . . , Bm,

det(A)m−1D (B1[i1], . . . , Bm[im], A[n − |i|]) ≤ (n!)m−1(n− |i|)!
∏m

j=1(n− ij)!

m
∏

k=1

D (Bk[ik], A[n − ik]) .

Theorem 3. Let m ≥ 1, n ≥ 2 and |i| := i1 + · · · + im ≤ n be integers. Then, for any convex
bodies A,B1, . . . , Bm, K1, . . . ,Kn−|i| in Rn,

|i|!
i1! . . . im!

|A|mV (B1[i1], . . . , Bm[im],K1, . . . ,Kn−|i|)

≤ V (K1, . . . ,Kn−|i|, A[|i|])
m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]). (10)

Proof: We follow the method of Alesker, Dar and Milman [1], introduced in this context by
Lehmann and Xiao [16]. Let γn be the gaussian measure on R

n and for any convex body K,
U(K) be the uniform distribution on K. By Brenier’s theorem [7, 22], for k = 1, . . . ,m, there
exists a convex function fk such that ∇fk pushes forward γn onto U(Bk). Then ∇fk(Rn) = B,

|Bk| =
∫

Rn

det(∇2fk), (11)
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and for j = 1, . . . , n − |i|, there exists hj such that ∇hj pushes forward γn onto U(Kj). It was
proved in [1] that if ∇g1 and ∇g2 are two Brenier’s maps, then

∇g1(Rn) +∇g2(Rn) = (∇g1 +∇g2)(Rn).

So, equality (11) also holds for Minkowski sums and therefore for mixed volume. Hence

V (B1[i1], . . . , Bm[im],K1, . . . ,Kn−|i|) =
∫

Rn

ϕ(x)dx,

where ϕ = D(∇2f1[i1], . . . ,∇2fm[im],∇2h1, . . . ,∇2hn−|i|). If
∫

ϕ = 0 the theorem is proved, so,

we assume that
∫

ϕ 6= 0. Let µ be the probability measure having density dµ
dx = 1∫

ϕ
ϕ(x). There

exists a convex function fA such that ∇fA pushes forward µ onto U(A). Since Brenier’s map
satisfies the Monge-Ampère equation (see Subsection 4.1.1 of [22]), one has

|A|ϕ(x)∫

ϕ
= det(∇2fA(x)) µ− almost everywhere in R

n. (12)

Let ψ = D(∇2fA[n− |i|]∇2h1, . . . ,∇2hn−|i|), using Hölder inequality, we get that

(

n

|i|

)

V (K1, . . . ,Kn−|i|, A[|i|])
m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik])

=

(

n

|i|

)
∫

Rn

ψ(x)dx
m
∏

k=1

∫

Rn

(

n

ik

)

D(∇2fA(x)[n− im]∇2fk(x)[im])dx

≥





∫

Rn

(

(

n

|i|

)

ψ(x)

m
∏

k=1

(

n

ik

)

D(∇2fA(x)[n− im]∇2fk(x)[im])

)
1

m+1

dx





m+1

.

The inequality (8) in Theorem 1 allows to get





∫

Rn

(

(

n

|i|

)

ψ(x)

m
∏

k=1

(

n

ik

)

D(∇2fA(x)[n − im]∇2fk(x)[im])

)
1

m+1

dx





m+1

≥
[

∫

Rn

(

n!

i1! . . . im!(n − |i|)! det
(

∇2fA(x)
)m × ϕ(x)

)
1

m+1

dx

]m+1

=
n!

i1! . . . im!(n− |i|)!V (B1[i1], . . . , Bm[im],K1, . . . ,Kn−|i|))|A|m,

by taking into account the equality (12). ✷

Corollary 4. Let 1 ≤ m ≤ n , |i| := i1 + · · ·+ im ≤ n be integers and A,B1, . . . , Bm be convex
bodies in R

n. Then, for any j ∈ {1, . . . ,m},
(|i| − ij)!n!

i1! . . . im!(n − ij)!
V (B1[i1], . . . , Bm[im], A[n − |i|])|A|m−1 ≤

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]). (13)

Proof: Without loss of generality we can assume that j = m. Replacing m by m−1 in (10) gives

(|i| − im)!

i1! . . . im−1!
|A|m−1V (B1[i1], . . . , Bm−1[im−1],K1, . . . ,Kn−|i|+im)

≤ V (K1, . . . ,Kn−|i|+im, A[|i|])
m−1
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]). (14)

We obtain the desired result by taking K1 = · · · = Kim = Bm in and Kim+1 = · · · = Kn−|i|+im =

A in (14) and by multiplying both sides by
( n
im

)

. ✷
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Remark 5. Notice that Corollary 4 improves the following Xiao’s inequality [23]: for any integers
2 ≤ m ≤ n, |i| := i1+· · ·+im ≤ n and convex bodies A,B1, . . . , Bm in Rn, for any j ∈ {1, . . . ,m},

(

n

ij

)

V (B1[i1], . . . , Bm[im], A[n − |i|])|A|m−1 ≤
m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]).

(Similars results are given in [13] with A being the Euclidean ball.)

3. Bézout inequality for mixed volumes.

In this section, we present upper bounds on the constant bn,r defined in (3). Here, our first
argument is Lemma 7 below which is a generalization of Fenchel’s inequality (5) and the second
argument uses Corollary 4.

Theorem 6. Let 2 ≤ r ≤ n be two integers and bn,r be the best constant such that for all
convex bodies A,B1, . . . , Br in Rn

|A|r−1V (B1, . . . , Br, A[n − r]) ≤ bn,r

r
∏

i=1

V (Bi, A[n − 1]).

Then, bn,r ≤ min
k∈{1,...,r}

{

2
k(k−1)

2
nr−k

(r−k)!

}

.

Before proving this theorem, we introduce the following generalization of Fenchel’s inequality
(5).

Lemma 7. Let 1 ≤ m ≤ n be two integers and A,B1, . . . , Bm be convex bodies in R
n. Then

|A|V (B1, . . . , Bm, A[n −m]) ≤ 2m−1V (B1, . . . , Bm−1, A[n −m+ 1])V (Bm, A[n − 1]) (15)

and

|A|m−1V (B1, . . . , Bm, A[n−m]) ≤ 2
m(m−1)

2

m
∏

i=1

V (Bi, A[n − 1]). (16)

Proof: We prove (15) by induction on m. The case m = 1 is trivial and the case m = 2 is
Fenchel’s inequality (5). Let us assume that (15) is verified for m−1. From Fenchel’s inequality,

V (B1, . . . , Bm, A[n −m])V (B1, . . . , Bm−2, A[n−m+ 2])

≤ 2V (B1, . . . , Bm−1, A[n −m+ 1])V (B1, . . . , Bm−2, Bm, A[n−m+ 1]). (17)

By the induction hypothesis, we have

|A|V (B1, . . . , Bm−2, Bm, A[n−m+ 1])

≤ 2m−2V (B1, . . . , Bm−2, A[n −m+ 2])V (Bm, A[n− 1]). (18)

We end the proof by multiplying term by term (17) and (18).
The proof of (16) follows from (15) by induction on m. ✷

Proof of theorem 6: First we remark that, for any k ∈ {1, . . . , r}, by taking in (10) i1 = · · · =
im = 1,m = r − k and for 1 ≤ j ≤ k,Kj = Br−k+j, for k ≤ j ≤ n− |i|},Kj = A, we get that

V (B1, . . . , Br, A[n − r])|A|r−k ≤ nr−k

(r − k)!
V (Br−k+1, . . . , Br, A[n − k])

r−k
∏

i=1

V (Bi, A[n − 1]),

According to (16), we have

V (Br−k+1, . . . , Br, A[n − k])|A|k−1 ≤ 2
k(k−1)

2

r
∏

i=r−k+1

V (Bi, A[n − 1]),

Hence the result follows. ✷
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4. Bézout inequality for Minkowski sums.

In [17], Ruzsa showed that for any compacts sets A,B1, . . . , Bm ⊆ R
n and any ǫ > 0, if |A| 6= 0,

there exists a compact set A′ ⊂ A such that

|A|m|A′ +B1 + · · ·+Bm| ≤ (1 + ǫ)|A′|
m
∏

k=1

|A+Bk|. (19)

It was noticed in [11] that (19) gives

|A|m−1|B1 + · · ·+Bm| ≤
m
∏

k=1

|A+Bk|. (20)

Notice that our methods allows to give a new simple proof of (20). Indeed, if |i| = n, inequality
(10) becomes

n!

i1! . . . im!
|A|m−1V (B1[i1], . . . , Bm[im]) ≤

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]) (21)

and since

|A|m−1|B1 + · · ·+Bm| =
∑

i1+···+im=n

n!

i1! . . . im!
|A|m−1V (B1[i1], . . . , Bm[im]), (22)

m
∏

k=1

|A+Bk| =
n
∑

i1=1

· · ·
n
∑

im=1

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]). (23)

According to (21), each term of the right side of (22) is less than a corresponding term of the
right side of (23). Hence, we get a new proof of (20). Another way of proving (20) is to first
show that for all m ≥ 1 and any semi-definite positive symmetric matrices A,B1, . . . , Bm,

det(A)m−1 det(B1 + · · · +Bm) ≤
m
∏

k=1

det(A+Bk),

by extending each term into mixed discriminants like in (22) and (23) and applying Theorem 1.
Then we use again the same optimal transport method.

Theorem 8. Let m,n ≥ 1, two integers and cn,m the best positive constant such that

|A|m−1|A+B1 + · · · +Bm| ≤ cn,m

m
∏

k=1

|A+Bk|, (24)

for any convex bodies A,B1, . . . , Bm ⊂ R
n. Then

(i)

cn,m ≤
(

1− xm
1−mxm

)n

< 2n,

where xm is the unique real root of Pr(x) = (1−mx)m − (m− 1)m−1xm−1(1− x).
(ii)

cn,m ≥ e
√

2πn(e− 1)
g(n,m)−(n+ 1

2
),

where

g(n,m) =

[

1− 1

m− 1

(

m− 1

m

)m]m−1

.

Furthermore, 4
3 ≤ g(n,m) < ee

−1

Note that Theorem 8 does not follow from (19) and the sets in (24) are convex bodies.

Remark 9. Here we give some simpler upper bounds of cn,m
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(i) for fixed n, (cn,m)m≥2 is a increasing sequence with respect to m, 1 ≤ cn,2 ≤ cn,m ≤
cn,m+1 ≤ (cn,2)

m and for q > 0, we have cn,m+q ≤ cn,mcn,q+1. In fact, in (24), for m ≥ 3, if
Bm = {0}, we get

|A|m−2 |A+B1 + · · ·+Bm−1| ≤ cn,m

m−1
∏

k=1

|A+Bk|,

hence, cn,m−1 ≤ cn,m. If Bk = {0} for all 1 ≤ k ≤ m then we obtain equality in (24) with
cn,m = 1, so cn,m ≥ 1. It is shown in [11] that 1 = c2,2 ≤ cn,2 by using (5). In (24), if we
replace Bm by Bm + · · ·+Bm+q, we get

|A|m−1 |A+B1 + · · ·+Bm+q| ≤ cn,m|A+Bm + · · ·+Bm+q|
m−1
∏

k=1

|A+Bk|. (25)

On the other hand, we have

|A|q |A+Bm + · · · +Bm+q| ≤ cn,q+1

m+q
∏

k=m

|A+Bk|. (26)

Thus, (25) and (26) allow to say that cn,m+q ≤ cn,mcn,q+1, in particular, cn,m ≤ (cn,2)
m−1.

(ii) We also remark that a weaker bound for cn,m can be obtained by applying (20) to 1
mA+Bi

instead of Bi for i ∈ {1, . . . ,m} and
(

1− 1
m

)

A instead of A. This gives

|A|m−1|A+B1 + · · · +Bm| ≤
[

(

1 +
1

m− 1

)m−1
]n m
∏

k=1

|A+Bk|,

so cn,m ≤
[

(

1 + 1
m−1

)m−1
]n

≤ en.

(iii) We extend again as sums both sides of (24) like (22) and (23) and compare each term of

|A|m−1|A+ B1 + · · ·+ Bm| by the term of the same index in
m
∏

k=1

|A +Bk|. It follows that

cn,m ≤ dn,m where dn,m satisfies for all |i| := i1 + · · ·+ im ≤ n

n!

i1! . . . im!(n − |i|)! |A|
mV (A[n − |i|], B1[i1], . . . , Bm[im]) ≤ dn,m

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]).

In (10), if K1 = · · · = Kn−|i| = A, it becomes

n!

i1! . . . im!(n − |i|)! |A|
m−1V (A[n− |i|], B1[i1], . . . , Bm[im]) ≤

(

n

|i|

) m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]),

so any dn,m such that
(

n
|i|
)

≤ dn,m for all |i| ≤ n gives an upper bound for cn,m, hence

cn,m ≤ max
|i|≤n

(

n

|i|

)

=

(

n

⌊n2 ⌋

)

< 2n.

Proof of Theorem 8 (i) (upper bound): The following idea comes from [11] where the authors prove
that cn,2 ≤ ϕn (where ϕ is the golden ratio). Similarly to computations (iii) from Remark 9, we
recall that after expending both sides of (24) and comparing term by term, one has cn,m ≤ dn,m
where dn,m satisfies for all |i| := i1 + · · ·+ im ≤ n

n!

i1! . . . im!(n − |i|)! |A|
mV (A[n − |i|], B1[i1], . . . , Bm[im]) ≤ dn,m

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]),

thus

|A|mV (A[n − |i|], B1[i1], . . . , Bm[im]) ≤ i1! . . . im!(n− |i|)!
n!

dn,m

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]).
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For any j ∈ {1, . . . ,m}, (13) can be rewritten as

V (B1[i1], . . . , Bm[im], A[n − |i|])|A|m−1 ≤ i1! . . . im!(n− ij)!

(|i| − ij)!n!

m
∏

k=1

(

n

ik

)

V (Bk[ik], A[n − ik]).

Therefore, for a fixed j ∈ {1, . . . ,m}, to obtain an upper bound on cn,m, it is enough to find
dn,m such that for any |i| ≤ n

i1! . . . im!(n − ij)!

(|i| − ij)!n!
≤ i1! . . . im!(n − |i|)!

n!
dn,m,

then, max
|i|≤n

(n−ij
|i|−ij

)

≤ dn,m and it follow that

cn,m ≤ max
|i|≤n

min
j∈{1,...,m}

(

n− ij
|i| − ij

)

.

Note that max
|i|≤n

min
j∈{1,...,m}

(n−ij
|i|−ij

)

≤ max
|i|≤n

(n
|i|
)

< 2n as claimed in Remark 9. For any j ∈
{1, . . . ,m}, let ij = xjn with xj ≥ 0 and |x| := x1 + · · · + xm ≤ 1. According to Stirling

formula, for any integers k ≤ n, one has
(n
k

)

≤ nn

(n−k)n−kkk
, therefore:

cn,m ≤ max
|x|≤1

min
j∈{1,...,m}

[

(1− xj)
1−xj

(1− |x|)1−|x|(|x| − xj)|x|−xj

]n

.

For |x| ≤ n and j ∈ {1, . . . ,m}, let

Fj(x) =
(1− xj)

1−xj

(1− |x|)1−|x|(|x| − xj)|x|−xj
.

One has ∇2 logFj(x) = −1
1−|x|UU

t where Uj =
√

|x|−xj

1−xj
and Uk = 1/Uj for k 6= j, then, Fj is

log-concave and min log Fj also. Note that min
1≤j≤m

Fj is symmetric with respect to each hyperplane

{xi = xk}, therefore max
|x|≤1

min
j∈{1,...,m}

Fj(x) is reached only if x1 = · · · = xm. As a result, the

problem becomes a simple study of a function having one variable:

cn,m ≤ max
x≤1/m

[

(1− x)1−x

(1−mx)1−mx((m− 1)x)(m−1)x

]n

and this maximum is reached at the unique xm ∈]0, 1/m[ which is the real root of Pr(x) =

(1−mx)m− (m−1)m−1xm−1(1−x). After some simplifications, we get cn,m ≤
(

1−xm

1−mxm

)n
< 2n.

For m = 2, x2 =
5−

√
5

2 and 1−x2
1−2x2

= ϕ (golden ratio), for m = 3 we get that cn,3 < (1.755)n. ✷

For the lower bound of cn,m, many results have been obtained in [2, 3, 9, 11, 10, 20]. For the
case m = 2 we use methods from [2, 10, 11] and extend them to m ≥ 2. The idea is to represent
volumes in (24) as volumes of a projection of A to subspaces of lower dimension and optimize
the lower bound with respect to those dimensions. We remark that (24) is equivalent to

|A|m−1|A+B1 + · · ·+Bm|
m
∏

k=1

|A+Bk|
≤ cn,m.

So any choice of A,B1, . . . , Bm gives a lower bound of cn,m. Let Γ2 be the set of vector subspaces
{E1, E2} such that dim(E1) = i,dim(E2) = j, 0 < i, j ≤ n, i + j > n. It is obtained in [2] that
for any A convex body in Rn,

cn,2 ≥ max
A,Γ2

|A|n|PE1∩E2A|i+j−n

|PE1A|i|PE2A|j
=

( i
i+j−n

)( j
i+j−n

)

( n
i+j−n

) (27)
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where A is a convex body in R
n and PEA is the projection of A onto the subspace E. The

equality case in (27) is reached for a sharp choice of E1, E2 and A. The authors of [11] conclude
that

cn,2 ≥ max
0<i,j≤n
i+j>n

( i
i+j−n

)( j
i+j−n

)

( n
i+j−n

) ≈ 2√
πn

(

4

3

)n

.

By following the same idea, we get a lower bound for cn,m.

Theorem 10. Let α1, . . . , αm ∈ {1, . . . , n} be integers and d = |α| − (m− 1)n > 0. Let A ⊂ R
n

be a convex body and Γm the set of collections of vector subspaces {E1, . . . , Em} such that for
i = 1, . . . ,m, dim(Ei) = αi and E⊥

i ⊂ ⋂j∈[m]r{i}Ej}. Then

cn,m ≥ max
Γm,A convex body

|A|n|P⋂m
i=1 Ei

A|d
∏m

i=1 |PEi
A|αi

. (28)

Proof: Let (e1, . . . , en) be the canonical basis of Rn. For i = 1, . . . ,m, let Bi =
∑

k∈[n]rKi
[0, ek ],

where Ki = {α1 + · · ·+αi−1 + k|1 ≤ k ≤ αi}. Thus, for any i = 1, . . . ,m and any t > 0, one has

|A+ tBi|n ∼
t→∞

tn−αi |PEi
A|αi

and

|A+ tB1 + · · ·+ tBm|n ∼
t→∞

tnm−|α|
∣

∣

∣
P⋂m

i=1 Bi
A
∣

∣

∣

d
.

Let t to infinity, then we get

|A|m−1
n |P⋂m

i=1 Ei
A|d ≤ cn,m

m
∏

i=1

|PEi
A|αi

.

The desired result follows. ✷

Corollary 11. Let α1, . . . , αm ∈ [1, n] be integers and d = |α| − (m− 1)n > 0. Then

cn,m ≥ max
α

∏m
i=1

(

αi

d

)

(n
d

) . (29)

Proof: Let B∞(d) =
∑n

k=n−d+1[−ek, ek]. For i = 1, . . . ,m, let

Ji = [n− α1 + . . . + n− αi−1 + 1 ; n− α1 + . . .+ n− αi],

B1(i) = conv
Ji

(±ek), and Ei = vect{ek, k ∈ [n] r Ji}. If A = conv {∑m
i=1B1(i), B∞(d)}, we get

that

|A| =
m
∏

i=1

|B1(i)| × |B∞(d)|/
(

n

d

)

; |P⋂m
i=1 Ei

A| = |B∞(d)|

and for i = 1, . . . ,m

|PEi
A| =

∏

k∈mr{i}
|B1(k)| × |B∞(d)|/

(

αi

d

)

.

Thus simplifying the volumes we get,

|A|m−1
n |P⋂m

i=1 Ei
A|d

∏m
i=1 |PEi

A|αi

=

∏m
i=1

(αi

d

)

(n
d

)m−1 ,

for all α satisfying the given hypothesis. Hence the result follows. ✷

Proof of Theorem 8 (ii) (lower bound): For the lower bound, Corollary 11 allows to say that

cn,m ≥ max
α>0

d=|α|−(m−1)n>0

∏m
i=1

(αi

d

)

(n
d

)m−1 .
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Now, using the Stirling formula, one has
∏m

i=1

(

αi

d

)

(n
d

)m−1 ≥ 1√
2πd

m
∏

i=1

√

αi

αi − d
× 1

dd

[

√

n− d

n

(n − d)n−d

nn

]m−1 m
∏

i=1

ααi

i

(αi − d)αi−d
eo(1).

For i = 1, . . . ,m, one assume that αi = nxi and d = ny, then y = |x| − (m− 1) and

max
α

(

1

dd

[

(n− d)n−d

nn

]m−1 m
∏

i=1

ααi

i

(αi − d)αi−d

)

= max
x
f(x)n,

where

f(x1, . . . , xm) =
(1− y)(1−y)(m−1)

yy

m
∏

i=1

xxi

i

(xi − y)xi−y
.

By studying this function, we easily find that max f = xm

y > 1 where

x = (m− 1)

[

m−
(

m− 1

m

)m−1
]−1

and y = m(x− 1) + 1. It follows that

cn,m ≥ max

(

xm

y

)n 1√
2πny

(
√

1− y)m−1

(
√

x

x− y

)m

(1 + o(1))

=
1√
2πn

(

xm

y

)n+1/2
√

(1− y)m−1

(x− y)m
(1 + o(1)).

Besides, xm

y =
[

1− 1
m−1

(

m−1
m

)m
]1−m

is a increasing sequence with respect to m while

(1− y)m−1

(x− y)m
=

(

m
m−1

)m−1
− 1

m

1− 1
m −

(

m−1
m

)m is decreasing.

Thus

e√
e− 1

(

4

3

)n+1/2

<

(

xm

y

)n+1/2
√

(1− y)m−1

(x− y)m
<

√
6(ee

−1
)n+1/2,

it leads to

cn,m ≥ 1√
2πn

e√
e− 1

(

4

3

)n+1/2

.

For m = 2, cn,2 ≥ 2√
πn

(

4
3

)n
(1 + o(1)) which was found in [11]. For m = 3, we find

c(n, 3) ≥ 81

4
√
115

√
πn

(

729

529

)n

(1 + o(1)) ≈ 1.89√
πn

(1.378)n.
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