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ALGEBRAIC SURFACES VIA THE GRAVITATIONAL MONOPOLE EQUATIONS

We re-proved some theorems of Complex Algebraic Surfaces using the Gravitational Monopole equations.

Theorem 0.1. Let M be a Kähler-type complex surface with Kod(M ) = 0. Then Y (M ) = 0. Theorem 0.2. Let M be the underlying 4-manifold of a complex algebraic surface of Kodaira dimension > 0. Then M admits a Riemannian metric of scalar curvature 0 if M is minimal and has Kodaira dimension 0. In particular, the Yamabe invariant Y (M ) is unachieved whenever Kod(M ) = 1. Theorem 0.3. Let (M, J) be any compact complex surface. If Y (M ) < 0, then M is either of general type or of type V II.

Introduction

We gave new proofs of the following theorems using the Gravitational Monopole equations Theorem 1.1. Let M be a Kähler-type complex surface with Kod(M ) = 0. Then Y (M ) = 0. Theorem 1.2. Let M be the underlying 4-manifold of a complex algebraic surface of Kodaira dimension > 0. Then M admits a Riemannian metric of scalar curvature 0 if M is minimal and has Kodaira dimension 0. In particular, the Yamabe invariant Y (M ) is unachieved whenever Kod(M ) = 1.

Theorem 1.3. Let (M, J) be any compact complex surface. If Y (M ) < 0, then M is either of general type or of type V II.

The Gravitational Monopole Equations

In [cf.2] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fibre at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomprphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c :

T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s.
Definition 2.1. The twisted Dirac operator associated to (E, ∇ E ) is the operator, (2.1)

/ ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j ,
or, c (W + g ) ijkl e i ∧ e j = 1 4 ⟨e k • e l ψ, ψ⟩.

(2.2) 1 2.1. Linearization of Self-Dual (Anti-Self-Dual) Weyl tensors. We recall that the linearization of W ± is given by

(2.3) D : C ∞ Hom(Ω ± , Ω ∓ ) → Ω ± ⊗ Sym so(3) ± .
It is a second-order differential operator. We can rewrite it into the following form:

Linearization of W + : D 2 : Γ(Ω 2 + ⊗ Ω 2 -) = Γ(S 2 -⊗ S 2 + ) π+ --→ Γ(S 4 -) φ A ′ B ′ AB → ∇ A (C ′ ∇ B D ′ φ A ′ B ′ )AB Linearization of W -: D 2 : Γ(Ω 2 -⊗ Ω 2 + ) = Γ(S 2 + ⊗ S 2 -) π- --→ Γ(S 4 + ) φ ABA ′ B ′ → ∇ A ′ (C ∇ B ′ D φ AB)A ′ B ′ (2.4)
Let X be an oriented Riemannian manifold of even dimension 2l and we also assume X is a spin manifold, that is the first and second Stiefel-Whitney classes vanish. We denote by ∧ p the bundle of exterior p-forms with A p = Γ(∧ p ) its space of smooth sections. The Hodge star operator * ∧ p → ∧ 2l-p is defined by,

(2.5) α ∧ * β = (α, β)ω ∈ ∧ 2l
where α, β ∈ ∧ p , (α, β) is the induced inner product on p-forms and ω is the volume form.

From now everything will be 4-dimensional unless otherwise stated. We start with the symmetry of the equations, namely the Lie algebras. The Lie algebra so(4) of the special orthogonal group SO(4) is not simple. It can be decomposed into the direct sum of two copies of the Lie algebra so(3) of the group SO(3):

(2.6) so(4) ∼ = so(3) ⊕ so(3).
In terms of the group theory, one understands the above decomposition corresponds to the fact that the universal covering group of SO(4) is the product of the two copies of SU (2). This fact in quantum mechanics corresponds to ± 1 2 spins of an electron for each factor SU (2). In terms of the geometry of the vector bundles, the decomposition so(4) ∼ = so(3) ⊕ so(3) induces the following decomposition (for a choice of g on X 4 ) for the vector bundle 2 T * X → X,

(2.7) ∧ 2 T * X ∼ = ∧ + ⊕ ∧ -,
as a Whitney sum of two oriented 3-plane bundles. One can choose an oriented orthonormal frame for T * U X for an open set U ⊂ X. One therefore has, (2.8)

∧ ± = Span (e 1 ∧ e 2 ± e 3 ∧ e 4 ), (e 2 ∧ e 3 ± e 1 ∧ e 4 ), (e 3 ∧ e 1 ± e 2 ∧ e 4 ) .

We now use the unique Levi-Civita connection ∇ on ∧ 2 T * X to find a suitable decomposition of the curvature tensor under the action of O(4). The first step towards it is to note that ∇g = 0, this however means that ∇ is covariantly constant, that is ∇ maps sections of ∧ ± into ∧ ± ⊗ T * X; there is no mixed term mapping ∧ + into ∧ -⊗ T * X. The curvature of the Levi-Civita connection defines a section of ∧ 2 T * X ⊗ 2 T * X, correspondingly a decomposition of ∧ 2 T * X ⊗ 2 T * X into four matrix-blocks of size 3 × 3, more precisely, the Riemann curvature tensor defines, in general, a self-adjoint linear transformation R :

∧ 2 → ∧ 2 such that, (2.9) R(e i ∧ e j ) = 1 2 k,l
R ijkl e k ∧ e l , relative to the decomposition ∧ 2 = ∧ + ⊗ ∧ -, the operator R has the following form,

(2.10) R = A B B t C
where, B ∈ Hom(∧ -, ∧ + ) (is the traceless Ricci curvature) 0 Ric, and A ∈ End(∧ + ), that is A is symmetric about its diagonal, that is 

A t = A, similarly for C ∈ End(∧ -) we have C t = C.
R = W + ij x i + ⊗ x j + + W - ij x i -⊗ x j -+ B ij x i + ⊗ x j -+ B t ij x i -⊗ x j + - s 12 (x i + ⊗ x j -+ x i -⊗ x j + ).
If we denote the projection operator by, (2.13)

P ± := 1 2 (1 ± * ) : ∧ → ∧ ± , then, (2.14) W ± = P ± • Rm • P ± - s 12 Id ± 2.
2. The construction of the Elliptic complex. To get an elliptic complex corresponding to the data of the Gravitational monopole equations, we modify the data a little bit. So, we assume, A is a spin connection on the smooth 4-manifold X. ψ is a section of S + , so we relace the Dirac data

ψ ∈ ker(d + d * ) to ψ ∈ ker D A .
In this way, the Dirac operator becomes dependent on A and we get a more general context. Let A be the induced connection on the line bundle L → X. We denote by F A the curvature corresponding to the connection A. We put no restriction on F A . All the restrictions are on the self-dual part of the Weyl tensor of X.

In the case of a line bundle, the gauge group G = M(X, U (1)) as a space of maps is well-defined as it is only dependent on the transition functions. The action of G on the pair (A, ψ) is given in the following way:

(2.15) λ : (A, ψ) → (A -λ -1 dλ, λψ),
and on A by (2.16) A -2iλ -1 dλ.

We verify the following:

(2.17)

D A-λ -1 dλ (λψ) = λD A ψ + dλ • ψ -dλ • ψ.
The self-dual part F + A of the curvature tensor F A also remains invariant (2.18)

F + A-2λ -1 dλ = F + A -2d + (λ -1 dλ) = F + A . Since the metric g ij → g AA ′ BB ′ = ε AB ε A ′ B ′ , corresponding U (1)
-action on the metric is just multiplication by |λ| 2 = 1, therefore W + remains invariant, on the other hand (2.19) ⟨e i e j λψ, λψ⟩ = |λ| 2 ⟨e i e j ψ, ψ⟩ = ⟨e i e j ψ, ψ⟩, as |λ| = 1. Now we study the kernel of the linearized operator

T g W + : T g M → Γ(Sym 2 0 ∧ 2 + ).
The deformations we shall consider will be represented by the first cohomology of the complex

(2.20) Γ(T X) ⊕ Γ(R) τ * -→ Γ(Sym 2 0 ∧ 2 + ) T W + ---→ Γ(Sym 2 0 ∧ 2 + ), where R represents trivial R-bundle over X. Γ(Sym 2 T * X) = T g M = Hom(∧ 2 + , ∧ 2 -)⊕R. But Hom(∧ 2 + , ∧ 2 -) ∼ = ∧ 2 + ⊗ ∧ 2 -.
If we want to mod out the trivial line bundle R then we must work with M/C ∞ + , and the section space Γ(R) is replaced by the orbit space C ∞ + (g).

The problem is not underdetermined as the Gravitational monopole equation (2.2) gives additional restriction on the scalar curvature, that is s = s g < 0, hence a linearization at g gives the following complex

(2.21) Γ(T X) δ * -→ Γ(Sym 2 T * X) T W+⊕Tg ------→ Γ(Sym 2 0 ∧ 2 + ) ⊕ Γ(R). Theorem 2.2. The complex (2.21) is elliptic with index equals to (2.22) 1 2 (29|σ(X)| -15χ(X)),
where χ(X) is the Euler characteristic of X and σ(X) are the signature of X.

By the index theorem for the twisted Dirac operator

(2.23) Index(D A ) = - X ch( √ L) A(X).
The Chern character is known to be

(2.24) ch( √ L) = 2(1 + c 1 (L) 2 + • • • ) the A-genus is (2.25) A(X) = 1 - 1 24 p 1 (X) + • • • , where p 1 (X) is the first-Pontrjagin class. The top degree form of Ch( √ L) A(X) is 1 12 p 1 (X) + c 1 (L) 2 , but 1 3 p 1 (X) = σ, therefore we have the result (2.26) Index(D A ) = c 1 ( √ L) 2 - σ 4 .
Therefore we have the following theorem (see also author's work in [cf.3])

Theorem 2.3. The moduli space of solutions of the Gravitational monopole equation has dimension (assuming the index σ(X) ≥ 0)

d := 1 2 (29σ(X) -15χ(X)) + c 1 ( √ L) 2 - σ 4 = (c 1 ( √ L)) 2 + 57σ(X) -30χ(X) 4 
(2.27) This, however, corresponds to the fact that the index of the linearized equation and corresponding elliptic complex of the Gravitational Monopole equation is non-negative, namely

If √ L is globally defined, then, d Global √ L := (c 1 ( √ L)) 2 + 57σ(X) -30χ(X) 4 = 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X) 4 = 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X) (2.
(2.30) (c 1 ( √ L)) 2 + 57σ(X) -30χ(X) 4 ,
for a global choice of √ L (if it exists), the above equals to

(2.31) 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X) .
where χ(M ) and σ(M ) are the Euler characteristics and index of the four-manifold M .

Let us now assume M is a complex surface the Hirzebruch signature formula implies

(2.32) 2χ(Σ) + 3σ(Σ) = K 2 Σ . Thus, for a basic class (2.4) (c 1 ( √ L) 2 ≥ 30χ(X) -57σ(X) 4 = 3 4 (10χ(X) -19σ(X)) using K 2 Σ = 2χ(Σ) + 3σ(Σ), we get, (c 1 ( √ L) 2 ≥ 3 4 5K 2 Σ -15σ(Σ) -19σ(Σ) = 3 4 5K 2 Σ -34σ(Σ) .
(2.33)

We will use the above results in the following section by implicitly assuming G > 0. In a future paper, we shall discuss various restrictions on G and its Complex Geometric consequences on the theory of complex surfaces.

Rephrasing the monopole equation

The Gravitational Monopole equation can be re-phrased as

(3.1) i(W + ) = q(ψ) :=, / ∂ A ψ = 0,
as one can see, our scheme for the Gravitational monopole changed a bit from the original [cf.2] for the sake of calculating the index of the corresponding elliptical complex [cf.3]. We twist the original bundle of spinors as appeared in [cf.2] by L or by some appropriate power of L to get a Dirac operator that annihilates ψ and may specialize to d + d * . Actually, the twisting does not change the main fact that we need only strictly negative scalar curvature for the Gravitational Monopoles. The following proposition says, as long as we have the Dirac operator, the index of the Dirac operator vanishes for the spin compact manifolds with non-negative scalar curvature. Compared to [cf.2] we pull out the imaginary i = √ -1 out of q(ψ) for the sake of calculations, it is equivalent to the original formulation of [cf.2]. Proposition 1. Let M be a compact spin manifold with non-negative scalar curvature, and strictly positive at least one point, then the kernel of the Dirac operator on the spin bundle S vanishes, in particular, the index is zero

Proof. Let D = d + d * then for f ∈ Γ(M, S) (3.2) M ⟨Df, f ⟩dµ = M ∥∇f ∥ 2 dµ + 1 4 M s M ∥f ∥ 2 dµ. Df = 0 =⇒ ∇f = 0, s M f = 0. Therefore ⟨f, f ⟩ is constant on M so f = 0.
The same proof applies to / ∂ A . □

Applications of the Gravitational Monopole equations on the Algebraic Surfaces

Let (M, J, g) be a compact Kähler surface for which the Kähler class [ω] such that c 1 (L) • ω < 0. The relationship c 1 (L) • ω < 0 informally implies the scalar curvature s of (M, g) be negative "on average," due to the Gauss-Bonnet type formula As the intersection form is non-degenerate, every polarization determines an orthogonal complement H - with respect to the intersection form. We also assume the intersection form is negative-definite on this orthogonal complement, that is on H -. Therefore, polarizations of the 4-manifold M and of the reverseoriented manifold 4-manifold M in one-to-one correspondence. Let us define b ± := dim H ± , and b ± are homeomorphism invariant. The signature σ = b + -b -. If a polarization is given, then we have the following canonical decomposition

(4.2) H 2 (M, R) = H + ⊕ H -,
so that for any α ∈ H 2 (M, R) there are unique α ± ∈ H ± such that α = α + + α -. We will say that a Riemannian metric g is adapted to the polarization H ± if H ± (g) = H ± . A polarization will be called a metric polarization if there is at least one metric adapted to it. For a Kähler manifold, we say that the polarization H + (g) of Kähler metric determines the Kähler class [ω] if the complex structure J and total volume 1 2 ω ∧ ω are specified. The Hodge * -operator is conformally invariant on middle-dimensional forms, hence polarization is conformally invariant; that is, H + (g) = H + (f g) for any smooth positive function f . That is any result about metrics adapted to a fixed polarization will also imply results about global conformal invariants.

Definition 4.2. [Special Polarisation]

We call a harmonic self-dual 2-form ω ∈ H 2 + (M ) on a Gravitational Monopole (M, g) specially polarized if the following equality is allowed, namely there is a ψ ∈ Γ(M, S + ) and satisfies the Gravitational monopole equation with |ω| 2 = |ψ| 2 . Theorem 4.3. Let (M, H + ) be a polarized smooth compact oriented 4-manifold, and suppose that there is a Spin C -structure c on M . let c 1 (L) ∈ H 2 (M, R) denote the anti-canonical class of this structure, and let c + 1 be its orthogonal projection to H + with respect to the intersection form. Then every H + -adapted Riemannian metric g satisfies

(4.3) 1 72π 2 M s 2 ≥ (c 1 (L)) 2 = 2χ + 3σ.
Proof. If X is harmonic on a Riemannian manifold, then if we denote by R the Weitzenboch operator, then

(4.4) 0 = 1 2 ∆|X| 2 + |∇X| 2 + ⟨RX, X⟩.
Similarly, for a Harmonic Weyl tensor, we get for the self-dual part W + the following the Weitzenboch formula (Besse, Proposition 16.73, Page 454, [cf.1])

(4.5) ∆|W + | 2 = -2|∇W + | 2 -s|W + | 2 + 36det ∧ + W +
In the following we assume the manifold is specially polarised (see the definition (4.2)), that is the existence of a harmonic self-dual 2-form ω ∈ H 2 + (M 4 ) such that |ω| 2 = |ψ| 2 , and corresponding Witzenböck formula [cf.6] gives

(4.6) 1 2 ∆|ω| 2 = |∇ω| 2 + 1 3 s|ω| 2 -2W + (ω, ω). 0 ≤ ∆|ω| 2 = 2⟨∇ * ∇ω, ω⟩ -2⟨∇ω, ∇ω⟩ ≤ 2⟨∇ * ∇ω, ω⟩ = - 2 3 s|ω| 2 + 4⟨W + (ω, ω)Φ, Φ⟩ = - 2 3 s|ω| 2 -4 • |Φ| 4 2 = - 2 3 s|ω| 2 -2 • |Φ| 4 = -s|ω| 2 -3 • |Φ| 2
Using the condition

|ω| 2 = |Φ| 2 we get 3|Φ| 2 + s ≤ 0 =⇒ |Φ| 2 ≤ - s 3 (4.7) 
Therefore we have by using (4.12) (4.8)

|W + | 2 = 1 8 |Φ| 4 ≤ s 2 72 .
So, (4.8) with adjunction of (4.17

+ 3σ = p 1 (L) = 1 8π 2 M (|W + | 2 -|W -| 2 )dµ ≤ 1 8π 2 M |W + | 2 ≤ 1 72π 2 M s 2 dµ □ The Lichnerowicz Formula is / ∂ A • / ∂ A (ψ) = ∇ * A ∇ A (ψ) + s 4 ψ + F A 2 ψ i.e., 0 = ∇ * A ∇ A (ψ) + s 2 ψ + F + A ψ i.e., M ⟨F + A ψ, ψ⟩ ≥ M -s 2 |ψ| 2 -2 M |∇ψ| 2 i.e., M (f - s 2 )|ψ| 2 ≥ M (-s)|ψ| 2 -2 M |∇ψ| 2 (4.10) ) give (4.9) 2χ 
where we have used the positive ψ-spinor to get F A • ψ = F + A • ψ, and used F + A ψ = f ψ, and s is the scalar curvature.

The Gravitational Monopole equation with Φ ∈ Γ(M, S + ) (4.11) i(W + ) = σ(Φ) := φ, / ∂Φ = 0, implies, (4.12)

|φ| 2 = 1 8 |Φ| 4 , |∇ϕ| 2 ≤ 1 2 |Φ| 2 |∇Φ| 2 .
Assuming φ = ψ and applying (4.12) in (4.10) we get,

M (f - s 2 ) 1 8 |Φ| 4 ≥ M (-s) 1 8 |Φ| 4 -2 M 1 2 |Φ| 2 |∇Φ| 2 M (f - s 2 )|Φ| 4 ≥ M (-s)|Φ| 4 -8 M |Φ| 2 |∇Φ| 2 (4.13)
The Witzenböck formula [cf.6] and (4.12) implies (Besse, Proposition 16.73, Page 454, [cf.1]) 

∆|W + | 2 = -2|∇W + | 2 -s|W + | 2 + 36det ∧ + W + 0 ≤ -2 • 1 2 |Φ| 2 |∇Φ| 2 -s 1 8 |Φ| 4 + 36det ∧ + W + -8|Φ|
(L) = 1 8π 2 M (|W + | 2 -|W -| 2 ) ≤ 1 8π 2 M (|W + | 2 + |W -| 2 ) ≤ 1 8π 2 M (|W + + W -| 2 ) = 1 8π 2 M |W | 2 (4.16) also 2χ + 3σ = p 1 (L) = 1 8π 2 M (|W + | 2 -|W -| 2 ) ≤ 1 8π 2 M |W + | 2 (4.17)
We have the following estimate on det ∧ + W + by using the Weitzenböck formula (4.14), 

∆|W + | 2 = -2|∇W + | 2 -s|W + | 2 + 36det ∧ + W + i.e., 0 = -s|W + | 2 + 36det ∧ + W + i.e., 36det ∧ + W + = s|W + | 2 ≤ s • s 2 72 = s 3 72 . ( 4 
(f - s 2 )|Φ| 4 |dµ ≥ 36 M |det ∧ + W + |dµ ≥ M |s 3 /9|dµ Now (4.22) | M (f - s 2 )|Φ| 4 | ≥ 36 M |det ∧ + W + | ≥ M |Φ| 6 dµ
By the Hölder inequality, we thus have

M |(f - s 2 )| 3 dµ 1/3 M (|Φ| 4 ) 3/2 dµ 2/3 ≥ M |Φ| 6 dµ i.e., M |(f - s 2 )| 3 dµ 1/3 M |Φ| 6 dµ 2/3 ≥ M |Φ| 6 dµ (4.23) As Φ ̸ = 0, we get M |(f - s 2 )| 3 dµ ≥ M |Φ| 6 dµ. (4.24)
Another application of the Hölder inequality gives us the following estimate (V = V olume (M, g)), 

M |Φ| 6 dµ ≥ V -1/2 M |Φ| 4 dµ 3/2 ≥ V -1/2 8 M |W + | 2 dµ 3/2 ≥ V -1/2 32π 2 (c 2 1 -2c 2 ) 3/2 = V -1/2 32π 2 p 1 3/2 = V -1/2 32π 2 (2χ + 3σ) 3/2
V ̸ = 0, M |(f - s 2 )| 3 dµ ≥ V -1/2 32π 2 (2χ + 3σ) 3/2 i.e., V 1/2 M |(f - s 2 )| 3 dµ ≥ 32π 2 (2χ + 3σ) 3/2 V 1/3 M |(f - s 2 )| 3 dµ 2/3 ≥ 32π 2 (2χ + 3σ) ≥ 32π 2 (c + 1 ) 2 . (4.26)
Hence, for a choice of a basic class, we get the following theorem Theorem 4.4. For a fixed basic class, the following holds then above computation implies c 1 to be anti-self-dual with respect to any scalar-flat metric; thus (c 1 ) 2 < 0, with equality if and only if f c 1 = 0 in real cohomology. Hence c 1 is a torsion class (loosely, vector bundle that correspond to the Chern class are supported on submanifolds, that is in this particular case, over curves C in the surface M ) and therefore the surface M must be a minimal surface of Kodaira dimension 0. □ Also, Theorem 4.8. Let (M, J) be any compact complex surface. If Y (M ) < 0, then M is either of general type or of type V II.

(4.27) V 1/3 M |(f - s 2 )| 3 dµ 2/3 ≥ 32π 2 (c + 1 ) 2 .
The above Theorems had also been proved by LeBrun in [cf.7] using the Seiberg-Witten theory.
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 231 The invariants. In reference[cf.3] the author calculated formally the dimension of the moduli space of solutions of the Gravitational Monopole equation, and the consequent subsection ( §2.L)) 2 + 57σ(X) -30χ(X)Since we now have the moduli space of solutions of Gravitational Monopole equation (2.2) modulo the action of the Gauge group Aut( √ L) which is just U (1), we can define the Gravitational invariant G which assigns an integer to each collection (L, ξ, [g]) with L is the defining line-bundle, ξ the corresponding Spin Cstructure, and [g] the conformal class of metric on M . The moduli space M(L, ξ, [g]) is oriented with respect to a choice of an orientation of H 1 (M ; R) and H 2 + (M ; R), more precisely, we need to choose an orientation of H 1 (M ; R) ⊕ H 2 + (M ; R). Definition 2.4. [The basic class] We call (L, ξ, [g]) a basic class if G > 0

1 •

 1 [ω]. Definition 4.1. [Polarizations] Let M be a smooth compact oriented 4-manifold. A polarization of M is a maximal linear subspace H + ⊂ H 2 (M, R) for which the restriction of the intersection form is positivedefinite.

  24) and (4.25) together gives with volume

Theorem 4 . 5 .Theorem 4 . 6 .

 4546 [cf.7] Any complex elliptic surface M has Y (M ) ≥ 0.Therefore Let M be a Kähler-type complex surface with Kod(M ) = 0. Then Y (M ) = 0.Proof. Any surface of Kodaira dimension 0 or 1 is deformation-equivalent to an elliptic surface [cf.8],[cf.9], and therefore Y (M ) ≥ 0 by the Theorem (4.5). But if M is of Ka ḧler type, solutions of Gravitational Monopole equations with a conjunction of the Witzenböck formula asserts that there is no metric of positive scalar curvature on M , so that Y (M ) ≤ 0. Hence Y (M ) = 0, hence proved. □ Theorem 4.7. Let M be the underlying 4-manifold of a complex algebraic surface of Kodaira dimension > 0. Then M admits a Riemannian metric of scalar curvature 0 if M is minimal and has Kodaira dimension 0. In particular, the Yamabe invariant Y (M ) is unachieved whenever Kod(M ) = 1.Proof. Any minimal Kähler-type complex surface with Kodaira dimension 0 has vanishing first Chern class, that is c 1 = 0 with coefficients in R, and therefore correspnds to a Ricci-flat Kähler metric by Yau's construction [27] of the Calabi-Yau metric. The metric has scalar curvature zero, that is s = 0, and hence the Yamabe invariant vanishes, that is Y (M ) = 0. Conversely [cf,1], if a manifold with Y (M ) = 0 has a s = 0 metric, then it must be Ricci-flat since otherwise it could be transformed into a metric of positive scalar curvature [cf,1]. In dimension 4M is a complex surface, we have c 2 1 (M ) ≥ 0. But from Theorem (4.4) we deduce, (4.29) M s 2 dµ ≥ 32π 2 (c + 1 ),

  2 |∇Φ| 2 -s|Φ| 4 ≥ -36det ∧ + W +

	(4.14)						
	So, using (4.13) and (4.14) we get,						
	(4.15)	M	(f -	s 2	)|Φ| 4 ≥ -36	M	det ∧ + W +
	An elementary calculation gives						
			2χ + 3σ = p 1