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A METRIC THAT SATISFIES THE GRAVITATIONAL MONOPOLE EQUATIONS-I

We proved the existence of a Gravitational Monopole using Theorem 0.1. Let (M, g, J, ω) be a compact almost Kähler surface with a negative definite signature σ < 0 and c 1 ̸ = 0, c 1 (L) 2 > 0, and (M, J) admits no holomorphic vector fields. Then on these surfaces, we have

and if the inequality is strict, there exist deformations which are strictly almost-Kähler.

The condition ensures that the following theorem holds good Theorem 0.2. The obstruction to the existence of the self-dual Gravitational Monopole metric lies in H 2 (Z, Θ Z,D ). Therefore the vanishing condition H 2 (Z, Θ Z,D ) = 0 and s < 0 will guarantee the existence of the Gravitational Monopole metric.

Introduction

We chose a self-dual metric in 4 dimensions and up to a conformal equivalence we find an obstruction to the deformation of a self-dual metric to a Gravitational Monopole. We find a condition on that guarantees the existence of the Gravitational Monopole metric.

The Gravitational Monopole Equations

In [cf.1] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fibre at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomprphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c : T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s. Definition 2.1. The twisted Dirac operator associated to (E, ∇ E ) is the operator, (2.1)

/ ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j ,
or, c (W + g ) ijkl e i ∧ e j = 1 4 ⟨e k • e l ψ, ψ⟩.

(2.

2)

The Weitzenböck's formula [START_REF] Bavnbek | Elliptic Boundary Problems for Dirac Operators[END_REF]: the decomposition of the Laplace-Beltami operator as a generalized Laplacian is, with the left-Clifford multiplication ϵ l = ext l -int l , and corresponding right Clifford action ϵ r , (2.3)

(d + d * ) 2 = ∆ ∧T * X - ijkl R ijkl ϵ i l ϵ j l ϵ k r ϵ l r + 1 4 s.
Proposition 1. For k ̸ = l, ⟨e k e l ψ, ψ⟩ is purely imaginary.

1 Proposition 2.

(2.4) |⟨e k e l ψ, ψ⟩| 2 = 2|ψ| 4 .

We keep in mind the Seiberg-Witten analysis, and analogously define and get the following definition of Gravitational-Monopole functional, Definition 2.2. The Gravitational-Monopole functional of a pair (ψ, g) is given by,

S(g, ψ) = X | / ∇ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g i.e., S(g, ψ) = X |(d + d * )ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g .
(2.5)

Proposition 3. (2.6) S(g, ψ) = X |∇ψ| 2 + |W + | 2 + s 4 |ψ| 2 + 1 8 |ψ| 4 d(vol) g Proposition 4.
As a direct consequence of (3), if the scalar curvature of X is non-negative, all solutions of (2.2) have ψ ≡ 0.

2.1. Action of Special Orthogonal Group. Let X be an oriented Riemannian manifold of even dimension 2l and we also assume X is a spin manifold, that is the first and second Stiefel-Whitney classes vanish. We denote by ∧ p the bundle of exterior p-forms with A p = Γ(∧ p ) its space of smooth sections. The Hodge star operator * ∧ p → ∧ 2l-p is defined by,

(2.7) α ∧ * β = (α, β)ω ∈ ∧ 2l
where α, β ∈ ∧ p , (α, β) is the induced inner product on p-forms and ω is the volume form.

From now everything will be 4-dimensional unless otherwise stated. We start with the symmetry of the equations, namely the Lie algebras. The Lie algebra so(4) of the special orthogonal group SO(4) is not simple. It can be decomposed into the direct sum of two copies of the Lie algebra so(3) of the group SO(3):

(2.8) so(4) ∼ = so(3) ⊕ so(3).

In terms of the group theory, one understands the above decomposition corresponds to the fact that the universal covering group of SO( 4) is the product of the two copies of SU (2). This fact in quantum mechanics corresponds to ± 1 2 spins of an electron for each factor SU (2). In terms of the geometry of the vector bundles, the decomposition so(4) ∼ = so(3) ⊕ so(3) induces the following decomposition (for a choice of g on X 4 ) for the vector bundle 2 T * X → X,

(2.9) ∧ 2 T * X ∼ = ∧ + ⊕ ∧ -,
as a Whitney sum of two oriented 3-plane bundles. One can choose an oriented orthonormal frame for T * U X for an open set U ⊂ X. One therefore has, (2.10) ∧ ± = Span (e 1 ∧ e 2 ± e 3 ∧ e 4 ), (e 2 ∧ e 3 ± e 1 ∧ e 4 ), (e 3 ∧ e 1 ± e 2 ∧ e 4 ) .

We now use the unique Levi-Civita connection ∇ on ∧ 2 T * X to find a suitable decomposition of the curvature tensor under the action of O(4). The first step towards it is to note that ∇g = 0, this however means that ∇ is covariantly constant, that is ∇ maps sections of ∧ ± into ∧ ± ⊗ T * X; there is no mixed term mapping ∧ + into ∧ -⊗ T * X. The curvature of the Levi-Civita connection defines a section of ∧ 2 T * X ⊗ 2 T * X, correspondingly a decomposition of ∧ 2 T * X ⊗ 2 T * X into four matrix-blocks of size 3 × 3, more precisely, the Riemann curvature tensor defines, in general, a self-adjoint linear transformation R :

∧ 2 → ∧ 2 such that, (2.11) R(e i ∧ e j ) = 1 2 k,l
R ijkl e k ∧ e l , relative to the decomposition ∧ 2 = ∧ + ⊗ ∧ -, the operator R has the following form, (2.12)

R = A B B t C
where, B ∈ Hom(∧ -, ∧ + ) (is the traceless Ricci curvature) 0 Ric, and A ∈ End(∧ + ), that is A is symmetric about its diagonal, that is A t = A, similarly for C ∈ End(∧ -) we have C t = C. This representation of the curvature tensor R gives us a complete decomposition of it into irreducible components, namely

(2.13) R → (Tr A, B, A - 1 3 Tr A W + , C - 1 3 Tr C W - ) T rA = Tr C = 1 4
s where s is the scalar curvature. More elaborately, if the basis of ∧ ± in (2.10) is denoted by {x i ± } 3 i=1 , then the curvature tensor R has the following expansion

(2.14) R = W + ij x i + ⊗ x j + + W - ij x i -⊗ x j -+ B ij x i + ⊗ x j -+ B t ij x i -⊗ x j + - s 12 (x i + ⊗ x j -+ x i -⊗ x j + ).
If we denote the projection operator by, (2.15)

P ± := 1 2 (1 ± * ) : ∧ → ∧ ± , then, (2.16 
)

W ± = P ± • Rm • P ± - s 12 Id ± 2.
2. The construction of the Elliptic complex. To get an elliptic complex corresponding to the data of the Gravitational monopole equations, we modify the data a little bit. So, we assume, A is a spin connection on the smooth 4-manifold X. ψ is a section of S + , so we relace the Dirac data ψ ∈ ker(d + d * ) to ψ ∈ ker D A .

In this way, the Dirac operator becomes dependent on A and we get a more general context. Let A be the induced connection on the line bundle L → X. We denote by F A the curvature corresponding to the connection A. We put no restriction on F A . All the restrictions are on the self-dual part of the Weyl tensor of X.

In the case of a line bundle, the gauge group G = M(X, U (1)) as a space of maps is well-defined as it is only dependent on the transition functions. The action of G on the pair (A, ψ) is given in the following way:

(2.17)

λ : (A, ψ) → (A -λ -1 dλ, λψ),
and on A by

(2.18) A -2iλ -1 dλ.
We verify the following:

(2.19) D A-λ -1 dλ (λψ) = λD A ψ + dλ • ψ -dλ • ψ.
The self-dual part F + A of the curvature tensor F A also remains invariant (2.20)

F + A-2λ -1 dλ = F + A -2d + (λ -1 dλ) = F + A . Since the metric g ij → g AA ′ BB ′ = ε AB ε A ′ B ′ , corresponding U (1)
-action on the metric is just multiplication by |λ| 2 = 1, therefore W + remains invariant, on the other hand (2.21) ⟨e i e j λψ, λψ⟩ = |λ| 2 ⟨e i e j ψ, ψ⟩ = ⟨e i e j ψ, ψ⟩, as |λ| = 1. Now we study the kernel of the linearized operator T g W + : T g M → Γ(Sym 2 0 ∧ 2 + ). The deformations we shall consider will be represented by the first cohomology of the complex

(2.22) Γ(T X) ⊕ Γ(R) τ * -→ Γ(Sym 2 0 ∧ 2 + ) T W + ---→ Γ(Sym 2 0 ∧ 2 + ), where R represents trivial R-bundle over X. Γ(Sym 2 T * X) = T g M = Hom(∧ 2 + , ∧ 2 -)⊕R. But Hom(∧ 2 + , ∧ 2 -) ∼ = ∧ 2 + ⊗ ∧ 2 -.
If we want to mod out the trivial line bundle R then we must work with M/C ∞ + , and the section space Γ(R) is replaced by the orbit space C ∞ + (g). The problem is not underdetermined as the Gravitational monopole equation (2.2) gives additional restriction on the scalar curvature, that is s = s g < 0 [cf.1], hence a linearization at g gives the following complex

(2.23) Γ(T X) δ * -→ Γ(Sym 2 T * X) T W+⊕Tg ------→ Γ(Sym 2 0 ∧ 2 + ) ⊕ Γ(R). Theorem 2.3. The complex (2.23) is elliptic with index equals to (2.24) 1 2 (29|σ(X)| -15χ(X)),
where χ(X) is the Euler characteristic of X and σ(X) are the signature of X.

By the index theorem for the twisted Dirac operator

(2.25) Index(D A ) = - X ch( √ L) A(X).
The Chern character is known to be

(2.26) ch( √ L) = 2(1 + c 1 (L) 2 + • • • ) the A-genus is (2.27) A(X) = 1 - 1 24 p 1 (X) + • • • , where p 1 (X) is the first-Pontrjagin class. The top degree form of ch( √ L) A(X) is 1 12 p 1 (X) + c 1 (L) 2 , but 1 
3 p 1 (X) = σ, therefore we have the result (2.28)

Index(D A ) = c 1 ( √ L) 2 - σ 4 .
We find the following [cf.2])

Theorem 2.4. The moduli space of solutions of the Gravitational monopole equation has dimension (assuming the index σ(X) ≥ 0)

d := 1 2 (29σ(X) -15χ(X)) + c 1 ( √ L) 2 - σ 4 = (c 1 ( √ L)) 2 + 57σ(X) -30χ(X) 4 
(2.29)

If √ L is globally defined, then, d Global √ L := (c 1 ( √ L)) 2 + 57σ(X) -30χ(X) 4 = 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X) 4 = 1 4 (c 1 (L)) 2 + 57σ(X) -30χ(X)
(2.30)

Almost Kähler Manifolds

Proposition 5. Let (M, g, ω, J) be an almost-Kähler structure. Then ω is an anti-self-dual harmonic 2-form ω with

(3.1) |ω| = √ 2.
Proof. As the almost complex structure J is orthogonal with respect to g, there exists an orthonormal basis of the form {e 1 , e 2 = J(e 1 ), e 3 , e 4 = J(e 3 )}. Then the corresponding anti-self-dual 2-form ω is

(3.2) ω := e 1 ∧ e 2 -e 3 ∧ e 4 , |ω| = √ 2.
ω is closed, therefore dω = 0, anti-self-dual, * ω = -ω, hence

(3.3) d * ω = * d * ω = * dω = 0 =⇒ ∆ω = (dd * + d * d)ω = 0. □ Proposition 6.
The scalar curvature of an almost-Kähler self-dual metric is non-positive. Moreover, the scalar curvature is identically zero if and only if the metric is Kähler.

Proof. For an anti-self-dual 2-form ω on an oriented, smooth, compact Riemannian 4-manifold Weitzenböck formula (2.3) with respect to the decomposition of the curvature tensor under the action of SO(4) as in (2.12), (2.13), (2.14) imply (as

W + (ω, •) = 0 for ω anti-self-dual) (3.4) ∆ω = ∇ * ∇ω -2W -(ω, •) + s 3 ω
One takes an inner product with (3.4) and gets

(3.5) ⟨∆ω, ω⟩ = ⟨∇ * ∇ω, ω⟩ -2W -(ω, ω) + s 3 |ω| 2 .
If g is an almost-Kähler, then the corresponding symplectic 2-form ω is harmonic and as shown in the Proposition ( 5 

□

Similarly, in case of the Gravitational Monopoles (2.2), the Proposition (4) implies the following statement:

Proposition 7. The scalar curvature of a Gravitational Monopole is strictly negative.

The following theorem is due to Salamon and can be found in [cf.6].

Theorem 3.1. Let (M, g, J, ω) be an almost-Kähler structure. Then the zero-set of the Nijenhuis tensor N is equal to the zero-set of ∇ω.

Therefore when dω = 0, the zero-set of Nijenhuis tensor N is equal to the zero-set of ∇ω. The following theorem is proved in [cf.7]. Theorem 3.2 (Armstrong). Let (M, J) be a compact smooth 4-manifold with an almost complex structure J. If the Nijenhuis tensor N is nowhere vanishing, then 5χ + 6τ = 0. Theorem 3.3. A compact almost Kähler Gravitational monopole with a nowhere vanishing Nijenhuis tensor can never be Einstein.

Proof. If possible then 5χ + 6σ = 0 =⇒ σ = - 5 6 χ but Hitchin-Thorpe inequality says σ ≤ -2 3 χ = -4 6 χ, so σ can not be simultaneously less or equal than - 4 6 χ and equal to -5 6 χ hence χ = 0 =⇒ W + = s = 0. A contradiction to the definition of Gravitational monopole. □ Proposition 8. Let (M, g, ω, J) be an almost-Hermitian 4-manifold. Then we have

∧ + C = Cω ⊕ ∧ 2,0 ⊕ ∧ 2,0 , ∧ - C = ∧ 1,1 0 (3.8)
where ∧ 1,1 0 is the orthogonal complement of ω in ∧ 1,1 . Proof. For, smooth 4-manifold M admits an almost-complex structure J and a compatible metric g. Then the complex-valued 2-forms decompose as (3.9)

∧ + C T * M = ∧ 2,0 ⊕ ∧ 2,0 ⊕ ∧ 1,1
. Also, on an oriented, smooth 4-manifold, we have the following decomposition holds (3.10)

∧ + C T * M = ∧ 2,+ C ⊕ ∧ 2,- C .
We define an associated 2-form ω by (3.11) ω(v, w) := g(Jv, w).

When dω ̸ = 0 then (M, g, ω, J) is called an almost-Hermitian manifold. Hence the proposition.

□ It is proved in [cf.8]
Theorem 3.4. Let g be a Kähler metric on a complex surface. Then g is self-dual (anti-self-dual) if and only if its scalar curvature s = 0.

The Ricci form ϱ is defined by

(3.12) ϱ(X, Y ) := Ric(JX, Y )
ϱ is a closed real (1, 1)-form. Let K M be the canonical line bundle of M and K -1 M be the dual of K M . The first Chern class is given by

(3.13) c 1 (M ) := c 1 (K -1 M ) = ρ 2π
The volume form dµ is determined by ω,

namely dµ = 1 2 ω ∧ ω. Let φ ∈ ∧ 1,1 then (8) implies (3.14) φ = 1 2 ⟨φ, ω⟩ω + φ 0 , φ 0 ∈ ∧ 1,1 0 .
Therefore as the Ricci form ρ is a (1, 1)-form, we can write it as

(3.15) ρ = 1 4 sω + ρ 0
Therefore using (3.15) and dµ = 1 2 ω ∧ ω

(3.16) 2π M c 1 ∧ ω = M ρ ∧ ω = 1 4 M sω ∧ ω = 1 2 M sdµ.
Since, for a Gravitational Monopole s < 0 by Propositions ( 7) and ( 4), we get Proposition 9. If g is a strictly almost-Kähler metric that is also a Gravitational monopole, then

(3.17) c 1 • [ω] < 0.
One can compare the above result i.e., Proposition [START_REF] Pontecorvo | On twistor spaces of anti-self-dual hermitian surfaces[END_REF] with the following proposition Proposition 10. Let g be an almost-Kähler self-dual metric on a compact 4-manifold. If g is a strictly almost-Kähler self-dual metric, then

(3.18) c 1 • [ω] < 0.
3.1. Twistor correspondence for the Gravitational Monopoles. Let t : Z → M denote the twistor fibration and suppose M is hermitian and self-dual. One concludes from the definition of the almost complex structure of Z : that t is not a holomorphic map and the complex structure J of M defines a cross section J : M → Z. Let us denote the image of J by Σ. One can use the integrability of J, and can show Σ is a complex hypersurface of Z biholomorphic to M . Similarly -J : M → Z defines hypersurface Σ. The "real structure" σ of Z switches the two hypersurfaces identifying one with the other in an antiholomorphic fashion [cf.9]. If D denotes the divisor Σ + Σ in Z , we can consider the corresponding holomorphic line bundle

L = [D] ; since σ(D) = σ(Σ + Σ) = Σ + Σ = D, so L is called a "real" bundle.
The following theorem is due to Penrose Theorem 3.5.

(3.19) L ∼ = K -1/2 Z
, if and only if the metric h is conformai to a Kähler metric.

Theorem 3.6. If M is not Ricci flat then,

(3.20) H 0 (Z, Θ) ∼ = H 0 (M, Θ).
Proof. See [START_REF] Pontecorvo | On twistor spaces of anti-self-dual hermitian surfaces[END_REF]. □ Proposition 11. H 0 (Z, Θ) is the complexification of the Lie algebra of parallel vector fields, and

(3.21) h 0 (M, Θ) = h 0 (M, Ω 1 ) = 1 2 b 1 (M ).
Proof. See [START_REF] Pontecorvo | On twistor spaces of anti-self-dual hermitian surfaces[END_REF]. □ Theorem 3.7. Let (M, ω) be a compact almost Kähler surface with a positive definite signature σ > 0 and c 1 ̸ = 0, c 1 (L) 2 > 0, we also assume M is a Gravitational Monopole and let Z be its twistor space, we also assume

H 2 (Z, Θ ⊗ I D ) = 0 then H 0 (M, Θ M ) = H 0 (Z, Θ Z ) = H 2 (Z, Θ Z,D ) = H 2 (Z, Θ Z ) = 0.
Proof. The condition H 0 (M, Θ M ) = H 0 (Z, Θ Z ) = 0 follows from the non-existent of Killing vector fields, showed in [cf.Equation 3.17 of 3].

To prove the second part we use [cf.8]. Consider the following exact sequence of sheaves

0 → Θ Z,D → Θ Z → N D → 0, (3.22) and, (3.23 
) 0 → Θ Z ⊗ I D → Θ Z,D → Θ D → 0.
From the short exact sequence (3.23), we get the long exact sequence Remark 3.9. One can compare with [cf.9], it was proved there that when M is a scalar-flat Kähler surface but not Ricci-flat

(3.24) • • • → H 2 (Z, Θ Z ⊗ I D ) → H 2 (Z, Θ Z,D ) → H 2 (D, Θ D ) → • • • , since (3.
(3.29) H 0 (M, Θ M ) = H 0 (Z, Θ Z ) = 0
holds true in contrast to our strictly negative scalar curvature treatment of Equation 3.17 in [cf.3] and corresponding vanishing of Killing fields.

The following theorem can be found in [cf.10], [cf.9],

Theorem 3.10. Let M be an oriented, compact, smooth 4-manifold with an SD metric g and assume the first Betti number b 1 (M ) is even. Suppose there is a complex structure J such that g(v, w) = g(Jv, Jw).

Then the conformal class of g contains a unique scalar-flat Kähler metric.

One therefore concludes that deforming scalar-flat Kähler metrics is equivalent to deforming self-dual hermitian conformal structures, this however means the deformation of the pair (Z, D) preserving the real structure of the twistor space. Therefore, when obstruction vanishes, the moduli space of the self-dual hermitian conformal structures is the real slice of H 1 (Z, Θ Z,D ) [cf.8]. In [cf.8] they proved the following theorem Theorem 3.11. When obstruction vanishes, the deformation of scalar-flat Kähler metrics corresponds to the real slice of H 1 (Z, Θ Z,D ), where Θ Z,D is the sheaf of holomorphic vector fields on Z which are tangent to D; and its obstruction lies in H 2 (Z, Θ Z,D ).

The deformation of scalar-flat Kähler metrics with a fixed complex structure corresponds to the sheaf Θ Z ⊗ I D with the ideal sheaf of D is denoted by I D . Theorem 3.12. The obstruction to the existence of the self-dual Gravitational Monopole metric lies in H 2 (Z, Θ Z,D ). Therefore the vanishing condition H 2 (Z, Θ Z,D ) = 0 and s < 0 will guarantee the existence of the Gravitational Monopole metric. Theorem 3.13. Let M be a compact, smooth four-dimensional manifold which admits a scalar-flat Kähler metric g and suppose c 2 1 > 0. Assume obstruction for deforming g as a scalar-flat Kähler metric, (and similar statement for a self-dual metric) vanishes. Let g ′ be a self-dual metric which is obtained by deforming g. Then there is a unique almost-Kähler self-dual metric in the conformal class of [g ′ ] that satisfies the Gravitational Monopole equation. Theorem 3.14. Let (M, g, J, ω) be a complex surface with a scalar-flat Kähler metric. Suppose c 1 ̸ = 0 and assume (M, J) admits no holomorphic vector fields.Then on these surfaces, we have -9χ ≥ 13σ and if the inequality is strict, there exist deformations which are strictly almost-Kähler. In particular for L = K -1 the following holds 

2 +s 3 |ω| 2 is 3 |ω| 2 .( 3 . 6 )

 22236 |∇ω| 2 -2W -(ω, ω) + .e., 0 = |∇ω| 2 -2W -(ω, ω) + Since g is self-dual, we get by using the fact W -(ω, ω) = 0 the following relationship (3.7) 0 = |∇ω| 2 + 2s 3 .

  25) H 2 (Z, Θ Z ⊗ I D ) = 0 we have (3.26) H 2 (Z, Θ Z,D ) = 0. Now one uses the short exact sequence (3.22) to get the long exact sequence(3.27) • • • → H 2 (Z, Θ Z,D ) → H 2 (Z, Θ Z ) → H 2 (D, N D ) → • • •Now equation (3.26) says H 2 (Z, Θ Z,D ) = 0, therefore from the long exact sequence we get(3.28) H 2 (Z, Θ Z ) = 0.This proves the theorem. □ Remark 3.8. We can compare with [cf.8] to see the non-existence of holomorphic vector fields on Z also imply H 2 (Z, Θ Z ⊗ I D ) = 0.

Proof.

  In the following we use the same technique as employed in [cf.8],[cf.11]. Since,(3.30) 0 → Θ Z ⊗ I D → Θ Z,D → Θ D → 0 one gets (3.31) χ(Z, Θ Z,D ) = χ(Z, Θ Z ⊗ I D ) + 2χ(M, Θ M ).If the obstruction vanishes, we can think of -χ as the dimension of the moduli space [cf.8], and it is shown in[cf.8] that (3.32) χ(Z, Θ Z ⊗ I D ) = σThe dimension the moduli space of scalar-flat Kähler metrics is given by-χ(Z, Θ Z,D ) = -σ -2χ(M, Θ M ) = -σ -(3χ + 7σ) = -3χ -8σ. (3.33) The Atiyah-Singer index theorem gives [cf.11] χ(M, Θ M ) = of the moduli space of scalar We have N D = K -1 D [cf.9] and short exact sequence (3.22) (3.35) 0 → Θ Z,D → Θ Z → N D → 0 to give (3.36) χ(Z, Θ Z ) = χ(Z, Θ Z,D ) + 2χ(M, K -1 M ). But by the Riemann-Roch theorem, we get for any holomorphic line bundle L on M , (3.37) χ(L) = χ(O M ) + M c 1 (L)(c 1 (L) + c 1 (K -1 )) 2 .

( 3 . 1 ( 3

 313 38) χ(K -1 ) = χ(O M ) + c 1 (K -1 ) • c 1 (K -1 ) = χ(O M ) + c 2 ) = 2χ + 3σ, c 2 (M ) = χ we get, , Θ Z ) = χ(Z, Θ Z,D ) + 2χ(M,of the moduli space M of self-dual metrics are given by (using Theorem (3.13), we conclude if-1 2 (15χ + 29σ) > -(3χ + 8σ)i.e., -9χ > 13σ(3.45) holds true then there exists strictly almost Kähler self-dual metrics.

□

Now, if these self-dual metrics are also Gravitational monopoles, then as σ < 0, the dimension of the moduli space of solution of the Gravitational Monopole equation becomes

(3.47) Theorem 3.15. Let (M, g, J, ω) be a compact almost Kähler surface with a negative definite signature σ < 0 and c 1 ̸ = 0, c 1 (L) 2 > 0, and (M, J) admits no holomorphic vector fields. Then on these surfaces, we have

and if the inequality is strict, there exist deformations which are strictly almost-Kähler.

Proof. An application of the Theorem (3.13) applies whenever the condition

holds true. Therefore by Theorem (3.12), we prove the existence of the Gravitational Monopole □