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Abstract

We propose to model certain aspects of the dynamics of a macrophage that
moves randomly in a one dimensional space in arterial wall tissue and grows
by accumulating localized lipid particles, thus reducing its motility. This phe-
nomenon has been observed in the context of atherosclerotic plaque formation.
For this purpose, we use a system of stochastic differential equations satisfied
by the position and diffusion coefficient of a Brownian particle whose diffusion
coefficient is modified at each visit to the origin and with a dumping coefficient.
The novelty of the model, with respect to [1, 15], is to include offloading of lipids
through the dumping term. We find explicit necessary and sufficient conditions
for macrophage trapping in the locally enriched region.

1 Introduction

Atherosclerosis is a major cause of death in industrialized societies since it is the pri-
mary cause of heart attack (acute myocardial infarction) and stroke (cerebrovascular
accident). It is now accepted that atherosclerosis is a chronic inflammatory disease
which starts within the intima, the innermost layer of an artery. It is driven by
the accumulation of macrophage cells within the intima and promoted by modified
low density lipoprotein (LDL) particles [17]. Inflammation occurs at sites within
the arterial wall where modified low-density lipoproteins (LDL) accumulate after
penetrating the wall from the bloodstream [26]. The immune response attracts cir-
culating monocytes to these sites [25]. After crossing the endothelium (the layer of
cells lining the lumen of the blood vessel), monocytes enter the blood vessel wall
and usually differentiate into macrophages that remove LDL by phagocytosis [18].
When the macrophages accumulate internalised lipid, they produce inflammatory
signals that promote the recruitment of additional monocytes [24, 16]. In this way,
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the persistent influx of LDL and the influx of monocytes into the arterial wall pro-
duce large numbers of lipid-laden macrophages. This positive feedback loop creates
an unresolved inflammatory response [19] that thickens and enlarges the arterial
wall, to produce an atherosclerotic plaque.
Plaques can continue to grow throughout life and accumulate lipid-rich necrotic
debris (designated as the necrotic core) through necrotic cell death of live and apop-
totic macrophages [17]. Plaques may rupture due to the deterioration of the arterial
wall, resulting in the release of thrombotic (blood clot-forming) material. If these
blood clots block arteries, they can cause heart attacks or strokes.
The intensity of inflammation, in general, depends on the number of LDL particles
and macrophages located within the arterial wall. The number of monocyte-derived
macrophages inside the plaque is determined by the balance between rapid mono-
cyte recruitment [25, 18], macrophage proliferation [12], programmed cell death
(apoptosis) [17], or macrophage emigration from the arterial wall [14]. Macrophages
accumulate lipids by phagocytosis of LDL and apoptotic cells.
The recent demonstration of the dynamic nature of inflammatory macrophage popu-
lations (see [18]) has led to the development of a new line of mathematical modeling
of atherosclerotic plaque immunology (eg [9]). Many mathematical models divide
the macrophage population into ”macrophages” and ”foam cells”. This is true in
ODE models [6], spatially resolved PDE models [4, 11, 10, 2, 3] and other computa-
tional models [20]. However, it is now clear that there is a continuous distribution of
lipid loads in macrophage populations, ranging from monocytes with low lipid loads
to macrophages that can be labeled as foam cells in atherosclerosis. The variation
in lipid load within a macrophage population suggests that it may be instructive to
develop structured models in which macrophages are characterized by their intra-
cellular lipid load, similar to adipocytes [23], in the spirit of [16, 9].

In this paper, we model a single macrophage that is moving randomly through tissue
where lipid is distributed in a non-uniform way. When the macrophage is at the
same position as the lipid, it ingests lipid. Ingested lipid reduces the macrophage’s
motility and this is modelled as a reduction in the diffusion coefficient that governs
the macrophage’s rate of motion. We assume that lipid is concentrated at a point
which we denote x = 0 and whenever a macrophage passes x = 0 it ingests lipid.
More precisely, to model the undergoing random movement of a single macrophage
in an arterial wall, we identify the arterial wall with the real line and the lipid-
enriched region with the point 0 (see Fig. 1). Our model gives the position Xt of a
macrophage cell and its diffusion coefficient At, at time t, as solution of the following
system of stochastic differential equations

(1)

{
dXt =

√
2AtdWt,

dAt = −Aαt dL0
t (X) + λAtdt,

with initial condition (X0, A0), X0 ∈ IR, A0 > 0, where λ and α are two nonnegative
parameters, (Wt, t ≥ 0) is a given one dimensional Brownian motion, and (L0

t (X), t ≥
0) is the local time process at 0 of the unknown process X = (Xt, t ≥ 0).
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The aim of our analysis is to find the conditions which lead to a macrophage be-
coming unable to move due to lipid ingestion. The system (1) will provide answers
depending on the parameters X0, A0, α, λ. They are presented in Proposition 2.3
and analyzed in section 6.
We start the biological justification of (1) by explaining the presence of local time.
The notion of local time has been already used to model ((Xt, At), t ≥ 0) in [1, 15].
Indeed their model corresponds to the case λ = 0. For a rigorous introduction to
the notion of local time one can see e.g. [22]. Intuitively, L0

t (X) represents the time
spent by X at point 0 during the time interval [0, t], and actually (L0

t (X), t ≥ 0)
is an increasing process which increases only at times when X equals 0. Hence
according to (1) each crossing of the origin by the macrophage cell tends to decrease
its diffusion coefficient (At, t ≥ 0), or equivalently to decelerate the cell. Such a
decrease in local mobility is due to the internalization and accumulation of lipid
particles by macrophages. It can be related to several phenomena: increase in
volume or change in cell fate depending on the amount of LDL ingested.
The parameter α describes the intensity of the internalization: the higher the α,
the lower the internalization.Indeed, an healthy macrophage (without lipids) moves
slowly through tissue (A0 is not large i.e. A0 < 1) and At decreases with each passage
through the lipid-dense zone. In such a case, the positive parameter α describes the
change in mobility when passing through the lipid-dense region. The smaller the α
parameter, the greater the change. If α = 0, then the internalization is the same, and
constant, at each macrophage passage through the origin. Therefore, this parameter
is related to both the amount of lipid located at point 0 of the arterial wall and to
the capacity of each macrophage to internalize lipid. The case α = 0 corresponds
to a very large amount of lipids located at point 0 and a very high capacity of
macrophages to internalize lipids. In summary, the α parameter is related to the
inflammatory state of the lesion.
In contrast, the term λAtdt describes the loss of lipids by the macrophage and its
tendency to recover its natural state. Therefore, the parameter λ describes the
natural immune defenses or medical treatment.
Finally, the initial condition (X0, A0) is related to the condition of the arterial wall.
Indeed X0 represents the distance between the macrophage penetrating the wall
and a lipid-enriched region. A small value of X0 can be interpreted as a situation
where lipid-enriched regions are frequent. Similarly, a small value of A0 means a
very inflamed macrophage with a low ability to move.
Note that (At, t ≥ 0) is continuous and starts from A0 > 0. The first time t when
At = 0, is the time of the cell arrest. It allows us to quantify the necrotic core.
The couple ((Xt, At), t ≥ 0) describes the dynamics of a monocyte - derived macrophages
population structured by its lipid accumulation, see Fig. 2. It accounts for the im-
pact of lipids ingested by macrophages on their size, dynamics and structure. At
the core of our model is this state variable, which plays a similar role to age in
age-structured population models and to size in size-structured models [27, 5].

Although simple, the biophysical question that the model (1) raises is whether spa-
tially localized mobility perturbations have consequences on diffusion at all scales,
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Figure 1: A diagram showing coordinates at the scale of a single cell where x=0
denotes a point in the neighbourhood of the macrophage where lipids are abundant
and can be ingested by the macrophage.

such as the emergence of a dynamical transition to an absorbing static state. In
the context of atherosclerosis, this dynamical transition can be viewed as a mini-
mal mechanism that causes macrophages to aggregate in lipid-enriched regions and
thereby to the formation of atherosclerotic plaques (necrotic core). The model (1)
incorporates cellular processes which are known to play a significant role in the
dynamics of macrophages, apoptotic cells and necrotic material within plaques.

The remainder of this paper is organised as follows. In section 2 we describe the
main results: the explicit unique solution of (1) and its arrest time. To establish
them, we first give in section 3 an equivalent system to (1). In section 4 we prove
the main results. In section 5 we show that the solution of (1) in the case λ = 0
(corresponding to the model introduced in [1, 15]) can be obtained as the limit of
the cases λ > 0 as λ tends to 0. In section 6 we discuss our results and draw
conclusions. In particular, we underline the possibility when α < 1/2 (cases of high
inflammatory intensity) for the initial condition (X0, A0) to determine the fate of
a macrophage governed by (1). This sensitivity to the initial condition, that is the
initial inflammatory state, should strenghten the interest of the model (1).

2 Main results

Our objective is to study the competition between cell mobility and intracellular
lipid accumulation to see whether, after several visits to the lipid-enriched region,
the macrophage cell will eventually be trapped (corresponding to necrosis) and thus
contribute to atherosclerotic plaque formation or whether the offload will be strong
enough and prevent plaque formation.
As introduced in section 1, the cell arrest is the first time A hits 0. Denote it
by T0(A). More precisely: T0(A) = inf {t ≥ 0 : At = 0}, with the usual convention
inf ∅ = +∞. Note that T0(A) = +∞ is compatible with limt→+∞At = 0, but
does not imply it. The event {T0(A) < ∞} corresponds to the situation where the
particle gets trapped at the origin in finite time.
In the present framework it makes no sense to go beyond the time T0(A), hence
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Figure 2: Sketch of the different stages of atherosclerosis plaque formation: (1)
diffusion of a ”free” macrophage cell; (2) upon entering a localized lipid-enriched
region, the macrophage accumulates lipids, and thereby becomes less mobile; and
(3) after many visits to the lipid-enriched region, the macrophage eventually gets
trapped, resulting in the formation of an atherosclerotic plaque.

a solution of (1) is actually a process ((Xt, At), 0 ≤ t < T0(A)) satisfying (1) up to
time T0(A). A solution of (1) is said to be strong if (T0(A), ((Xt, At), 0 ≤ t <
T0(A))) is such that T0(A) is a stopping time of the Brownian motion (Wt, t ≥
0) and ((Xt, At), 0 ≤ t < T0(A)) is a continuous process adapted to (Wt, t ≥ 0)
satisfying (1) until time T0(A).

Define (Yt, t ≥ 0) as the Ornstein-Uhlenbeck process solution of

(2) Yt =
X0√
2A0

+Wt −
λ

2

∫ t

0
Ysds.

Denote by
(
L0
t (Y ), t ≥ 0

)
the local time process at 0 of Y .

The following theorem gives the explicit solution of (1) for any α ≥ 0, λ ≥ 0, A0 > 0
and any real X0.

Theorem 2.1. For any couple (α, λ) of nonnegative real numbers, the system (1)
with initial condition (X0, A0), A0 > 0, has a unique strong solution given by

(3) ((Xt, At), 0 ≤ t < T0(A)) =
(

(
√

2At Yt, At), 0 ≤ t < T0(A)
)
.

If α = 1/2, then a.s. T0(A) = +∞ and

(At, t ≥ 0) =
(
A0 exp{λt−

√
2L0

t (Y )}, t ≥ 0
)
.

If α 6= 1/2, then

(At, 0 ≤ t < T0(A))

=

(
A0 e

λt

(
1 +
√

2(α− 1

2
)A

α− 1
2

0

∫ t

0
eλ(α−

1
2
)sdL0

s(Y )

) 1
1
2−α

, 0 ≤ t < T0(A)

)
.
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For α 6= 1/2, the nature of T0(A) depends on the value of the parameters α, λ,
X0 and A0. To reduce the general case (α, λ,X0, A0) to the case (α, λ, 0, A0), we
will establish Proposition 2.2 below. To enunciate it, we make use of T0(X) the
first time X hits 0 and define T0

(
AT0(X)+ ·

)
on {T0(X) <∞} by: T0

(
AT0(X)+ ·

)
=

inf
{
t ≥ 0 : AT0(X)+t = 0

}
. Note that T0(X) ≤ T0(A) a.s.

Proposition 2.2. For ((Xt, At), 0 ≤ t < T0(A)) solution of (1) with initial condi-
tion (X0, A0), one has: T0(X) <∞ a.s. and the process(
(XT0(X)+t, AT0(X)+t), 0 ≤ t < T0(AT0(X)+ · )

)
satisfies (1) with respect to another

Brownian motion W̃ , and initial condition (0, Ã0) where

Ã0 = A0 + λ
X2

0

2N2
,

and N is a real standard Gaussian variable independent of W̃ .

To describe the nature of T0(A) when α 6= 1/2, it is hence sufficient to consider the
cases with initial condition (0, A0), A0 > 0. Note that when X0 = 0, the Ornstein-
Uhlenbeck process (Yt)t≥0 is independent of A0.
For α < 1/2 and λ > 0, set

(4) Vα,λ =

∫ ∞
0

exp

{
−λs(1

2
− α)

}
dL0

s(Y ).

Note that Vα,λ is a random time decreasing with λ(12 − α).

Proposition 2.3. Let ((Xt, At), 0 ≤ t < T0(A)) be the solution of (1) with initial
condition (0, A0) (A0 > 0).

• If α < 1/2 and λ > 0,

then IE[Vα,λ] <∞ and the following dichotomy holds:

- on {Vα,λ >
A

1
2−α
0√

2( 1
2
−α)}, one has T0(A) <∞ and limt→T0(A)(Xt, At) = (0, 0),

- on {Vα,λ ≤
A

1
2−α
0√

2( 1
2
−α)}, one has T0(A) = ∞, limt→∞At = +∞, and X is

recurrent.

• If α < 1/2 and λ = 0 then a.s. T0(A) <∞ and limt→T0(A)(Xt, At) = (0, 0).

• If α ≥ 1/2 and λ ≥ 0, then a.s. T0(A) =∞, and 0 is a recurrent point for X.
Moreover one has:

- if α = 1/2, then a.s. lim supt→∞ e
−λtAt ≤ A0 and lim supt→∞

te−λt|Xt|
log t ≤

2
√
A0,

- if 1/2 < α < 1, then a.s. lim inft→∞At = 0,

- if α = 1, then a.s. lim inft→∞At = 0, lim supt→∞At = +∞, and X is
recurrent.

- if α > 1, then a.s. lim supt→∞At = +∞ and X is recurrent.
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We will interpret in section 6 the results presented by Proposition 2. Nevertheless
we already make the following comments.

For α ≥ 1/2: one has IP [T0(A) < ∞] = 0, whatever the value of the other parame-
ters.

For α < 1/2: IP [T0(A) < ∞] = IP [Vα,λ >
A

1
2−α
0√

2( 1
2
−α) ]. Since for X0 = 0, (Yt)t≥0

is independent of A0, so is Vα,λ. One sees hence immediately that IP [T0(A) < ∞]
is a decreasing function of A0. Moreover, since Vα,λ is a decreasing function of λ,
IP [T0(A) <∞] is also a decreasing function of λ.
As it has been mentioned in the introduction of the α parameter, to make sense with
the modelisation with the macrophage dynamic, A0 must be taken small. With
elementary computations, one obtains when A0 ≤ e2 that IP [T0(A) < ∞] is a
decreasing function of α.

In Proposition 2.3, the results concerning λ = 0 have all been already established in
[15]. Since when λ = 0, the Ornstein-Uhlenbeck process Y is the Brownian motion
W , their asymptotics when α ≥ 1/2 are more precise.

3 An equivalent system to (1)

We give a system equivalent to (1), which will be simpler to handle.
Let (X,A) be a solution of (1) on [0, T0(A)) with A0 > 0. On [0, T0(A)) define Y by

(5) Yt =
Xt√
2At

.

We obtain that (Y,A) is a solution of the following system

(6)

{
Yt = Y0 +Wt − λ

2

∫ t
0 Ysds,

dAt = −
√

2A
α+ 1

2
t dL0

t (Y ) + λAtdt,

with Y0 = X0√
2A0

.

Indeed, using Ito’s formula together with the fact that the measure dL0
s(X) is sup-

ported by the set {s : Xs = 0}, one has

Yt = Y0 +

∫ t

0

dXs√
2As
−
∫ t

0

Xs

2
√

2
A−3/2s dAs

= Y0 +Wt +

∫ t

0

Xs

(2As)3/2
Aαs dL

0
s(X)− λ

∫ t

0

XsAs

(2As)3/2
ds

= Y0 +Wt −
λ

2

∫ t

0

Xs√
2As

ds

= Y0 +Wt −
λ

2

∫ t

0
Ysds.
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Besides, there is a connection between the local times at 0 of X and Y :

dL0
t (X) =

√
2AtdL

0
t (Y ).

This is a consequence of Tanaka’s formula (see e.g. [22]) according to which

L0
t (X) = |Xt| − |X0| −

∫ t

0
sgn(Xs)dXs =

√
2At|Yt| −

√
2A0|Y0| −

∫ t

0
sgn(Ys)dXs

=
√

2At|Yt| −
√

2A0|Y0| −
∫ t

0
sgn(Ys)

√
2AsdYs −

∫ t

0
|Ys|

dAs√
2As

.

Since √
2At|Yt| =

√
2A0|Y0|+

∫ t

0

√
2Asd(|Ys|) +

∫ t

0
|Ys|

dAs√
2As

,

it yields

L0
t (X) =

∫ t

0

√
2AsdL

0
s(Y ),

which leads to (6).
Conversely any couple (Y,A) solution of (6) on [0, T0(A)), corresponds to a solution
(X,A) of (1) on [0, T0(A)), by setting Xt =

√
2AtYt.

We now work with (Y,A) solution of (6) on [0, T0(A)). The first equation in (6)
defines an Ornstein-Uhlenbeck process (Yt, t ≥ 0) which can be explicitly computed

(7) Yt = e
−λt
2 Y0 + e

−λt
2

∫ t

0
e
λs
2 dWs,

where Y0 is the given initial value of Y .
Alternatively, one can use the following expression of Y which is due to Doob [7]

(8) (Yt, t ≥ 0) =
(
e−

λt
2
(
Zu(t) + Y0

)
, t ≥ 0

)
,

where Z is a real Brownian motion starting from 0 and

(9) u(t) =
eλt − 1

λ
.

Actually, Z is defined by

(10) (Zt, t ≥ 0) =

(∫ 1
λ
log(1+λt)

0
e
λs
2 dWs, t ≥ 0

)
.

We have to study the behavior of (At)t≥0 solution of the second equation of (6)

(11) At = A0 −
√

2

∫ t

0
A
α+ 1

2
s dL0

s(Y ) + λ

∫ t

0
Asds,

with A0 > 0 and t ∈ [0, T0(A)).

In [8], using (8) allows to obtain the following expression for the local time process
at 0 of Y

(12) (L0
t (Y ), t ≥ 0) =

∫ eλt−1
λ

0

1√
1 + λs

dL−Y0s (Z), t ≥ 0

 .
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4 Proofs

4.1 Proof of Proposition 2.2

We use of Y and Z introduced in (7), (8) and (10). The parameters α and λ are
fixed. For X0 6= 0, define

T0(X) = inf {t ≥ 0 : Xt = 0} .

Since A is increasing on [0, T0(X)), recalling the definition (5) of Y , one has T0(X) =
T0(Y ). Using (7) it follows that a.s. T0(X) <∞.
The time T0(Y ) is a stopping time for the natural filtration of W . Hence the process
(W̃t, t ≥ 0) defined by W̃ = (WT0(X)+t − WT0(X), t ≥ 0) is a Brownian motion
starting from 0, independent of (Wt, t ∈ [0, T0(X)]). The process (YT0(X)+t, t ≥ 0 is
the unique solution of

yt = W̃t −
λ

2

∫ t

0
ysds.

By (11), we see that At = A0 exp(λt) for t ∈ [0, T0(X)] and in particular it holds
that AT0(X) = A0 exp(λT0(Y )). Hence, AT0(X) is independent of W̃ . Moreover,
(AT0(X)+t, t ≥ 0) is solution of

at = AT0(X) −
∫ t

0

√
2a

α+ 1
2

s dL0
s(YT0(Y )+.) + λ

∫ t

0
asds.

Consequently, ((YT0(X)+t, AT0(X)+t), t ≥ 0) is solution of (6) with respect to W̃
with initial condition (0, AT0(X)). This implies that ((XT0(X)+t, AT0(X)+t), t ≥ 0) is

solution of (1) with respect to W̃ with initial condition (0, AT0(X)).

Set Ã0 = AT0(X). Thanks to (8), we have

T0(Y ) =
1

λ
log

(
1 + λT −X0√

2A0

(Z)

)
,

where for all a ∈ IR, Ta(Z) is defined by

Ta(Z) = inf {t ≥ 0 : Zt = a} .

Thanks to the reflexion principle, one sees that Ta(Z)
(law)
= ( a

Z1
)2, which leads to

Ã0 = A0 + λ
X2

0

2N2
,

where N is a real standard Gaussian variable independent of W̃ .

4.2 Proof of Theorem 2.1 and Proposition 2.3

To solve (1) we use the equivalent system (6). We start with the case α = 1/2 and
then study the case α 6= 1/2.
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4.2.1 Case α = 1/2

In this case (11) reads

At = A0 +

∫ t

0
As(λds−

√
2dL0

s(Y )), t ∈ [0, T0(A)),

which admits as unique solution on [0, T0(A))

(13) At = A0 exp
(
λt−

√
2L0

t (Y )
)
.

Consequently, A can not reach 0 at finite time, hence IP [T0(A) =∞] = 1.
Assume now that X0 = 0. Since: Xt =

√
2AtYt, using (13) together with (8) one

easily obtains:

|Xt| =
√

2A0 |Zu(t)| exp

(
− 1√

2
L0
t (Y )

)
,

with u defined by (9). Thanks to (12), one obtains

|Xt| ≤
√

2A0 |Zu(t)| exp

(
− 1√

2

L−Y0u(t) (Z)√
1 + λu(t)

)
,

where L−Y0u(t) (Z) stands for the local time at level −Y0 and time u(t) of the process
Z.
From Kesten’s asymptotic results on the supremum of the local times of Z, see [13],
it follows that a.s.

lim inf
t→∞

L−Y0t (Z)

√
log log t√

t
<∞,

hence a.s.

(14) lim inf
t→∞

L−Y0t (Z)√
t

= 0.

Using (14) together with the law of iterated logarithm for Z, we get that a.s.

lim sup
t→∞

te−λt|Xt|
log t

≤ 2
√
A0.

Besides, one has

At ≤ A0(1 + λu(t)) exp

(
−
√

2
L−Y0u(t) (Z)√
1 + λu(t)

)
,

which with (14) gives: lim supt→∞ e
−λtAt ≤ A0 a.s.
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4.2.2 Case α 6= 1/2

Let β be a non zero real number. By Ito’s formula, one obtains on [0, T0(A))

Aβt = Aβ0 −
√

2β

∫ t

0
A
β+α− 1

2
s dL0

s(Y ) + λβ

∫ t

0
Aβs ds.

Choose β = 1
2 − α and set Bt = Aβt . For t in [0, T0(A)), we have

(15) Bt = B0 −
√

2βL0
t (Y ) + λβ

∫ t

0
Bsds,

with B0 = Aβ0 .
By differentiation of Bte

−λβt, one sees that

d
(
Bte
−λβt

)
= −
√

2βe−λβtdL0
t (Y ),

which leads to

(16) Bt = eλβt
(
B0 −

√
2β

∫ t

0
e−λβsdL0

s(Y )

)
.

We now study T0(A) according to the value of α.

Case α < 1/2 : In this case β > 0 and (16) leads to

(17) At = eλt
(
B0 −

√
2(

1

2
− α)

∫ t

0
e−λ(

1
2
−α)sdL0

s(Y )

) 1

( 12−α)
, t ∈ [0, T0(A)).

Moreover we have

T0(A) = T0(B) = inf

{
t ≥ 0 :

∫ t

0
e−λβsdL0

s(Y ) ≥ B0√
2β

}
.

Assume now that X0 = 0. Under this assumption Y starts from 0 and is independent
of A0. Note that

IE

[∫ ∞
0

e−λβsdL0
s(Y )

]
= IE

[
L0
e(Y )

]
,

where e is an exponential variable with parameter λ(12 − α), independent of Y .

Using the fact that Yt has a Gaussian law with mean 0 and variance 1−e−λt
λ , one has

IE[L0
e(Y )] =

√
λ

2π

∫ ∞
0

e−λβs(1− e−λs)−1/2ds

=
1√
2πλ

∫ ∞
0

e−βs(1− e−s)−1/2ds <∞.
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Consequently a.s.

Vλ,α :=

∫ ∞
0

exp

(
−λs(1

2
− α)

)
dL0

s(Y ) <∞.

On {Vλ,α >
A

1
2−α
0√

2( 1
2
−α)}: T0(A) <∞ and limt→T0(A)Xt = 0.

On {Vλ,α ≤
A

1
2−α
0√

2( 1
2
−α)}: T0(A) = +∞ and

lim
t→∞

Bt = lim
t→∞

eλ(
1
2
−α)t

(
A

1
2
−α

0 −
√

2(
1

2
− α)Vλ,α

)
= +∞,

which implies that limt→∞At = +∞ and

lim inf
t→∞

Xt = −∞, lim sup
t→∞

Xt = +∞.

Case α > 1/2 : In this case β < 0. Set γ = −β = α− 1/2 > 0. We have

Bt = e−λγt
(
B0 +

√
2γ

∫ t

0
eλγsdL0

s(Y )

)
,

hence Bt > 0 for every t ≥ 0.
The process A reaches 0 in finite time if B takes an infinite value in finite time.
Using (15) we see that

Bt ≤ B0 +
√

2γL0
t (Y ).

Obviously (L0
t (Y ))t≥0 can not blow-up in finite time. Hence IP [T0(A) <∞] = 0 and

(18) At = eλt
(
B0 +

√
2γ

∫ t

0
eλγsdL0

s(Y )

)−1/γ
, t ≥ 0.

We have: Bt ∼
t→∞

√
2γe−λγt

∫ t
0 e

λγsdL0
s(Y ).

To compute
∫ t
0 e

λγsdL0
s(Y ), we use (12), make the time change v(s) = 1

λ log(1 +λs),
and then an integration by part to finally obtain:

(19)

∫ t

0
eλγsdL0

s(Y ) =
L−Y0u(t) (Z)

(1 + λu(t))1−α
− λ(α− 1)

∫ u(t)

0
L−Y0s (Z)(1 + λs)α−2ds.

To finish proving Proposition 2.2, we assume now that X0 = 0 and consider the
three different cases: α = 1, α > 1 and 1/2 < α < 1.
If α = 1, then

Bt ∼
t→∞

√
2γ

L0
u(t)(Z)

(1 + λu(t))1/2
.

12



Using the law of iterated logarithm for local times of a real Brownian motion [21],
we obtain a.s.

(20) lim sup
t→∞

L0
t (Z)√

2t log2 t
= 1,

hence lim inft→∞At = 0.
Using (14), it follows that lim inft→∞Bt = 0, thus lim supt→∞At = +∞.
Using the same argument as in [15] one obtains that X is recurrent on IR with
lim inft→∞Xt = −∞ and lim supt→∞Xt = +∞.
If α > 1, then from (19), we deduce that there exists a positive constant C such
that

(21) Bt ≤ C
L0
u(t)(Z)

u(t)1/2

and hence (14) leads similarly to lim supt→∞At = +∞. Moreover using (21), for t
big enough it holds

|Xt] =
√

2At|Yt| ≥ C
|Zu(t)|√
u(t)

(

√
u(t)

L0
u(t)(Z)

)
1
2γ .

Finally, using (20), a.s. for all t big enough we have√
u(t)

L0
u(t)(Z)

≥ C 1√
log2 u(t)

.

Recalling Strassen’s Law of the Iterated Logarithm

lim sup
t→∞

Zt√
2t log2 t

= 1 a.s.

we obtain: lim supt→∞ |Xt| = +∞, which leads by symmetry and continuity to
lim inft→∞Xt = −∞ and lim supt→∞Xt = +∞.
If 1/2 < α < 1, then (19) leads to

Bt ≥ C
L0
u(t)(Z)

u(t)1/2
,

and (20) gives: lim inft→∞At = 0 a.s.

�

5 The case λ = 0 as a limit case

For α ≥ 0, λ ≥ 0, X0 ∈ IR and A0 > 0 fixed, there exists a unique strong solution of
(1). Various continuity properties of this solution with respect to this parameters,
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can be studied. In particular for α ≥ 0 and A0 > 0 fixed, denote by (X(λ), A(λ))
the solution of (1) with initial condition (0, A0). Motivated by the fact that the case
λ = 0 with initial condition (0, A0), has been previously explored in [15], we show
that the solution (X(0), A(0)) of

(22)

{
dXt =

√
2AtdWt

dAt = −Aαt dL0
t (X),

with initial conditions X0 = 0 and A0 > 0, can be be obtained as a limit solution of
(1) when λ > 0 and decreases to 0.

Proposition 5.1. Let α > 0 be fixed. Denote by (X(λ), A(λ)) the solution of (1)
for λ > 0 with initial condition (0, A0). As λ decreases to 0, (X(λ), A(λ)) converges
in probability uniformly on compact sets to the solution of (22).

Nevertheless this continuity property at λ = 0 of the solution of (1) is compatible
with the fact that for α < 1/2, in view of the nature of the cell arrest, 0 is a critical
value for λ (Proposition 2.3).

Proof. For λ > 0 denote by Y (λ) = (Yt(λ), t ≥ 0) the solution of (2) starting from 0.
One easily checks that a.s. Y (λ) converges to W pointwise, uniformly on compacts,
as λ tends to 0. Denote by (L0

t (W ), t ≥ 0) (resp. (L0
t (Y (λ)), t ≥ 0)) the local time

process at 0 of W (resp. Y (λ)). Let τ be a stopping time for W with finite second
moment. Using Tanaka’s formula and Burkholder-Davis-Gundy inequalities (see e.g.
[22]), one obtains

IE

[
sup

0≤s≤τ

∣∣L0
s(Y (λ))− L0

s(W )
∣∣2] →

λ→0
0.

Consequently, on has:

(23)
(
(L0

t (Y (λ), Yt(λ)), 0 ≤ t ≤ τ
)
→
λ→0

(
(L0

t (W ),Wt), 0 ≤ t ≤ τ
)

in probability for the infinite norm of IR2-valued continuous functions on compact
sets.

If α ≥ 1/2, then we choose for stopping time τ any deterministic time t > 0 and
using Theorem 2.1 we obtain the convergence for the infinite norm in probability of
((Xs(λ), As(λ)), 0 ≤ s ≤ t) to ((Xs, As), 0 ≤ s ≤ t) .
If α < 1/2, then we choose

τ = inf

t ≥ 0 : L0
t (W ) >

A
1
2
−α

0√
2(12 − α)

 .

In this case the solution of (22) satisfies T0(A) = τ (Theorem 2.1 for λ = 0). Similarly
to the previous case, we obtain the convergence (23) but since on {T0(A(λ)) < τ},
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At(λ) is not defined for t ∈ (T0(A(λ)), τ) we can not immediately conclude. One
has:

(T0(A(λ)) ≥ τ) =

∫ τ

0
e−λ(

1
2
−α)dL0

s(Y (λ)) ≤ A
1
2
−α

0√
2(12 − α)

 ,

hence (1{T0(A(λ))≥τ}(Xt(λ), At(λ)), 0 ≤ t ≤ τ) converges uniformly in probability to
the solution of (22).
Moreover for any λ > 0, using (12) we can write(∫ t

0
e−λ(

1
2
−α)sdL0

s(Y (λ)), t ≥ 0

)
(24)

(law)
=

(
L0
u(t)(W )

(1 + λu(t))1−α
+ λ(1− α)

∫ u(t)

0

L0
s(W )

(1 + λs)2−α
ds, t ≥ 0

)

where W is a real Brownian motion starting from 0.
Thanks to (24) one has

(25)

∫ ∞
0

e−λ(
1
2
−α)sdL0

s(Y (λ))
(law)
= λ(1− α)

∫ ∞
0

L0
s(W )

(1 + λs)2−α
ds.

The scaling property of W yields

λ(1− α)

∫ ∞
0

L0
s(W )

(1 + λs)2−α
ds

(law)
=

(1− α)√
λ

∫ ∞
0

L0
s(W )

(1 + s)2−α
ds,

which provides with (25) the following limit

(26) lim
λ→0

∫ ∞
0

e−λ(
1
2
−α)sdL0

s(Y (λ)) = +∞ in probability,

i.e. for every c > 0,

lim
λ→0

IP

[∫ ∞
0

e−λ(
1
2
−α)sdL0

s(Y (λ)) < c

]
= 0.

6 Conclusion

In this work, we propose and study a model for macrophage dynamics taking into
account their lipid load. We incorporated essential parameters: intensity of inflam-
mation α, immune defenses and medical treatments λ, and the initial inflammatory
state (X0, A0). Our mathematical study provides information on the dynamics of
the macrophage and hence on the atherosclerotic plaque dynamics. In particu-
lar, depending on the value of the parameters, it can lead to the accumulation of
macrophages in a particular region of the arterial wall. The key quantity to evaluate
this risk is IP [T0(A) <∞].
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Here are the main conclusions that one can reach adopting this model.

1 - If α ≥ 1/2, which corresponds to a relatively low intensity of inflammation, no
atherosclerotic plaque will form whatever λ, X0 andA0 are (equivalently: IP [T0(A) <
∞] = 0). Unsurprisingly, in this case the introduction of the parameter λ in the
system (22) previously studied in [15], does not change IP [T0(A) <∞] which remains
null.

2 - If α < 1/2, which corresponds to a relatively high intensity of inflammation,
then the introduction of the parameter λ affects the dynamics of the particle in
several ways. Indeed for λ = 0, whatever the value of A0, one has IP [T0(A) <∞] = 1,
which means cell arrest or apoptosis in finite time a.s. While for λ > 0, if A0 is large
enough (which means low intracellular load in lipids at time t = 0) with X0 = 0,
then T0(A) =∞ and limt→∞At = +∞. This infinite limit can be interpreted as the
emigration of the macrophage and corresponds to no contribution from this cell to
the formation of an atherosclerotic plaque at the origin. Moreover one can find an
upper bound the risk IP [T0(A) <∞] by using Markov inequality:

IP [T0(A) <∞] ≤
√

2(12 − α)IE[Vα,λ]

A
1
2
−α

0

.

Since Vα,λ is independent of A0, we clearly see that by increasing A0, one increases
the probability of avoiding arrest or apoptosis.
But X0 also plays a role in the case where α < 1/2 and λ > 0. Using Proposition
2.2, we see that cell arrest (or apoptosis) occurs in finite time for the solution of (1)
with initial condition (X0, A0) if and only if it is so for the solution of (1) with initial
condition (0, Ã0). The variable Ã0 increases stochastically with A0 and |X0|. Thus,
given N , the state of the arterial wall can be improved by increasing A0 or |X0|.
This corresponds to a lower intracellular load in lipids at time t = 0 or a greater
dispersion of lipid sources at time t = 0, which means a lower initial inflammatory
state.

Hence the introduction of λ not only offers the possibility to lower IP [T0(A) <∞] in
the cases when α, the inflammatory intensity, is high but this possibility takes into
account the initial inflammatory state (X0, A0).

Model (1) could be enriched by considering a population of macrophages instead of
a single one. The role played by the accumulation of trapped macrophages on the
still moving macrophages should be well understood to be taken into account by the
enriched model.
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