

Ignition of Aluminum Particles

Fabien Halter, Valentin Glasziou, Hugo Keck, Guillaume Legros, Christian Chauveau

► To cite this version:

Fabien Halter, Valentin Glasziou, Hugo Keck, Guillaume Legros, Christian Chauveau. Ignition of Aluminum Particles. 11th European Combustion Meeting, Apr 2023, Rouen, France. , $10.13140/{\rm RG}.2.2.15350.20802$. hal-04085367

HAL Id: hal-04085367 https://cnrs.hal.science/hal-04085367v1

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ignition of Aluminum Particles

F. Halter^{1,2}, V. Glasziou^{1,2,3}, H. Keck^{1,2}, G. Legros^{1,2}, C. Chauveau¹

¹ICARE- CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France ² Université d'Orléans, Château de la Source, 45100 Orléans, France ³ CEA-GRAMAT, D14, 46500 Gramat, France

Objective:

Characterization of the ignition process of an isolated aluminum particle through visual information and temperature measurement. Results are compared to a simple model.

Two-color ratio pyrometry:

- Photomultipliers equipped with interference filters
- $\lambda_1 = 720$ nm; $\lambda_2 = 830$ nm to avoid emission lines of main gaseous species

Ratio of radiative intensities at different wavelengths: $\Gamma = \frac{L_{\lambda_1}}{L_{\lambda_1}}$

- Levitating **charged particle** in a controlled atmosphere
- **Symmetrically heated** by a splitted CO2 laser beam ($\lambda = 10.6$ nm)
- High speed PHANTOM camera combined with long distance microscope QUESTAR QM100 allowing a **1.92 \mum/px** magnification
- 39000 fps and 768x768 px resolution

- Absorption along the line of sight is neglected
- Grey body assumption and Planck's law: $T = f(\Gamma, \lambda_1, \lambda_2)$
- Calibration made with a Quartz Tungsten halogen lamp

Temporally resolved, integrated temperature of the condensed phase

Model Description:

- **Power source**: single Gaussian laser beam integrated on the projected surface of the particle. Absorption efficiency accounts for the amount of laser energy given to the particle. The remaining energy is scattered.
- **Power losses**: conduction, radiation \bullet
- **Convection is neglected** due to the staticity of the particle and the absence of induced flow \bullet
- Power used to **heat** and **melt** the particle
- Biot number $Bi \ll 1$: Temperature gradients inside the particle are neglected
- η_{abs} linearly varying between 0.018 to 0.08

a n s

11th European Combustion Meeting, 2023