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MUMFORD-GIESEKER STABILITY AND THE GRAVITATIONAL MONOPOLE METRIC

The existence of the Gravitational Monopole equation implies the ω-stability of Mumford-Gieseker for a rank-2 holomorphic bundle over a complex algebraic surface. The main argument is briefly described in §(5.1).

Introduction

In this note, we sketched an argument how the Gravitational Monopole equation may be used to prove the ω-stability of Mumford-Gieseker for a rank-2 holomorphic bundle over a complex algebraic surface. The main argument is briefly described in §(5.1). The details will appear elsewhere.

The Gravitational Monopole Equations

In [cf.1] the Gravitational Monopole equations were introduced in the following sense. Let (X 4 , g) be a Riemannian spin 4-manifold. Then the Clifford algebra bundle Cl(X 4 ) is a vector bundle over X 4 with fiber at x ∈ X 4 is the Clifford algebra Cl(T x X). With respect to the metric g, one identifies (isomorphism) Cl(T x X) with Cl(T * x X). Therefore, as a vector space, this is isomorphic to ∧T * x X. Let us also assume E → X is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ X there is a Clifford action c :

T * x X ⊗ E x → E x via c(α ⊗ s) = c(α)s. Definition 2.1. The twisted Dirac operator associated to (E, ∇ E ) is the operator, (2.1) / ∇ := c • ∇ E : C ∞ (X, E) → C ∞ (X, E).
The equations we wish to consider are (sometimes we omit the mapping c and the dimension 4 for the convenience of computations),

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j , or, c (W + g ) ijkl e i ∧ e j = 1 4 ⟨e k • e l ψ, ψ⟩.
(2.

2)

The Weitzenböck's formula: the decomposition of the Laplace-Beltrami operator as a generalized Laplacian is, with the left-Clifford multiplication ϵ l = ext l -int l , and corresponding right Clifford action ϵ r ,

(2.3) (d + d * ) 2 = ∆ ∧T * X - ijkl R ijkl ϵ i l ϵ j l ϵ k r ϵ l r + 1 4 s.
Proposition 1. For k ̸ = l, ⟨e k e l ψ, ψ⟩ is purely imaginary.

Proposition 2.

(2.4) |⟨e k e l ψ, ψ⟩| 2 = 2|ψ| 4 .

We keep in mind the Seiberg-Witten analysis, and analogously define and get the following definition of Gravitational-Monopole functional, Definition 2.2. The Gravitational-Monopole functional of a pair (ψ, g) is given by,

S(g, ψ) = X | / ∇ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g i.e., S(g, ψ) = X |(d + d * )ψ| 2 + |W + - 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j | 2 d(vol) g .
(2.5)

Proposition 3. (2.6) S(g, ψ) = X |∇ψ| 2 + |W + | 2 + s 4 |ψ| 2 + 1 8 |ψ| 4 d(vol) g Proposition 4.
As a direct consequence of (3), if the scalar curvature of X is non-negative, all solutions of (2.2) have ψ ≡ 0.

Action of Special Orthogonal Group

Let X be an oriented Riemannian manifold of even dimension 2l and we also assume X is a spin manifold, that is the first and second Stiefel-Whitney classes vanish. We denote by ∧ p the bundle of exterior p-forms with A p = Γ(∧ p ) its space of smooth sections. The Hodge star operator * ∧ p → ∧ 2l-p is defined by,

(3.1) α ∧ * β = (α, β)ω ∈ ∧ 2l
where α, β ∈ ∧ p , (α, β) is the induced inner product on p-forms and ω is the volume form. From now everything will be 4-dimensional unless otherwise stated. We start with the symmetry of the equations, namely the Lie algebras. The Lie algebra so(4) of the special orthogonal group SO( 4) is not simple. It can be decomposed into the direct sum of two copies of the Lie algebra so(3) of the group SO(3):

(3.2) so(4) ∼ = so(3) ⊕ so(3).

In terms of the group theory, one understands the above decomposition corresponds to the fact that the universal covering group of SO( 4) is the product of the two copies of SU (2). This fact in quantum mechanics corresponds to ± 1 2 spins of an electron for each factor SU (2). In terms of the geometry of the vector bundles, the decomposition so(4) ∼ = so(3) ⊕ so(3) induces the following decomposition (for a choice of g on X 4 ) for the vector bundle 2 T * X → X,

(3.3) ∧ 2 T * X ∼ = ∧ + ⊕ ∧ -,
as a Whitney sum of two oriented 3-plane bundles. One can choose an oriented orthonormal frame for T * U X for an open set U ⊂ X. One therefore has, (3.4)

∧ ± = Span (e 1 ∧ e 2 ± e 3 ∧ e 4 ), (e 2 ∧ e 3 ± e 1 ∧ e 4 ), (e 3 ∧ e 1 ± e 2 ∧ e 4 ) .

We now use the unique Levi-Civita connection ∇ on ∧ 2 T * X to find a suitable decomposition of the curvature tensor under the action of O(4). The first step towards it is to note that ∇g = 0, this however means that ∇ is covariantly constant, that is ∇ maps sections of ∧ ± into ∧ ± ⊗ T * X; there is no mixed term mapping ∧ + into ∧ -⊗ T * X. The curvature of the Levi-Civita connection defines a section of ∧ 2 T * X ⊗ 2 T * X, correspondingly a decomposition of ∧ 2 T * X ⊗ 2 T * X into four matrix-blocks of size 3 × 3, more precisely, the Riemann curvature tensor defines, in general, a self-adjoint linear transformation R :

∧ 2 → ∧ 2 such that, (3.5) R(e i ∧ e j ) = 1 2 k,l R ijkl e k ∧ e l ,
relative to the decomposition ∧ 2 = ∧ + ⊗ ∧ -, the operator R has the following form,

(3.6) R = A B B t C
where, B ∈ Hom(∧ -, ∧ + ) (is the traceless Ricci curvature) 0 Ric, and A ∈ End(∧ + ), that is A is symmetric about its diagonal, that is A t = A, similarly for C ∈ End(∧ -) we have C t = C. This representation of the curvature tensor R gives us a complete decomposition of it into irreducible components, namely

(3.7) R → (Tr A, B, A - 1 3 Tr A W + , C - 1 3 Tr C W - ) T rA = Tr C = 1 4
s where s is the scalar curvature. More elaborately, if the basis of ∧ ± in (3.4) is denoted by {x i ± } 3 i=1 , then the curvature tensor R has the following expansion

(3.8) R = W + ij x i + ⊗ x j + + W - ij x i -⊗ x j -+ B ij x i + ⊗ x j -+ B t ij x i -⊗ x j + - s 12 (x i + ⊗ x j -+ x i -⊗ x j + ).
If we denote the projection operator by, (3.9)

P ± := 1 2 (1 ± * ) : ∧ → ∧ ± , then, (3.10) 
W ± = P ± • Rm • P ± - s 12 Id ±

The Kobayashi-Hitchin Correspondence

Let (M 4 , ω) a Káhler 4-manifold Consider a rank-2 holomorphic vector bundle V on a surface X with c 1 (V ) = 0. For general Kähler manifolds, the Kobayashi-Hitchin Correspondence is equivalent to saying that the holomorphic vector bundle structure on V is ω-stable. , this condition amounts to the following: if L is a line bundle and there is a nonzero holomorphic map L → V (not necessarily an inclusion on each fiber), then c 1 (L) • ω < 0. If ω corresponds to the Kähler form of a Hodge metric corresponding to an ample divisor H, then ω-stability exactly corresponds to stability with respect to the line bundle [H].

Stability via the Gravitational Monopole Equations

Consider the moduli problem of polarized varieties, so we consider moduli functor (5.1) F : Schemes/C → Sets with respect to the objects below

F(C) = {(Γ, H) : Γ is a projective variety, H is ample line bundle on Γ } (5.2)
H is called a polarization of Γ, and (Γ, H) is a polarized variety. If Γ is smooth, then the pair (Γ, H) is known as a polarized variety. The Euler-Poincaré characteristic χ(Γ, H m ) is a polynomial of in the variable m. Let p n (x) ∈ Q[x] is a polynomial of degree n. Consider the following moduli problem

(5.3) F pn(x) (C) = {(Γ, H) : (Γ, H) ∈ F, χ(Γ, H m ) = p n (m), ∀m ≥ 1} It is proved in [cf.4] if (M, L) ∈ F pn(x) ( 
C) a polarized manifold with a a Hermitian metric h such that for a large k the pointwise constant norm

n i=1 ∥s i (z)∥ 2 h of a frame s 0 , • • • , s n ∈ H 0 (M, L k ) with induced ω = Ric(h) the k-th Hilbert point of (M, L) is (GIT) stable with respect to SL(n + 1, C).
5.1. The main argument. The converse statement follows if we assume the existence of the Gravitational Monopole equation. We choose a holomorphic line bundle from the Spin C -structure defining the Gravitational Monopoles such that the Gravitational Monopole invariant is non-zero, that is G(L) ̸ = 0, this amounts to a nonzero holomorphic map L → V , with the rank of V is 2. Now the if ψ ̸ = 0 on M if and only if the scalar curvature is strictly negative, that is s < 0, this amounts to the condition c 1 (L) • ω as ω = Ric(h), and Ric(h) < 0 by the Gravitational Monopole equation (see the author's work in [cf.3]). Thus the existence of h. The holomorphic assumption on L and on the map L → V implies h is hermitian.