
HAL Id: hal-04090584
https://cnrs.hal.science/hal-04090584

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rage Against The Glue: Beyond Run-Time Media
Frameworks with Modern C++

Jean-Michaël Celerier

To cite this version:
Jean-Michaël Celerier. Rage Against The Glue: Beyond Run-Time Media Frameworks with Modern
C++. Proceedings of the 2022 International Computer Music Conference, University of Limerick, Jul
2022, Limerick, Ireland. �hal-04090584�

https://cnrs.hal.science/hal-04090584
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Rage Against The Glue:

Beyond Run-Time Media Frameworks with Modern C++

Jean-Michaël Celerier

celtera.dev

contact@celtera.dev

ABSTRACT

We identify a set of issues with the current abstraction sys-

tems for media objects and introduce a methodology to solve

these issues, associated with a sample implementation in the

Avendish library. This methodology is based on the limited

reflection features available in recent C++ versions, unlike

the existing systems which are overwhelmingly based on

class-based inheritance or other run-time affordances of

the language.

We propose using a simple subset of the C++ object model

to define media processor’s metadata and interface declar-

atively: this subset can be reflected in order to generate the

binding code to various plug-in interfaces such as VST, the

Max or Python API, and automatically generate UI code or

OSC APIs at compile-time.

Unlike existing systems and frameworks, our proposed

method has the advantage of being non-intrusive. The media

processors do not need to inherit from existing base classes

or be part of a framework: they can be written without even

having to include any specific header.

1. INTRODUCTION

We aim to devise the most adequate abstraction for defining

and implementing media processors (MP) in C++: real-

time or offline audio effects and instruments, message-based

objects for use in patching systems such as Max/MSP and

PureData or in object-oriented programming languages such

as Python, visual processing objects for machine-learning

pipelines. Depending on the host environment (HE) or API

used, those are called nodes, unit generators / ugens, objects,

boxes, plug-ins...

Using reflection to extract information from the imple-

mentation of a MP has multiple advantages over existing

systems. First, the object implementation does not need to

depend on an existing library. It is possible with this method

to write an audio processor with controls, metadata such as

ranges and names, which does not include any header or

inherit from any class. The code only needs to implement

the right types, in a structural sub-typing sense. This is

future-proof: today, if an existing API is abandoned by its

developers, algorithms written against this API have to mi-

grate to another, as seen for the complicated VST2 to VST3

Copyright: ©2022 Jean-Michaël Celerier et al. This is an open-access

article distributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are

credited.

transition. In our case, the code does not depend on such

an API ; the processor code never interacts directly with

the binding code. It will be possible a posteriori to write a

binding to newer APIs without requiring any code change.

Second, there is no run-time cost: the binding process can

be done entirely at compile-time unlike existing solutions

such as Juce[1]. Third, multiple implementation strategies

can easily be tried. One could compare atomic variables

for controls and message-passing through lock-free queues

for the usual problem of communication between an audio

processor and a user interface.

This paper will cover the issues with existing binding

systems for MPs, introduce the C++ features which enables

defining and reflecting MPs in a declarative fashion, give an

overview of the proposed way of writing MPs and introduce

a few additional possibilities of this system.

1.1 Open issues in media processor APIs

We cover succinctly in this section various undesirable prop-

erties of the current APIs and systems for implementingMPs

in C++.

1.1.1 The quadratic glue problem

This is also known as the M × N problem [2]. In the

field of intermedia creation, it manifests itself as M MPs

(distortion, chorus, OSC message sender, pitch detection,

MIDI arpeggiator…) and N HEs (Max/MSP, PureData, os-

sia score [3], vvvv, OpenFrameworks, Python, Unity3D,

Unreal Engine, Essentia, VAMP, PiPo, digital audio work-

stations (DAWs)…). It is meaningful for almost every such

algorithm to be present in almost every such environment.

This requires writing M × N glue code between the MP

algorithms and the HE data structures.

Abstractions exist to allow MPs to support multiple envi-

ronments. Writing against the VST API enables an audio

algorithm to work in many DAWs. Writing against the well-

known Juce API allows code to be abstracted over multiple

DAW APIs (VST, AAX, LV2, etc.), but there are two costs

to this: the runtime performance cost due to going through

run-time abstractions and parameter systems, and the lim-

ited expressive power: parameters must conform to the API

defined by Juce, which is biased towards audio processors.

Juce does not allow the creation of a Max object that pro-

cesses messages or a Python class with multiple methods

for instance. Othermeta-plugin-APIs, such as iPlug2[4] and

DPF 1 , behave similarly.

1 https://github.com/DISTRHO/DPF

mailto:contact@celtera.dev
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/DISTRHO/DPF

1.1.2 Example of the problem

Consider the task of declaring a user-facing control for a

MP: the cut-off frequency of a low-pass filter. Examples

taken from various extensible software environments are

shown in Table 1: most of them additionally require to

inherit from some base class.

In all these examples, the low-pass code can be imple-

mented with a similar expression once the parameters’ val-

ues have been retrieved from the parameter system. Yet, it

is necessary to write as many low-pass implementations as

there are environments. In addition, APIs which abstract

over HEs, such as iPlug2, Jamoma, and Juce, may store

some meta-data at run-time even for APIs which would be

unable to leverage them, which wastes memory. This causes

frameworkization: a MP author must ask “Am I writing

against JUCE, iPlug2, DPF, VST3 directly ?”. Likewise,

a MP implemented in Bespoke, cannot be trivially ported

to VCVRack even when a large amount of algorithms is

theoretically portable to both.

Other approaches rely on custom pre-processors using C++

comments as in RATL [5] or generation of MPs defined in

another language, such as in UGG [6]. In the first case, the

approach lacks the static checking opportunities offered by

the C++ type system, and require the meta-processor to be

able to parse enough C++ to understand the comments 2 . In

the second case, the interoperability with separate libraries

is harder, as the generator only supports a predefined set of

operations ; mainly arithmetic on numbers. In contrast, the

proposed approach only depends on native C++ constructs:

everything is done through language features, no separate

system is involved.

1.1.3 Parameter addressing and safety

The existing abstractions generally do not offer convincing

safety mechanisms, or coerce everything into the lowest

common denominator, such as single or double-precision

floating-point value. This is caused by run-time parameter

abstractions, evidenced in Table 1: when retrieving the

value of a parameter, it is not possible to simply access a

value of the correct type, which is hidden by the abstraction.

Instead, the developer of the MP has to query the parameter

system for this value. This querying mechanism can be

done in various ways:

• Index-based queries: PureData, Max/MSP, VST2.

Error-prone: the developer has to remember to which

numeric index a parameter is assigned and either

switch on it or go fetch it in an array. Adding a new

parameter at the beginning may require the developer

to recompute all the indices in the MP codebase.

• String-based queries: getParameter("freq"). Used
in Essentia. Error-prone: since string content is not

part of the type-system, the compiler cannot warn

that "Freq" has been used instead of "freq" which

leads to hard-to-debug issues.

• Enum-based queries: a layer of safety above indices,

which are replaced by enumerations which can be

named: enum Param { kCutoff, kGain }. Used
in VCVRack, iPlug2 for instance.

2 Consider for instance printf("this \"co // de\""); as an ex-

ample which requires non-trivial work to parse correctly

A better technique, found in Bespoke, is to separate the pa-

rameter abstraction and its value, by passing a pointer to the

value to the parameter abstraction, which will be tasked of

querying and updating it. This way, the processing code can

directly use the parameter variable without going through

the abstraction layer required by the metadata system.

1.1.4 Cache optimality, abstraction cost

Another issue directly related to this parameter metadata

system, is the locality of the storage of parameters. In sys-

tems such as Juce, the parameter values are stored within

objects, which can be dynamically allocated: in terms of

memory layout, the controls may be far apart in memory.

This means that instead of needing to fetch one cache line if

eight parameters were laid out contiguously, the CPU may

have to perform eight different memory fetches, assuming

a 64-byte cache line and a MP with eight double-precision

parameters. This can have a performance impact especially

at smaller buffer sizes where the parameters may have to

be fetched again at a high frequency.

Additionally, all the present abstractions’ overhead is per

instance, even when the metadata of each parameter is

known to be constant across all instances of a given MP.

That is, when loading a bank of 64 filters, the description of

the filter’s parameters will be duplicated at least 64 times in

memory. A better system ought to store a single copy of the

metadata for the whole program, and not per MP instance,

to facilitate large-scale systems with thousands of objects.

Finally, these systems are less amenable to compiler opti-

mizations, due to the indirection barrier between parameters.

In the cases where one would perform a compile-time com-

bination of multiple MPs, such as building a synthesizer

out of an oscillator, a filter, and an amplification stage, the

compiler is less likely to be able to optimize computations

across modules.

1.1.5 A note on other languages

Wedo not cover non-C++ systems andDSLs such as Faust[12],

SOUL 5 , Vult 6 …. They are mainly concerned about defin-

ing DSPs. In contrast, using a general-purpose language

allows a wider range of MPs to be designed: event-driven

message processors, image processors, network commu-

nication systems, etc. The system should allow the user

to implement a 2D image filter that would be useable in

drawing software as well as in Max/MSP, without having

to write glue code.

Staying in C++ enables the algorithm authors to benefit

from the ecosystem of libraries and APIs. Most of the sys-

tems mentioned in Table 1 are implemented in C++, and

most of the libraries for performing media-related process-

ing or data communication offer a C or C++ API: interacting

with hardware such as LeapMotion, Kinect, Wiimote, etc.

Systems based on separate languages generally need a small

layer of C or C++ glue to implement e.g. OSC communi-

cation: one cannot easily write OSC network code directly

in a Faust, SOUL or Vult object as these language do not

expose 7 socket primitives. This implies the existence of

bindings akin to Faust architecture files [13]: in our case,

as C++ code which reflects MPs.

5 https://soul.dev
6 https://www.vult-dsp.com
7As far as the author could find.

https://soul.dev
https://www.vult-dsp.com

System Code example: declaring a new parameter

Bespoke[7] new FloatSlider(this, "freq", 5, 4, 120, 15, &mFreq, 20, 2000)
Essentia[8] declareParameter("cutoff", "frequency [Hz]", "(0,inf)", 1500.)
iPlug2[4] GetParam(kFreq)->InitDouble("Freq", 0., 0., 100.0, 0.01, "Hz")
PiPo[9] PiPoScalarAttr<double> factor{this, "freq", "Frequency", false, 1.0}

Jamoma[10] addAttributeWithSetter(freq, kTypeFloat64)
addAttributeProperty(freq, range, TTValue(2.0, sr*0.475))
addAttributeProperty(freq, description, TT("Cutoff"))

Jamoma2 Parameter<double, Limit::None<double>, NativeUnit::Hz> frequency
= { this, "frequency", 1000.0, ... };

Juce[1] addParameter(freq = new juce::AudioParameterFloat("freq", "Freq", 0.0f, 1.0f, 0.5f))
LV2[11] Declared in a Turtle file defining the processor metadata

Max / PureData No parameter type, run-time mechanism generally based on switch/case

VCVRack 3 configParam(FREQ_PARAM, -54.f, 54.f, 0.f, "Frequency", " Hz", ...)
VST2 4 No parameter type, run-time mechanism based on queries from the host

VST3 parameters.addParameter(new ScaledParameter ("Freq", "Hz", 0, 1000, ...))

Table 1: Declaring a frequency parameter with metadata such as minimum and maximum value, unit, textual description, etc.

in various environments.

1.2 Our goals

We aim to provide a C++ methodology and system to alle-

viate the aforementioned issues:

• End the frameworkization: it should be possible to

implement a MP solely through language primitives,

without requiring specific types coming from a third-

party library. This improves composability, optimiz-

ability, and compatibility: a MP which does not use

any library but is implemented simply as a C++ struct

with appropriately-named members is trivial to com-

pile and run on even very small embedded targets

(such as microcontrollers), uncommon targets (We-

bAssembly, eBPF) or to port to a new host, unlike a

MP written with Juce.

• Zero-cost design with a strict “do not pay for what

you do not use” policy: unused metadata should be

able to be entirely optimized-out by the compiler. The

system should allow inter-procedural optimizations

among MPs to the limit of what C++ compilers are

able to perform. Binding to an existing plug-in API

should have no run-time over-head over implement-

ing a plug-in directly against this API in the most

efficient way.

• Safe design where parameters are defined in a non-

redundant, integrated way, without per-instance cost

for the metadata: what we want is the processing code

to be able to refer to simple C++ variables directly

for accessing parameters, so that the C++ language

can type-check them to reduce the opportunity for

run-time errors especially when adding and remov-

ing parameters in MPs. These variables should at

the same time carry the metadata (description, range,

unit...), without having to duplicate them for each

instance of the MP. We do not want in particular a

system where one would have to repeat the declara-

tion of a parameter or split it in multiple places (by

defining for instance enumerations). We do not want

to require the use macros either due to their notorious

error-proneness.

• Extensible design: an HE with specific port types,

such as geometry data for 3D software, should be

able to add support for them.

2. AVENDISH: LIBRARY DESIGN PROCESS

The goals exposed in section 1.2 are mostly achievable

thanks to various features added to the C++ programming

language over its last evolutions. Even if the language

does not support an explicit “reflection” feature as in Java,

Python and others, we can combine enough existing features

of the language to approximate reflection to a point which

is enough for implementing MPs succeeding in these goals.

An example implementation, which is able to target VST,

VST3, Max/MSP, PureData, Python, create an OSC API

and create a Qt GUI has been developed by the author and

is available on GitHub 8 under a free license.

An important point of this implementation is that MPs can

be written without having any explicit dependency on the

library: technically, even existing code can be reinterpreted

as being an Avendish-compatible MP, without requiring

manual intervention. Since some tasks are verbose, a helper

library nonetheless provides valid implementation of com-

mon use-cases. However, the author encourages organiza-

tions to develop their own helper libraries with the coding

style and conventions they are most used to.

2.1 The C++ subset we are using

Note that by subset, we do not mean that users of the API

are restricted from using parts of the C++ language for

their implementation ; only that this work does not imply

that every C++ construct is used. For instance, dynamic

polymorphism through inheritance is not processed in any

way as it does not add any meaningful information for what

we wish to do. Most run-time environments do not even

have a way to make use of it: a polymorphic VST control

does not make sense.

The main restrictions are that reflected types must be ag-

gregates in C++ parlance. Simply put, types which do not

have explicit constructors, private or protected members,

or virtual functions. Every struct example throughout

this document is an aggregate. Templates cannot easily be

8Available at https://github.com/celtera/avendish. A com-

plete documentation is provided, and explains how to author a MP from

scratch: https://celtera.github.io/avendish.

https://github.com/celtera/avendish
https://celtera.github.io/avendish

mapped either as they exist at a level of abstraction above

the object model we are working with ; one cannot reflect a

template, only a particular instantiation of it.

2.2 Reflection features in modern C++

We present to the reader the features introduced in recent

C++ standards which we are able to use to implement the

MP bindings.

2.2.1 Reflection on struct members with Boost.PFR

The core technique making this project possible is imple-

mented within the Boost.PFR 9 library. It enables compile-

time iteration of the members of an aggregate. The structure

Controls below is an example of aggregate: Boost.PFR
permits iteration and subsequent reflection of the members a
, b, c in order. The implementation leverages destructuring,

a C++17 feature.

struct Controls {
std::string a;
float b;
int c;

};

2.2.2 Querying existence of members

Thanks to C++20 concepts[15], it becomes possible to query

the following information at compile-time: “Does the type

T have a member variable named foo?”. The has_a_foo
() function will return a compile-time computed boolean

value, true if it is passed as template argument a type with

a member variable foo, false if not. requires yields a

boolean: whether T satisfies the specified requirements:

template<typename T>
consteval bool has_a_foo()
{ return requires (T t) { t.foo; }; }

2.2.3 Querying metadata on members

It is possible to perform queries on the type of such variables,

such as: “Does the type T have a member variable bar of
type float?”.

This is done with concepts and requires-expressions:

template<typename T>
consteval bool has_a_float_bar() {

return requires (T t)
{ { t.bar } -> std::same_as<float>; };

}

2.2.4 Reacting to existence of members

It is possible to implement different behaviours depending

on those cases, thanks to the if constexpr C++17 feature.
Unlike if, the condition is guaranteed to be resolved at

compile-time and thus bears no cost and does not exist at run-

time ; for each template instantiation, either the condition

will be true or not true ; each instantiation will only have

one of the branches compiled in (or none at all).

9 github.com/boostorg/pfr. A prototype which leverages the vari-

adic destructuring feature: auto [... members] = a_structure;
proposed in standard paper P1061 [14] allows discarding the Boost depen-

dency entirely. This feature however only works in development versions

of C++ compilers so far.

template<typename T>
void print_foo_or_bar() {

if constexpr(has_a_foo<T>())
print("{}", t.foo);

else if constexpr(has_a_float_bar<T>())
print("{}", t.bar);

}

This code compiles if T is an integer, a character array, or

even the following type:

struct empty_type { };

The implication for our needs is that it becomes possible

to reflect object properties at compile-time, without any

run-time cost.

2.2.5 A wide API contract

It is possible to support various variants and coding styles for

a given concept. The techniques presented here can be used

to make the first part of Jon Postel’s statement: “Be liberal

in what you accept, and conservative in what you send”

applicable to C++ API design. Consider an user-facing

description metadata for an object, various organizations

may use distinct coding styles:

struct object_of_org_A {
auto desc() { return "Equalizer"; }

};

struct object_of_org_B {
static void getDesc(std::string& storage)
{ storage = "Equalizer"; }

};

Both implementations transmit the same information. We

can on the library side write the following function:

template<typename T>
string get_description(const T& t) {

if constexpr(requires { t.desc(); }) {
return t.desc();

}
else if constexpr(requires (string s)

{ t.getDesc(s); })
{
string ret; t.getDesc(ret); return ret;

} // etc..
}

This way both possibilities will be treated in an equally op-

timal way. Not all cases can be accounted for ; as evidenced

in Table 1, it is impossible to get a community of our scale

to agree on a single interface. Instead, we should consider

making binding libraries which try to accept as many sys-

tems and ways of implementing MPs as possible, especially

when extending those independent binding libraries is a task

as simple as adding a branch to a compile-time if.
This approach accommodates both for future MP APIs

when they will inevitably come up, and for various ways

of designing the actual MPs, and do both these things with-

out having to pay a run-time abstraction cost either in CPU

usage or memory, simply through writing or extending in-

dependent binding code.

github.com/boostorg/pfr

2.3 Application to our work

The outlined reflection mechanism allows the author of a

binding to check at compile-time whether an object is, for

instance:

• Something that will only process messages.

• Something that is a monophonic, per-sample audio

processor (and thus can be duplicated to multiple

channels), for instance because the structure has a

member function of the form:

float operator()(float input).

• Something that is a polyphonic audio processor, for

instance because the structure has a member function

of the form:

void operator()(float** in, float** out,
int frames), or adequate input / output ports.

• Something that is a video filter, because it has a tex-

ture input port and a texture output port.

Defining an ontology for ports is a work-in-progress for

which the author believes a collaboration across the com-

puter music community would be fruitful. During the library

development process, many different shapes of ports were

tried. Here, my_port is categorized as a polyphonic audio
port, and another_port as a sample-based audio port.

struct { struct {
doubles** frames; float sample;
int channels; } another_port;

} my_port;

Binding code will adapt these recognized forms to what

HEs expect. One can write a per-sample audio processor: it

is converted to a per-block VST plug-in automatically. The

binding code will run for every frame and every channel

of the input buffers. Conversely, a per-block definition

can be mapped to a per-sample system such as VCVRack,

simply by passing a sample count of 1 and allocating 1-

sized arrays as automatic storage (i.e. on the stack). This

way, an algorithm can be expressed in the way that is the

most natural for it, while retaining portability to all existing

environments.

A self-contained example of a simple distortion processor

is available: https://github.com/celtera/avendish/
blob/main/examples/Raw/Minimal.hpp. Various other
examples showcase the supported features.

The Avendish library is currently able to reflect on the

following features of a class:

• Inputs, outputs: either as ports or in simple cases

as arguments to an operator() function. Recog-

nized ports value types can be int, bool, float,
string and enumerations, sample-based, channel-

based or array-of-channel-based audio ports, MIDI

ports ; RGBA texture ports.

• Methods, free functions and lambda functions can be

used for messages in Max/MSP and PureData. Their

arguments are automatically reflected: void foo(
int f, std::string v) will display an error in

Max and Pd consoles if the messages sent to the object

are incompatible with the types. A similar feature is

available for initialization of Max/MSP or PureData

objects. No explicit type conversion is ever required.

• A preset system to declare built-in presets of input

controls is available.

2.4 Defining controls

The idea is to make the control meta-data part of the type

system. As shown earlier, most systems store the metadata

relative to a parameter in the same object than the parameter

itself which is bad for cache behaviour and memory use.

That is, if our parameter is a float, we want:

sizeof(TypeOfParameter) == sizeof(float)

without a single wasted or repeated byte. Thus metadatas

such as range, unit or descriptions, cannot just be stored as

member variable. We are able to leverage our system to put

this information as static methods instead: this means that

the storage will be allocated not once per instance, but once

for the whole program. Static data members are technically

possible, but incur additional limitations: there cannot be a

static variable in an unnamed class. Functions and methods

however are “free” in a storage sense ; besides, it is possible

to define structures inside methods which allows to simplify

the code. A control, which combines static metadata and

per-instance value, can be implemented with:

struct {
struct range
{ float min = -1, max = 1, init = 0.; };
float value;

};

2.5 Simplifying controls

If we have many similar controls (some synthesizers can

have thousands), we may want to simplify the way they are

defined.

Before C++20 this could be donewithmacroswhichwould

expand to code such as in section 2.4, but those come with

well-known issues. In C++20, we can instead make them

part of the type system:

struct range {
float min{}, max{}, init{};

};

template<range Def>
struct float_control {

consteval auto range() { return Def; }
float value;

};

float_control<range{.min = 0, .max = 10}>
control_1;

In all the above cases, we can easily create new control

types, with the range metadata embedded in the type itself.

This enables performing static, compile-time checks on the

control ranges.

https://github.com/celtera/avendish/blob/main/examples/Raw/Minimal.hpp
https://github.com/celtera/avendish/blob/main/examples/Raw/Minimal.hpp

3. APPLICATIONS AND FUTUREWORK

3.1 Thread-safety

MPcommunication between e.g. processing andGUI threads

can be made automatically thread-safe, for instance through

atomic variables 10 and lock-free queues. Given a struct,

one can synthesize a tuple of equivalent atomic variables at

compile-time. This is implemented for the VST2 binding:

struct inputs {
struct { float value; } control1;
struct { int value; } control2;

};
using controls = to_atomics<inputs>;
// controls will be this type:
// tuple<atomic<float>, atomic<int>>;

3.2 Large-scale replication of processes with

structure-of-arrays transformation

A programming technique originating in video game devel-

opment consists in laying out each individual data member

of a large set of entities (filters, synthesizer voices, etc.)

contiguously. This has the benefit of adapting to modern

SIMD CPUs, which are able to process up to 16 floating

point values with a single instruction. The reflection abili-

ties described here allow to generate such arrays from the

structures defined. This enables synthesizers with a high

level of parallelism across voices, large filter banks, etc.

3.3 Amenability of such processes to automatic

compiler optimizations

MPs defined as such can combined simply by wiring the

calls manually. Everything is just plain members and mem-

ber functions: there is no indirection. Given basic nodes

implementing fundamental operations (+, ×), we define
a simple dataflow. Testing with recent compilers showed

that they can vectorize calls across objects 11 : the entire

computation, defined as a set of interacting C++ structures,

is recognized as being equivalent to a single vector instruc-

tion: the proposed system enables inter-procedural compiler

optimization.

4. CONCLUSIONS

An empirical observation which underpins this work is

that class-based inheritance works for code reuse and in-

teroperability at the organisation level, not at the ecosys-

tem level. Every HE implements custom APIs for defin-

ing MPs. VCVRack uses sample-based audio processors,

Max/MSP can use either event-based message-passing, and

block-based monophonic or polyphonic signal processing,

etc. These different needs means that polymorphic inter-

faces are incompatible ; yet we show that it is now possible

to write a system where the canonical, dependency-free ver-

sion of a MP can be authored, and then bound automatically

to various environments with the same run-time cost than if

this was done optimally by hand.

The techniques presented here have a wide reach: the

author has successfully applied them to the declarative defi-

nition of GPU pipelines and user interfaces.

10Atomic variables are safe for concurrent access by different threads.
11 https://gcc.godbolt.org/z/dKT5cbvcr

5. REFERENCES

[1] Martin Robinson. Getting started with JUCE. Packt

Publishing Ltd, 2013.

[2] Mike Loukides. “Thinking About Glue”. In:O’Reilly

Radar. 2021.

[3] Jean-Michaël Celerier et al. “OSSIA: Towards a Uni-

fied Interface for Scoring Time and Interaction”. In:

Proceedings of the International Conference on Tech-

nologies for Music Notation and Representation

(TENOR). Paris, France, 2015.

[4] Oliver Larkin, AlexHarker, and Jari Kleimola. “iPlug

2: Desktop Plug-in Framework Meets Web Audio

Modules”. In: Proceedings of the 4th Web Audio

Conference. Berlin, Germany, 2018.

[5] Karl MacMillan, Michael Droettboom, and Ichiro Fu-

jinaga. “A System to Port Unit Generators Between

Audio DSP Systems.” In: Proceedings of the Interna-

tional Computer Music Conference (ICMC). Havana,

Cuba, 2001.

[6] Roger B Dannenberg. “UGG: a Unit Generator Gen-

erator”. In: Proceedings of the International Com-

puter Music Conference (ICMC). Daegu, South Ko-

rea, 2018.

[7] Benedict Gaster and Ryan Challinor. “Bespoke Any-

where”. In: Proceedings of the New Interfaces for

Musical Expression Conference (NIME). Shanghai,

China, 2021.

[8] Dmitry Bogdanov et al. “Essentia: An audio analysis

library for music information retrieval”. In: Proceed-

ings of the International Society for Music Informa-

tion Retrieval Conference (ISMIR). Curitiba, Brazil,

2013.

[9] Norbert Schnell et al. “PiPo, A Plugin Interface for

Afferent Data Stream Processing Modules”. In: Inter-

national Symposium on Music Information Retrieval

(ISMIR). Suzhou, China, 2017.

[10] Timothy Place, Trond Lossius, and Nils Peters. “The

Jamoma Audio Graph Layer”. In: Proceedings of the

International Conference on Digital Audio Effects

(DAFx). Graz, Austria, 2010.

[11] David Robillard. “LV2 atoms: A data model for real-

time audio plugins”. In: Proceedings of the Linux

Audio Conference (LAC). Karlsruhe, Germany, 2014.

[12] Yann Orlarey, Dominique Fober, and Stéphane Letz.

“Faust: an efficient functional approach to DSP pro-

gramming”. In: New Computational Paradigms for

Computer Music. Paris, France, 2007.

[13] Dominique Fober, Yann Orlarey, and Stéphane Letz.

“FAUST Architectures Design and OSC Support.”

In: Proceedings of the International Conference on

Digital Audio Effects (DAFx). Paris, France, 2011.

[14] Barry Rezvin and JonathanWakely. “Structured Bind-

ings can introduce a Pack”. In: ISO/IEC WG21 –

2022/04 mailing. 2022.

[15] ISO/IEC. C++20 standard. 2020.

https://gcc.godbolt.org/z/dKT5cbvcr

	 1. Introduction
	1.1 Open issues in media processor APIs
	1.1.1 The quadratic glue problem
	1.1.2 Example of the problem
	1.1.3 Parameter addressing and safety
	1.1.4 Cache optimality, abstraction cost
	1.1.5 A note on other languages

	1.2 Our goals

	 2. Avendish: library design process
	2.1 The C++ subset we are using
	2.2 Reflection features in modern C++
	2.2.1 Reflection on struct members with Boost.PFR
	2.2.2 Querying existence of members
	2.2.3 Querying metadata on members
	2.2.4 Reacting to existence of members
	2.2.5 A wide API contract

	2.3 Application to our work
	2.4 Defining controls
	2.5 Simplifying controls

	 3. Applications and future work
	3.1 Thread-safety
	3.2 Large-scale replication of processes with structure-of-arrays transformation
	3.3 Amenability of such processes to automatic compiler optimizations

	 4. Conclusions
	 5. References

