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Photocycloadditions of benzene derivatives and their 
systematic application to organic synthesis 
Arthur DesvalsA and Norbert HoffmannA,*

ABSTRACT 

Photocycloadditions of benzene derivatives with alkenes play an important role as key steps in 
organic synthesis. Intramolecular reactions have been most frequently studied in this context. 
Often, meta or [2 + 3] photocycloadditions take place in competition with ortho or [2 + 2] 
additions. The influence of the substitution pattern and the spin multiplicity of the excited state 
on the outcome of these reactions is discussed. A topological analysis permitting a systematic 
application of the [2 + 3] photocycloadditions to the total synthesis of natural products is 
presented and a selection of corresponding syntheses is discussed. More recently the [2 + 2] 
photocycloaddition and consecutive rearrangements on organic synthesis have been published. 
Some approaches in the context of asymmetric synthesis have also been reported.  

Keywords: aromatic compounds, meta or [2 + 3] photocyloaddition, molecular complexity, 
natural products, ortho or [2 + 2] photocycloaddition, photocycloaddition, spin multiplicity, 
terpenes, total synthesis. 

Introduction 

Photochemical reactions of simple compounds can generate a high degree of molecular 
complexity and diversity which is of high interest, for example, for the search of new 
biologically active compounds.[1] The photochemical reactivity of organic compounds is 
significantly different from their ground state reactivity. This is due to the fact that 
photochemical or electronic excitation modifies the electronic configuration of such 
compounds.[2,3] New compounds or compound families become easily available that 
cannot, or only with difficulty, be synthesised by more conventional methods of organic 
synthesis. Consequently, these reactions have become an important tool in organic 
synthesis.[4–7] During recent years, photochemical reactions became also particularly 
attractive in chemical and pharmaceutical industries when searching for new biologically 
active compounds.[8,9] Photocycloadditions of alkenes with electronically excited ben-
zene derivatives are typical examples. While ground state reactions of such compounds 
are often characterised by a high tendency to regenerate aromaticity in the products, 
photochemical reactions are frequently characterised by a high tendency to loose aro-
matic character in the products. In this context, it should also be mentioned that 
photochemical excitation significantly affects the aromatic or anti-aromatic charac-
ter.[10–13] Thus benzene derivatives become anti-aromatic when they are photo-
chemically excited. Consequently, the reactivity is significantly increased. For the same 
reason, product formation at the excited state potential energy surface is directed to 
structures which are less stable at the ground state potential energy surface. Thus, a high 
degree of molecular complexity is generated in one step with relatively simple starting 
compounds. In the context of sustainable chemistry, it should be pointed out that in these 
reactions the concept of the photon as a traceless reagent is realised.[14] 

Three different modes of photocycloaddition are possible between ground state 
alkenes and electronically excited benzene type compounds (Scheme 1). They provide 
efficient access to complex non-aromatic polycyclic compounds. Ortho ([2 + 2]) 

For full list of author affiliations and 
declarations see end of paper 

*Correspondence to: 
Norbert Hoffmann 
CNRS, Université de Reims Champagne- 
Ardenne, ICMR, Equipe de Photochimie, 
UFR Sciences, B.P. 1039, 51687 Reims, 
France 
Email: norbert.hoffmann@univ-reims.fr 

Handling Editor: 
Curt Wentrup 

Received: 10 February 2023 
Accepted: 20 March 2023 
Published: 4 May 2023 

Cite this: 
Desvals A and Hoffmann N (2023) 
Australian Journal of Chemistry 
doi:10.1071/CH23029 

© 2023 The Author(s) (or their 
employer(s)). Published by 
CSIRO Publishing.  
This is an open access article distributed 
under the Creative Commons Attribution- 
NonCommercial-NoDerivatives 4.0 
International License (CC BY-NC-ND) 

OPEN ACCESS  

https://www.publish.csiro.au/
https://www.publish.csiro.au/
https://doi.org/10.1071/CH23029
www.publish.csiro.au/ch
www.publish.csiro.au/ch
https://orcid.org/0000-0002-8615-7476
mailto:norbert.hoffmann@univ-reims.fr
https://doi.org/10.1071/CH23029
https://creativecommons.org/licenses/by-nc-nd/4.0/


photocycloadditions lead to bicyclo[4.2.0]octa-2,4-dienes, 
meta ([2 + 3]) photocycloadditions generate tricyclo 
[3.3.0.0]octa-3-enes and para ([2 + 4]) photocycloaddi-
tions give rise to bicyclo[2.2.2]octa-2,5-dienes. 

Despite promising recent studies,[15–17] para photocy-
cloadditions are rarely observed for benzene-like aromatic 
compounds. Ortho and meta photocycloadditions have been 
studied much more intensively since their discoveries, 
respectively, in 1957[18,19] and 1966.[20,21] However, many 
aspects, such as the competition between these modes, still 
need intensive investigation. Also, the influence of substitu-
ents or the influence of the spin multiplicity on this compe-
tition are not yet well understood. These are important topics 
when the reactions are systematically applied to organic 
synthesis. Mechanisms based on the formation of an exciplex 
have been proposed to explain the selectivity.[22,23] The 
selectivity is strongly influenced by the nature of the substit-
uents because they affect the electron-donating and accept-
ing properties of the partners. A large electronic difference 
between the partners induced by the substituents directs the 
reaction towards the ortho photocycloaddition whereas a 
small difference favours the meta photocycloaddition.[22,24] 

The substitution pattern may also cause an exergonic pho-
tochemical electron transfer between the reaction partners 
leading to non-cyclisation products. A common intermedi-
ate for all three photocycloadditions was later found in a 
computational study.[25] It is easily accessible from the S1 
state and corresponds to a conical intersection between the 
S1 and S0 surfaces. Over the years, numerous reviews have 
described many aspects of these reactions, ranging from 
experimental conditions and mechanistic descriptions to 
applications in total synthesis.[26–30] The present article 
gives an overview of historical and recent applications in 
total syntheses. Topological aspects are detailed as they are 
crucial for the planning of total syntheses. Furthermore, 
new insights on the competition between ortho and 
meta photocycloadditions at their singlet excited state are 
highlighted. 

Meta photocycloaddition at the singlet state 

It was early established that the meta photocycloaddition 
occurs at the singlet excited state, based on the observed 
retention of configuration of the alkene partner and quench-
ing experiments.[31] The mechanism of the meta photocy-
cloaddition is detailed for the intramolecular version in  
Scheme 2. The intramolecular [2 + 3] cycloaddition of the 
aromatic compound 1 excited to the singlet state to the 
alkene function can either occur at positions 1,3 or 2,6, to 
lead to intermediates 2 or 3 respectively. They also possess 
zwitterionic character due to the singlet multiplicity.[32] 

After this initial formation of two σ-bonds, the charge or 
radical combination leads to two different products for each 
intermediate depending on the generated cyclopropane. The 
more common intermediate 2 usually yields angular triqui-
nanes 4 or linear triquinanes 5. Intermediate 3 gives struc-
tures 6 or 7. Due to the zwitterionic character of the 
intermediates, electronic properties of substituent X have 
an influence on the regioselectivity. If X is electron- 
donating, it directs the addition towards positions 1,3 to 
form intermediate 2, while positions 2,6 and intermediate 3 
are preferred when X is electron-withdrawing.[20,33,34] In 
the case of the absence of a strong donor or acceptor 
substituent X, compelling evidence showed the biradical 
nature of these intermediates.[35,36] 

Applications of meta photocycloadditions in 
total syntheses 

The meta photocycloaddition gives access to many different 
scaffolds depending on the opening of the cyclopropane ring 
(Scheme 3). A topological analysis is helpful for a targeted 
application to the synthesis of natural compounds. On the 
one hand, cleavage of the external allylic σ-bond (blue) 
leads to either angular triquinanes like isocomene, or linear 
triquinanes like hirsutene. On the other hand, cleavage of 
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the internal allylic σ-bond (red) gives sesquiterpenoids 
like α-cedrene. From this type of product, another internal 
σ-bond (green) can be cleaved leading to other polycyclic 
structures like rudmollin. 

The pioneer work of Wender and Howbert displayed 
many applications of the meta photocycloaddition in total 
syntheses of natural products.[37] In this first of a large series 
of articles, in 1981, they described their strategy considering 
the mode of addition (ortho, meta, para), regioselectivity, 
endo/exo selectivity and stereochemistry. First, they pointed 
out that the intramolecular reaction drastically reduces the 

number of possible cycloadducts compared to the inter-
molecular version. Then they adjusted the substituents and 
their electronic properties to favour the meta mode and to 
direct the regioselectivity. Finally, the endo/exo selectivity 
and stereochemistry were explained by looking at the con-
formations of the exciplexes. Some of these syntheses will 
now be briefly discussed focusing on the crucial steps of 
meta photocycloaddition and cyclopropane opening. 

In the total synthesis of isocomene, the meta photocy-
cloaddition of the aromatic compound 8 gives both the 
linear and angular cycloadducts 9 and 10 (Scheme 4).[38] 
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It should be pointed out that the reaction was stereospecific 
with respect to the chiral centre in 8 which is explained by 
an allylic 1,3-strain effect.[39] This was observed in many 
similar reactions. The linear adduct 10 was transformed into 
the angular one (9) by a thermal vinyl cyclopropane 

rearrangement. Conveniently, this process also leads to the 
opening of the cyclopropane by a 1,5-hydrogen transfer to 
yield product 11. Isocomene was then obtained by a regio-
selective catalytic hydrogenation. 

In the synthesis of hirsutene, the meta photocycloaddi-
tion was less efficient (Scheme 5).[40] It was improved by 
adding an acetyl function on the lateral chain of substrate 
12. Treating the meta adduct 13 with 10-camphor-sulfonic 
acid then led to intermediate A with a tertiary allylic posi-
tive charge that was neutralised by an E1 elimination to 
yield product 14. Hirsutene was then obtained after four 
additional steps. 

The enantioselective total syntheses of penifulvins A, B 
and C were developed more recently by Gaich and Mulzer 
using a similar methodology (Scheme 6).[41,42] The stereo-
genic quaternary carbon centres in position 6 of adducts 16 
and 18 were set by the trisubstituted E/Z double bonds of 
substrates 15 and 17 respectively. Due to the fact that the 
photocycloadditions occur at the singlet excited state, no 
long living radical intermediates are generated enabling E/Z 
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isomerisation. It should be pointed out that such reactions 
can be carried out with compounds possessing non-protected 
hydroxy functions. 

In the synthesis of α-cedrene, the meta photocycloaddi-
tion of compound 19 led to a mixture of products 20 and 21 
(Scheme 7). These two adducts converged into product 22 
when the internal allylic σ-bond was cleaved by an addition 
of Br2 followed by radical debromination using tributyltin 
hydride. α-Cedrene was finally obtained with 58% yield by 
a Wolff–Kishner reduction of product 22. 

A similar strategy was applied to the synthesis of rud-
mollin. This synthesis required the cleavage of two σ-bonds 
of the cyclopropane (Scheme 8).[43] Irradiation of substrate 
23 yielded a mixture of meta adducts 24 and 25. As for 
α-cedrene, the cleavage by electrophilic activation of the 
internal allylic σ-bond of the two products 24 and 25 led to 
a unique product 26. Compound 27 was obtained after eight 
additional steps; its geometry allowed the cleavage of 

another σ-bond originating from the initial cyclopropane. 
Mesylation of the alcohol, followed by addition of lithium 
aluminium hydride, induced fragmentation to give product 
28. Rudmollin was then obtained after six additional steps. 

Asymmetric induction of meta 
photocycloadditions 

High diastereoselectivities were observed by Sugimura and 
co-workers by introducing a chiral tether (Scheme 9). 
Irradiation of substrate 29 yielded predominantly adduct 
31 (70%) and traces of product 30 (<2%).[44,45] 

Several photochemical reactions have been carried out 
with cyclodextrin (CD) inclusion complexes in order to 
induce chirality by the host structure.[46,47] Moderate enan-
tioselectivities were obtained by Vízvárdi and co-workers 
by complexation of the substrates in CDs (Scheme 10).[48] 
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The irradiation of a β-CD complex of substrate 32 yields 
products 33 and 34 in a 1:3 ratio with an enantiomeric 
excess (ee) of 2 and 17% respectively. The difference of ee 
was explained by comparing the approaches leading to each 
product in the CD cavity. The stereodifferentiation in 
approach (ii) is more expressed than in approach (i), the 
facial enantioselectivity is thus higher for product 34 than 
for product 33. 

Competition between [2 + 2] and [2 + 3] 
photocycloadditions at the singlet and triplet 
excited state 

The intramolecular ortho photocycloaddition gives access to 
interesting tricyclic structures that often rearrange into more 
stable products. Selective ortho photocycloaddition is usu-
ally induced by placing an electron-withdrawing substituent 
on the aromatic ring. Furthermore, acetophenone derivatives 
give exclusively ortho photocycloadditions since they react 
at the triplet excited state. In accordance with the El Sayed 
rules,[2,49] this is due to the facile intersystem crossing from 
the n–π* singlet excited state to π–π* triplet excited state of 
the aromatic ketones.[50] In this case, the primary adduct 37 
of ortho photocycloaddition is formed via a biradical inter-
mediate[51] 36 that combines after intersystem crossing 
(Scheme 11). The initial ortho photocycloaddition adducts 
37 then undergo a spontaneous thermal disrotatory ring 
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Scheme 9. Diastereoselective meta photocycloaddition using a 
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opening. Finally, a photochemical disrotatory cyclisation of 
cyclooctatriene 38 leads to the stable product 39.[52] 

Cosstick et al. observed the same consecutive rearrange-
ments of the primary ortho adduct 41 when irradiating 
benzonitrile derivative 40 in acetonitrile (Scheme 12).[53] 

This study opened the question of singlet or triplet inter-
mediates for these derivatives because they noticed that the 
reaction rate was not affected when irradiating solutions 
saturated by xenon.[54] In such conditions, xenon induces 
an increased spin-orbit coupling by a heavy atom effect. 
Later, the authors performed more quenching experi-
ments.[55] First, they compared the intensity of fluorescence 
of compounds bearing an alkene on the side chain with the 
saturated analogues. The fluorescence was quenched by 
50% for the derivatives with alkenes, proving that there is 
an interaction between the singlet excited state aromatic 
and ground state alkene. However, they noted that the 
quenching was less pronounced compared to aromatic com-
pounds known to react at the singlet excited state. Then they 
observed that the formation of the cyclooctatriene 42 was 
quenched by 50% in the presence of a low concentration of 
2,5-dimethylhexa-2,4-diene or 2,3-dimethylbuta-1,3-diene. 
As these dienes are triplet quenchers, the result may indicate 
that the first step of the ortho photocycloaddition occurs at 
the triplet state, but the possibility of side reactions with the 
dienes was not ruled out. Nevertheless, in this experiment 
the photocyclisation to form final product 43 was not 
affected, they thus concluded that the last step of photocy-
clisation of the cyclooctatriene takes place at the singlet 
excited state in acetonitrile as solvent. 

Following this work, Wagner et al. performed the 
irradiation of the same compound in acetone in a larger 
study investigating the effect of triplet sensitisation.[56] The 
triplet reaction in acetone yielded a different product 44. 
Triplet sensitisation did not impact the first step of the ortho 
photocycloaddition. However, it caused a different electro-
cyclisation of the cyclooctatriene 42, confirming that the 
product 43 is obtained from a photocyclisation at the singlet 
excited state. 

Our recent results give new insights on the nature of the 
excited state involved in the first step of ortho photocycload-
dition of benzonitrile derivatives (Scheme 13).[57] The 
irradiation of benzonitrile derivative 45 bearing a methoxy 
substituent revealed that the singlet excited state prevails by 
direct absorption in acetonitrile. On the one hand, the major 
products 46 and 47 are the result of a singlet state meta 
photocycloaddition. Their formation is favoured by the meth-
oxy substituent that stabilises the zwitterionic intermediate 
(see meta photocycloadditions section). Compound 46 was 
completely transformed into 47 by prolonged irradiation. On 
the other hand, the regioselectivity of the [2 + 2] addition 
served as a support that the ortho adduct 50 is formed at the 
singlet excited state. The irradiation in acetonitrile yielded 
product 50 resulting from the known rearrangements of 
adduct 48 which is formed by an ortho photocycloaddition 
on positions 1,2. After complete conversion of 45 and pro-
longed irradiation, its 15% portion of the product mixture 
didn’t change. In contrast, triplet sensitisation by irradiation 
in an acetonitrile/acetone mixture yielded product 53 
resulting from an ortho photocycloaddition on positions 
1,6. No product was isolated when irradiations were carried 
out in pure acetone, indicating that the photocyclisation of 
cyclooctatrienes 52 is not effective at the triplet state. The 
reaction is only possible in an acetonitrile/acetone mixture 
that permits the triplet ortho photocycloaddition by sensiti-
sation of substrate 45 as well as the singlet photocyclisation 
by direct absorption of cyclooctatriene 52. A typical triplet- 
excited state reaction of a cyclooctatriene intermediate is 
reported in Ref. [58]. 

Applications of ortho photocycloaddition in 
total syntheses 

An early example of application of ortho photocycloadditions 
was the synthesis of compounds 57 and 58 (Scheme 14)[59,60] 

that are 5,5-dialkylcyclohexane-1,3-dione analogues of known 
herbicides.[61–64] The irradiation of the 3,5-dihydroxy 

O O
O

D

40 41 42

hn,
CH3CN or
acetone

S1 or T1 ?NC NC NC

44

O

NC H

NC

H H

H

hn,
CH3CN

(S1)

hn,
acetone

(T1)

O

43

Scheme 12. Ortho photocycloaddi-
tion of benzonitrile derivative 40.    

www.publish.csiro.au/ch                                                                                                             Australian Journal of Chemistry 

G 

https://www.publish.csiro.au/ch


derivative 54 gave product 56 via a tautomerisation of the 
primary ortho adduct 55. The final products 57 and 58 were 
obtained after a ring opening induced by methanol addition 
under acidic conditions. 

Resorcinol derivatives such as 59 possess low photo- 
reactivity when irradiated under standard conditions due 
to the reversibility of the reaction (Scheme 15). When irra-
diated in an acidic medium, product 62 was isolated.[65,66] 

Under these acidic conditions, the tetrahydrofuran moiety of 
the primary ortho adduct 60 is protonated. Subsequent 
opening of the tetrahydrofuran ring then leads to product 
62. This type of benzocyclobutenes are valuable synthesis 

intermediates.[67] Product 63 was obtained after eight steps, 
and it was efficiently transformed into product 64 via a 
thermal rearrangement. Removal of the methyl carbamate 
protecting group finally gave benzooctahydroisoquinoline 
65.[68,69] This compound is a rigidified structural analogue 
of dopamine and has a selective affinity to certain dopamine 
receptors. 

More recently, Zech and Bach have revisited the ortho 
photocycloadditions on salicylic acid derivatives.[70] In pre-
vision of total syntheses,[71] gradual changes to the substrate 
structures were performed in order to study the selectivity of 
the reaction (Scheme 16).[72] For example, an additional 
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oxygen atom in the side chain (66a) gave product 69 as 
expected, after the known rearrangements of primary adduct 
67 and cyclooctatriene 68. However, a methyl substituent 
(66b, R═Me) yielded a different regioisomer (70) after 
photocyclisation of the cyclooctatriene 68. 

In their strategy for the total synthesis of atlanticone C, 
this methyl group had to be introduced before the photo-
chemical step so they replaced the ester function with a cyclic 
ketone (71) to force the formation of the desired regioisomer 
72 (Scheme 17).[72] To prevent undesired photochemical 
reactivity of the α,β-unsaturated carbonyl function, an aque-
ous solution of Fe2(SO4)3 was used to absorb light below 
λ = 350 nm. Synthesis of atlanticone C from product 72 
was completed by modifications of the oxidation state of 
several carbon atoms and introduction of a stereogenic centre. 
It was performed in nine steps with an overall yield of 6%. 

The research group later described the first enantioselective 
total synthesis of (+)-atlanticone C using a similar photo-
chemical reaction cascade.[73] A catalytic chiral resolution of 
the racemic photoproduct was enabled by an enantioselective 
Corey–Bakshi–Shibata reduction. This time, (+)-atlanticone C 

was prepared in 10 steps with 18% yield from the enantio-
merically pure photoproduct. 

When similar compounds to 71 were irradiated at 
λ = 350 nm, a new reactivity was observed.[74] Rauscher 
and co-workers used this photochemical reaction cascade for 
the total synthesis of (+)-agarozizanol B (Scheme 18).[75] 

In this reaction, irradiation of substrate 73 yields product 
74 after the classical sequence of ortho photocycloaddition, 
ring opening and photocyclisation. Compound 74 absorbs 
light under these conditions and undergoes a di-π-methane 
rearrangement to give product 76 via the biradical intermedi-
ate 75. The overall yield for these four successive reactions is 
62%. Product 77 was then obtained with an ee of 96% with 
the same process used in the (+)-atlanticone C synthesis.[73] 

The oxazaborolidine 78 was used for a catalytic chiral resolu-
tion of the photoproduct 76 by a Corey–Bakshi–Shibata reduc-
tion.[76] Finally, (+)-agarozizanol B was obtained from 
compound 77 after seven steps with an overall yield of 55%. 

The synthetic value of the ortho photocycloaddition is 
considerably increased when applied to hetero-aromatic sub-
strates such a pentafluoropyridine,[77] oxazolopyridine,[78] 
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benzotriazole,[79] or even polycyclic aromatics like cyano-
naphthalene.[80] More complex alkene partners can also be 
considered like naphthalene[81,82] or 1-cyanonaphthalene.[83] 

Chiral induction of ortho 
photocycloadditions 

Wagner and McMahon performed diastereoselective ortho 
photocycloadditions by irradiating compounds bearing a 
chiral auxiliary (Scheme 19).[58] Using (2R,5R)-(–)-2,5- 
dimethylpyrrolidine or (7R)-(–)-camphorsultam attached 
to substrate 79, the final product 84 was isolated with a 
diastereoisomeric excess of 90%. The only permanent 
stereogenic centre C8 is created during the first step of the 
ortho photocycloaddition. Compound 80 is formed with a 
low diastereoselectivity. It is then increased by a photo- 
epimerisation of cyclooctatriene 81. The authors suggested 
that this kinetic resolution is due to the intersystem crossing 
to the triplet state facilitated by the acetyl substituent. 
It leads to ring opening of cyclooctatriene 81 to the tetraene 
biradical 82 where the rotation of the σ-bond between the 

allyl and pentadienyl moieties leads to an epimerisation 
during ring closing to cyclooctatriene 83. 

Conclusion 

Starting from relatively simple products, photocycloadditions 
of benzene derivatives with alkenes provide efficient access to 
compounds with a high degree of molecular complexity. 
Mainly [2 + 3] (meta) or [2 + 2] (ortho) photocycloaddition 
take place. In the latter case, photochemical and thermal 
rearrangements of the primary adducts are generally observed. 
The meta photocycloaddition occurs at the singlet excited 
state. The ortho addition, however, can take place either at 
the singlet or the triplet excited state. In this case, the spin 
multiplicity may have an influence on the regioselectivity of 
cycloaddition. In this context, more systematic and detailed 
studies of the influence of the substitution pattern on the 
regioselectivity and the cycloaddition mode is necessary. For 
example, recent findings suggest that the role of the singlet 
excited state in ortho photocycloadditions of nitrile and ester 
substituted aromatic compounds may have been overlooked. 
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The meta photocycloaddition has already proven to be a 
key step in many syntheses of natural products. A topological 
analysis is helpful in this regard. In this context, the ortho 
photocycloaddition was neglected in the past. However, 
recently, impressive syntheses have been published using 
this photocycloaddition as a key step. The application of 
photocycloadditions of benzene derivatives to organic syn-
thesis can further be strengthened if challenges such as 
chiral induction or para photocycloadditions continue to 
be addressed. 
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