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SUMMARY
Sea urchins are emblematic models in developmental biology and display several characteristics that set
them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities,
we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an exten-
sive gene expression and epigenetic profiles of its embryonic development. We found that, unlike verte-
brates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal
gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some
of these expanded genes have been recruited in novel structures (water vascular system, Aristotle’s lantern,
and skeletogenic micromere lineage). Finally, we identified gene-regulatorymodules conserved between sea
urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be
conserved despite extensive gene order rearrangement.
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INTRODUCTION

Sea urchins are benthic marine animals that have attracted the

curiosity of scientists since antiquity.1 They are one of the most

amenable model systems in developmental biology because

they produce abundant gametes and transparent embryos,

and they have enabled major discoveries, such as the chromo-

somal nature of heredity, regulators of the cell cycle, and

gene-regulatory networks controlling development.2,3

Sea urchins belong to the clade of echinoderms, whose body

plan displays an intriguing pentaradial symmetry, acquired

secondarily during metamorphosis of their bilaterally symmetri-

cal larvae.4,5 In the tree of animals, echinoderms together with

hemichordates form the Ambulacraria clade, the sister group

to chordates.6 Beyond their original symmetry, echinoderms

possess intriguing novelties, such as their calcium carbonate

endoskeleton and their water vascular system running through

five canals and associated tube feet.7 Among echinoderms,

sea urchins also stand out with some remarkable embryological

and adult morphological characteristics. During embryogenesis,

they proceed with early specification of a micromere cell lineage

that gives rise to the embryonic skeleton, a mechanism absent in

other echinoderms.8,9 As adults, they also possess an intricate

calcified masticatory organ: Aristotle’s lantern.

The first sequenced sea urchin genome, that of the Pacific sea

urchin Strongylocentrotus purpuratus, revealed the extensive

conservation of its gene repertoire with that of the human

genome10 and served as a support for the elucidation of gene-

regulatory networks at play during development.11,12 However,

while comparative genomics has helped us understand func-

tional differences across different vertebrate model species,

the genomic differences between distinct echinoderms have

not been thoroughly examined.13 A possible clue could come

from the Hox genes, a classic locus linking genomes and body

plan establishment.14 Because Hox genes are expressed during

metamorphosis of echinoderm larvae, the pentaradial body

plan of echinoderms has been classically related to the original

observation of a rearranged Hox cluster in S. purpuratus, while

this unique locus has been kept intact in most bilaterian ani-

mals.15–17 The subsequent discovery of an intact Hox cluster in

the sea star18 and sea cucumber19 suggested, however, that

this rearrangement is not the primary reason for the novel body

plan of echinoderms.20 The sea urchin Lytechinus variegatus

has revealed the same rearranged Hox cluster in this species

as in S. purpuratus,21,22 which could indicate that sea urchins

are more prone to genomic rearrangements than other

echinoderms.

Major evolutionary transitions have been linked to radical

genomic events, such as the whole-genome duplications in ver-

tebrates, which affected gene complement and regulation.23–25

Ancestral linkage groups (ALGs) also appear to have been re-

shuffled after whole-genome duplication at the origin of verte-

brates that underwent extensive chromosomal rearrange-

ments.26 Other deuterostomes, such as tunicates, underwent

very fast genomic evolution,27 while others, such as hemichor-

dates, retained more ancestral traits.28 Particularly, ALGs corre-

sponding to maintained chromosomal units over time appeared

at the origin of animals and were conserved at long evolutionary
2 Cell Genomics 3, 100295, April 12, 2023
distances in lineages such as cnidarians, molluscs, or other spi-

ralians with very limited fusions or rearrangements.29,30 Little is

known, however, about the genomic rearrangements that took

place in the sea urchin lineage and might underlie the evolution

of sea urchin-specific novelties in embryogenesis and body plan.

Here, we report the generation and analysis of a chromosome-

scale assembly of Paracentrotus lividus, one of the main sea

urchin species in the Mediterranean and North-East Atlantic

coast and a reference species in embryology of the sea urchin.

This species has been used since the 19th century in marine sta-

tions of France and Italy by prominent scientists, such as Hörsta-

dius, Hertwig, Boveri, and Driesch, whose work has led to the

foundation of key concepts in embryology and cell biology.31,32

For instance, Theodor Boveri demonstrated the requirement

for a complete chromosome set in each blastomere for develop-

ment,33 and Hans Driesch discovered the astonishing capacity

of isolated blastomeres from P. lividus to develop into smaller

but harmoniously patterned larvae.34 This species is also widely

consumed around the Mediterranean as a delicacy since antiq-

uity, as testified by archaeological work conducted in Pompei.35

P. lividus is also a keystone species in benthic communities

because its grazing activity can control the development of algal

populations.36 This genomic resource will thus promote popula-

tion genomics studies on this species, which will improve the

management of this ecologically and economically important

species.37

In this study, we investigated how conserved the genomic and

regulatory architecture is between P. lividus, other sea urchins,

and chordates. We compared the gene order and chromosome

organization of P. lividus with that of S. purpuratus and

L. variegatus, which diverged �60 mya.38 We profiled genome-

wide chromatin accessibility throughout embryonic develop-

ment. We investigated the expression and regulation of genes

that originated at the origin of the echinoids clade. We identified

a novel family of Pmar1-related transcriptional regulators spe-

cific to euechinoids, expressed in the micromere lineage and

capable of converting any cell of the embryo into skeletogenic

precursors. By integrating genomic and regulatory datasets,

we demonstrated how regulatory changes could be associated

with the origin of the novel body plan of urchins and other

echinoderms.

RESULTS

The genome and developmental regulatory landscape of
P. lividus

Wesequenced the genomeof a singlemale individual ofP. lividus

using 2303 Illumina sequencing (Table S1). The genome was

initially assembled using stringent parameters, and haploid

copieswere filtered out because the 2.9%polymorphismcaused

both haplotypes to be present in the initial contigs (Figure S1A).

The assembly was then improved using long-read PacBio

sequencing for gap closing, followed by scaffolding using prox-

imity ligation (Chicago and Hi-C). The draft assembly of

P. lividus amounts to 927.4 Mb with 5% of gaps and only 1.7%

missing and 0.7% duplicated BUSCO genes (STAR Methods).

Half of the assembly is comprised of 8 scaffolds larger than 41

Mb (N50), and there are 18main scaffolds (>2 Mb) that represent
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Figure 1. Genome organization and regulatory landscape of the sea urchin P. lividus

(A) HiC contact map of the P. lividus assembly, with the 18 longest scaffolds of higher contact density corresponding to putative chromosomes highlighted.

(B) Density of annotated genes (color scale) and repeated elements (ridge plot on the right) with a picture of an adult P. lividus (C.G.).

(C) Classification and number of OCRs for the different stages.

(D) Number of OCRs located at the transcription start site (TSS), in the proximal region (<5 kb upstreamof the TSS), in the gene body, and/or in the distal region (>5

kb of the TSS) in three deuterostome species.

(E) Cumulative distance to TSSs of OCRs in the same three species.

(F) RNA-seq (red) and ATAC-seq (blue) signals in the region of the nodal gene, showing two well-characterized CREs in the proximal and intronic regions of this

gene.
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88.3% of the assembly (Figure 1A; Table S2). These 18 scaffolds

correspond to the chromosome number observed in cytogenetic

studies39 (Figure 1B).Other sea urchinmodel species possess 21
chromosomes per haploid genome (S. purpuratus)40 and 19

(L. variegatus).21Whilemost of the repetitive fraction of vertebrate

genomes is usually made of retrotransposons, DNA transposons
Cell Genomics 3, 100295, April 12, 2023 3
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are dominant in the sea urchin, similar to other deuterostomes,

such as amphioxi24,25 (Figure S1B).

In addition, transcriptomes for 17 embryonic stages, from the

fertilized egg to the pluteus stage, and 5 adult tissues were

generated (Table S3). We annotated 32,041 genes, of which

80.1% have similarity to other species, and 92.1% are ex-

pressed (TPM > 1). We also annotated 5,087 high-confidence

long non-coding RNAs (lncRNAs). By using gene expression

clustering, we determined that 4,965 lncRNAs show stage-spe-

cific expression and, hence, play a potential role in the regulation

of development (Figures S2C and S2D).

To gain further insight into their developmental regulatory pro-

gram, we applied assay for transposase-accessible chromatin

sequencing (ATAC-seq) to 6 stages from the 16-cell stage to

the pluteus larva stage (Figure S3A; Table S4). Genomic regions

with higher-than-background chromatin accessibility were

labeled as open chromatin regions (OCRs) and classified de-

pending on their location (Figure 1D) and their activity profile dur-

ing development (Figure 1C). Among 64,701 OCRs distinct from

transcription start sites, we found 40% ‘‘dynamic’’ regions

(peaks) that were specific to one or two successive develop-

mental stages and 57% constitutive regions present in three or

more stages (Figures 1C and 1G). To further elucidate the regu-

latory activity in these regions, we applied Cut&Tag targeting the

H3K27ac histone modification that is associated with active

enhancers41,42 (Figures S3D, S3E, and S3G). Many OCRs also

exhibit a level of transcription consistent with regulatory activity

(Figure S3D).43 Our data efficiently recovered the activity of pre-

viously well-characterized regulatory elements (Table S5), such

as, for example, the proximal and intronic enhancers of the nodal

gene44 (Figure 1F). We compared the distribution of OCR loca-

tions with that of amphioxi and zebrafish, for which develop-

mental ATAC-seq is available25 (Figures 1D and 1E). It has

been proposed that OCRs that play an important regulatory

role usually lie either in the vicinity of the promoter (proximal,

<5 kb) or within introns (gene body).45 In vertebrates, a large frac-

tion of these elements is located more distally than in amphioxi,

which has been associated with more complex gene-regulatory

processes (Figure 1D).25 P. lividus shows a higher proportion of

distal OCRs comparedwith the cephalochordate amphioxi and a

lower proportion compared with zebrafish (Figures 1C and 1D).

We noticed that 16-cell-stage embryos (27,501 peaks) as well

as pluteus-stage larvae (39,623 peaks) exhibit fewer OCRs than

the other sampled stages. The blastula (137,938 peaks) and

gastrula (147,188 peaks) stages show many stage-specific

active elements, which are likely involved in the extensive

gene-regulatory events that control embryo patterning and cell

fate specification at these stages (Figure 1C; Table S5). In early

16-cell-stage and pluteus larva, the lower number of peaks could

be interpreted either as a generally more relaxed chromatin

state, potentially related to the absence of transcription before

zygotic genome activation, or a more condensed state (Fig-

ure S3C). We hypothesize that the 16-cell stage possesses large

open chromatin domains, as seen in other species,46 while the

larval stage (pluteus) likely undergoes a reduction of open chro-

matin domains, as seen in other lineages, such as annelids47

(Figure 1C). Similar patterns are also recovered with an

H3K27ac enrichment signal (Figure S3G). The sea urchin regula-
4 Cell Genomics 3, 100295, April 12, 2023
tory landscape therefore generally resembles the architecture

observed in vertebrates or amphioxi in terms of enhancer loca-

tion and developmental dynamics.48

Opposite trends of genomic architectural changes in
sea urchins and vertebrates
Many animal genomes retain chromosomal linkage over time as

sets of genes stay localized on homologous chromosomes, even

in distantly related species.49 Particularly, comparison of high-

quality genomes of vertebrates, cephalochordates, and

molluscs has revealed the existence of 17 ALGs ancestral to

chordates.26 However, the occurrence of chromosomal fusions

in some lineages suggests that more genomes and lineages

should be taken into account to infer the ancestral bilaterian

complement of ALGs. We examined the distribution of these

ALGs in P. lividus as well as two other available sea urchin ge-

nomes (Figures 2A and 2B).21,26 Such representations pinpoint

pairs of chromosomes or scaffolds that exhibit significant mutual

ortholog enrichment (Fisher’s exact test, p < 0.05). Our compar-

isons indicate that some of the ALGs actually fused in the verte-

brate and amphioxus lineages and suggest the existence of 23

ALGs for bilaterians, in agreement with recent studies29

(Figures S4A and S4B). Our comparisons of the sea urchin

chromosomes further support the validity of these 23 ALGs as in-

dependent genomic units and reveal a missing linkage group

that was not detected previously (dubbed ‘‘ALG R’’), likely

dispersed across multiple chromosomes in chordates, which in-

dicates 24 ALGs (Figure 2). This ALG R is merged with ALG Q

on P. lividus chromosome 4 (chr4) but remained intact in

S. purpuratus and L. variegatus (Figures S4C and S4D). We

found that 13 of 18 chromosomes of P. lividus descend from a

single ALG, four are derived from the fusion of two ALGs, and

one (chr2) receives contributions from three more (Figure 2).

Despite the conservation of ancestral linkages in P. lividus, the

distribution of ALGs in the chromosomes of L. variegatus and

S. purpuratus indicates some species-specific chromosomal

fusions10,21 (Figure 2B). The fusions observed in P. lividus are

absent in the two other species, but, conversely, some indepen-

dent fusions took place, particularly in L. variegatus, where the

two largest chromosomes (chr1 and chr2) derived from amixture

of distinct ALGs. Uniquely, ALG A1 and A2 are fused in P. lividus

but not in the other sea urchin species, a fusion event that also

took place in amphioxi.26,50 The higher number of chromosomes

of S. purpuratus reflects the occurrence of only two fusions, the

rest of the ALGs being represented as a single chromosome. In

contrast, some chromosomal fusions are more ancient; two fu-

sions are shared by all three urchin species: fusion of the three

ALGs C1, B2, and E and fusion of ALGs B3 and J1.

Unlike vertebrates, sea urchins did not undergo a sizable rear-

rangement of units derived from ancestral linkages in most of

their chromosomes, even when secondary fusions are observed

(Figures 2C, S4C, and S4D). Incidentally, the distinct sea urchin

lineages under scrutiny here have diverged since 48–68 mya,

less than for human and mouse.38 In contrast to this echinoid

chromosomal stability, we observed an extensive reshuffling of

the microsyntenic intrachromosomal gene order, which results

in the absence of an observable ‘‘colinear’’ gene order visible

as linear segments across pairs of homologous chromosomes,
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Figure 2. Evolution of sea urchin chromosomal architecture

(A and B) Oxford plots visualizing the respective positions of orthologs inferred by reciprocal best blast in the sea urchin P. lividus; the cephalochordate

Branchiostoma floridae, where ALG A1 and A2 fused (A); and the mollusc Pecten maximus, where several other ALGs fused (B).

(B) Dots located in pairs of chromosomes showing a significant mutual enrichment of orthologs (Fisher’s exact test, p < 0.05) are colored by ALG assignment,

while others are colored in gray. Axis values represent gene indexes.

(C) Synteny between chromosomes of all three available echinoid genomes (P. lividus, L. variegatus, and S. purpuratus), colored by ALG.
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as seen when comparing human and mouse genomes

(Figures 3B and 3C). To quantify the rate at which gene collin-

earity is eroded, we compared the retention of microsynteny

with the divergence time for selected sea urchin and vertebrate

species (Figure 3A)51 and showed in this way that intrachromo-

somal gene order appears to evolve at a much slower pace in

vertebrates than in sea urchins (Figure 3A).

Consequently, the gene order in the genomes of sea urchin

appears to evolve following a trend distinct from that of verte-
brates: the rate of interchromosomal rearrangement appears to

be very low, while the rate of intrachromosomal gene order

change appears to occur much faster. This distinct trend could

be due to a relaxation of functional regulatory constraints on

gene order compared with vertebrates.

The expression of recently evolved sea urchin genes
Exploration of gene content and gene expression can inform on

how gene gains and duplications can play a role in organismal
Cell Genomics 3, 100295, April 12, 2023 5
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Figure 3. Intrachromosomal gene order rearrangement in sea urchins and vertebrates

(A) The relationship between divergence time and gene order collinearity. Hsap,Homo sapiens; Ggal,Gallus gallus (chicken); Locu, Lepisosteus oculatus (spotted

gar); Pliv, P. lividus; Spur, S. purpuratus; Lvar, L. variegatus.

(B) Oxford plot between human and mouse, showing interchromosomal rearrangement but long colinear segments between the two species.

(C) Oxford plot between the two sea urchin species, showing similar chromosomal architecture but reshuffled gene orders within chromosomes.
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novelty.52 To this end, we performed gene family reconstruction

(Table S6) and applied phylogenetic reconciliation to detect

duplication events (Figure 4A). Sea urchins, like other echino-

derms, do not show a particularly increased occurrence of

gene losses in their genomes, such as that observed in the tuni-

cate lineage53 (Figure 4A). Some losses, however, are shared by

all three sea urchin species (Table S7); for instance, some mem-

bers of the transforming growth factor b (TGF-b) signaling

pathway, like BAMBI or BMP9, present in other echinoderms,

like the sea cucumber.54

Interestingly, we noticed a burst of gene duplication events in

the echinoid ancestor with the second-highest number of dupli-

cated gene families in deuterostomes after the origin of verte-

brates and its whole-genome duplications.55 However, in the

sea urchin, these duplicates are located in close genomic prox-

imity, present on the same chromosomes (49%) and at close dis-

tances (36% closer to 100 kb), indicating a common origin by

tandem duplication rather than by large-scale genomic duplica-

tions, as reported recently for cephalochordates.56 The gene

duplicates show enrichment of Gene Ontology (GO) terms asso-

ciated with membrane transport and the circulatory system,

with, for instance, multiple ABC transporters and solute carriers

encoding genes (Figure 4C), which possibly suggests that these

genes could play a role in the functioning of the water vascular

system (Figure 4C). In the most extreme cases, some gene fam-

ilies underwent large expansions in the sea urchin lineages, as

detected by hypergeometric tests (p < 0.01; Table S8): the glyco-

protein Kirrel, which plays a role in sea urchin skeletogenesis;57

the SLC16 transporter family, which is enriched in pigment

cells;58 a class of GPCRs (GPCR135) that acts as a putative neu-

ropeptide receptor;59 and the muscarinic acetylcholine (ACM)

receptors. Some of these duplicates seem to have acquired spe-

cific expression profiles or domains during development

(Figures S5C and S5D).

To further evaluate the expression of genes gained and dupli-

cated in the echinoid lineages, we classified genes according to

their expression profiles using network-based clustering60 (Fig-

ure S5A). We used gene family reconstruction to determine
6 Cell Genomics 3, 100295, April 12, 2023
whether genes that originated and duplicated at different phylo-

genetic nodes showed a particular enrichment in some of these

expression clusters (Figure 4B). Novel echinoid genes are partic-

ularly enriched during early embryonic stages or in adult struc-

tures, such as tube feet or the body wall (comprising the water

vascular system and skeleton). We also found such increased

expression of novel genes in Aristotle’s lantern, a calcified

buccal apparatus specific to echinoids. We similarly observed

preferred expression of genes duplicated in the echinoid lineage

during the earliest embryonic stages and among the maternally

expressed genes, suggesting that some of them could be

involved in cell lineage specification (see below the example of

pmar1) (Figure 4B). We then examined the putative regulatory el-

ements (OCRs) that are associated with genes duplicated in

echinoids; we identified 3.45 elements per gene (on average)

for echinoid duplicates in contrast with 4.13 elements for genes

arising in older duplications (Figure 4E). These elements are

closer to promoters and less conserved in sequence than the el-

ements associated with older duplicates or even the single-copy

genes (Figure 4F). At the gene expression level, very recent du-

plicates show a higher organ specificity than other genes ac-

cording to the tau estimate (Figure 4D), indicating that novel,

fast-evolving regulatory elements are driving their expression in

new organs and stages.61We assessedwhether some transcrip-

tion factor binding sites (TFBSs) are enriched in the OCRs asso-

ciated with sea urchin gene duplicates and recovered significant

enrichments for 22 TFBSs (hypergeometric test, p < 0.01;

Table S9). This list comprises five nuclear receptors, including

homologs of HNF4, thyroid receptor, and COUP-TF, as well as

other factors known for controlling organogenesis (AP2, ELK,

and ATF1), findings compatible with the organ-specific expres-

sion pattern recovered for a number of these duplicates

(Figure 4D).

By studying the evolution, expression, and regulation of the

sea urchin genes, we showed that newly evolved and newly

duplicated genes are preferentially expressed in specific embry-

onic stages and anatomical structures. Some of these struc-

tures, such as Aristotle’s lantern or tube feet, are novelties of
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Figure 4. Gene and organismal novelties in sea urchins

(A) Gene family gains (green), losses (blue), and duplications (orange) on a phylogenetic tree of deuterostomes.

(B) Enrichment of genes originated (top) and duplicated (bottom) at different phylogenetic nodes in WGCNA clusters of syn-expressed genes using a hyper-

geometric test.

(C) GO terms enriched in genes duplicated at the echinoid nodes for Biological Process (BP) and Molecular Function (MF) categories.

(D–F) For genes duplicated at distinct nodes, we evaluated (D) gene expression tissue/stage specificity (tau), (E) distance to the TSS, and (F) Phastcons con-

servation score in OCRs associated with the corresponding genes.
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echinoids and echinoderms, respectively. This observation par-

allels similar findings regarding the younger transcriptome age of

early developmental stages62 or gene expression in the mollusc

shell and radula,63 but further studies will be necessary to

explore their functional significance.

The origin of pmar/hbox12 genes
To understand how tandemgene duplications underlie the emer-

gence of novelties, we investigated the origin of the pmar1 genes

that play a critical role in specifying micromeres and their skele-

togenic primary mesenchyme cell (PMC) derivatives, a specific

character of euechinoids.64 We identified 12 copies of genes

related to the original pmar1/hbox12 sequence clustered within

a 350-kb region in P. lividus (Figure 5A).65 In L. variegatus, a

similar number of pmar-related genes has recently been

described in two distinct genome locations of chr2.21 Moreover,

eight copies of a pmar1-related gene have also been identified in

the cidaroid Eucidaris tribuloides, the sister group of euechi-

noids.66 pmar1 genes do not have clear orthologs in other echi-

noderms, but the identification of phb as a pmar1-related gene in

brittle stars (Ophiuroidea) suggested that pmar1 genes are diver-

gent copies of an ancient class of paired-type homeobox genes

in this clade.8,66 To clarify their respective relationships, we cata-

loged the multiple pmar copies found in sea urchins and copies

of other pmar-related echinoderm genes, including the Pplx

gene from brittle stars and the Phb gene from sea stars.8 We re-
constructed a phylogenetic tree that confirms the relationship of

pmar and phb genes but, surprisingly, also shows that the aprd

genes found in amphioxi and spiralians are related to these

genes.8,67 Our phylogeny suggests an independent expansion

of pmar genes in multiple sea urchin lineages because the

different pmar genes group into species-specific clades. Intrigu-

ingly, we identified a novel family of pmar-related genes that

group in a distinct clade, showing a particularly fast rate of evo-

lution, and dubbed them parent of pmar (pop) genes to reflect

that they are sister genes of pmar (Figure S6E). The architecture

of pmar/pop clusters appears distinct in all four sea urchins: in

L. variegatus, pops and pmars are in distant loci, while in

S. purpuratus, one locus contains 3 pmars and another 2 pmars

and 2 pops. In E. tribuloides, eight pmar1-related genes are pre-

sent in two different scaffolds, while all of these genes are closely

located in P. lividus (Figure 5A). In the cidaroid E. tribuloides, only

one set of pmar/pop-related genes is found, which could indi-

cate that the duplication that gave rise to the ancestors of pop

and pmar genes took place within the Euechinoidea lineage, fol-

lowed by an independent expansion of pmar genes in the line-

ages leading to each sea urchin species.

Because pop genes seem to constitute a distinct clade of

pmar1-related genes, we sought to determine whether their

expression and function are the same as other pmar1 genes. In

P. lividus, thepop1gene is expressedmaternally andubiquitously,

while the two other pop genes show an expression spatially
Cell Genomics 3, 100295, April 12, 2023 7
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restricted to the micromere lineage in the late cleavage and early

blastula stage, consistent with these genes being, like pmar1,

involved in specification of the micromeres and PMC lineage

(Figures 5D and 5E). Indeed, overexpression of these pop genes

caused massive delamination of PMC-like mesenchymal cells

that popped up from the vegetal pole at the onset of gastrulation

and that was accompanied by ectopic expression of the PMC-

specific marker genes delta and alx1 (Figure 5F). This phenotype

is identical to the phenotype caused by overexpression of

pmar1, reinforcing the idea that pop genes also act to specify

the PMC lineage.64 These observations illustrate how pervasive

gene duplication and rearranged gene order between the three

sea urchinmodels are associatedwith novel cell lineage specifica-

tion mechanisms.

Conservation and divergence of gene expression
modules across deuterostomes
The dynamic gene order across sea urchin species contrasts

with their highly conserved embryonic development and corre-

sponding gene expression.68 To understand how the gene-reg-

ulatory program is affected by these gene order changes, we as-

sessed the extent of the evolutionary conservation of sea urchin

regulatory programs by comparing clusters of genes with similar

temporal expression profiles in P. lividus, S. purpuratus, and the

cephalochordate Branchiostoma lanceolatum.69 We found sig-

nificant pairwise enrichment of genes belonging to identical

gene families in clusters of co-expressed genes, either between

sea urchins or when comparing sea urchins (Figure 6A) and chor-

dates (Figure 6B). This enrichment indicates conservation of

genes involved in temporal gene expression modules, as

observed previously within chordates25 and insects.70 Interest-

ingly, the patterns of conservation at short and long divergence

times (Figures 6A and 6B) show remarkable similarities, with

most highly conserved modules being the stage-specific ones

and the ones active during mid- to late development. We noticed

that evolutionarily conserved modules can involve gene expres-

sion at the same developmental stage (homochronic) or shifted

in their expression timing (heterochronic) at short and long evolu-

tionary distances (Figures 6A and 6B). Despite the difference be-

tween the pluteus larva and the amphioxus larva, we observed

several clusters that share a significant homologous gene set.

For instance, the cluster (Pliv18) that shares the highest number

of homologous genes appears to be enriched in GO terms asso-

ciated with sensory perception and neuronal function (ion and

amino acid transport) (Figure 6C).71 An examination of TFBSs en-

riched in OCRs related to genes belonging to these clusters re-

vealed multiple factors associated with circadian regulation of

gene expression, such as ARNT (BMAL) and CLOCK, which
Figure 5. The evolution of pmar/hbox12 genes in echinoids

(A) Genomic organization of the pmar and pop loci in all three echinoid genomes

(B) Regulatory landscape with RNA-seq (red) and ATAC-seq signal (blue) and OC

(C) Phylogeny of pmar-related paired homeobox genes using the homeobox res

(D) Expression of pmar and pop genes.

(E) Insituexpressionofpmarandpopgenes.pop1 isexpressedmaternallyandubiquit

(F) Phenotypes caused by overexpression of pmar or pop genes. Overexpression o

causes massive production of PMC-like mesenchymal cells and ectopic expressi

pole view; DIC, differential interference contrast.
constitute the ‘‘core clock;’’ associated regulators such as

USF; downstream circadian effectors such as ATF and CREB;

plus genes such as SREB, which is related to nutrient-related

circadian adjustments (Figure 6D). These results suggest an

evolutionarily conserved mechanism of circadian-based activa-

tion of neural activity at the end of embryonic development and

the onset of larval life.72

Beyond gene expression, we focused on the dynamics of the

OCRsduringdevelopment in seaurchins todetermine the key reg-

ulatory steps and how evolutionarily conserved they are.We iden-

tified conserved non-coding regions in P. lividus by performing an

alignment of all three available sea urchin genomes and applying a

statisticalmodel to infer non-codingconservation (Phastcons).We

found that 39%ofOCRswith a putative regulatory role (non-repet-

itive, non-transcription start site [TSS]) overlappedwith the 81,142

evolutionarily conserved regions that otherwise represent 1.94%

of the genome (17.9Mb) (Fisher’s exact test, p < 1e�9).We further

assessed the sequence conservation of putative regulatory ele-

ments across development by assessing the evolutionary conser-

vation of OCRs active at specific stages (Figure 1C).73 We identi-

fied the OCRs specific to the blastula, gastrula, and prism stages

as the most conserved in sequence (Figure 7A).

We also compared the transcriptomic distance (Jensen-

Shannon) between embryonic stages in sea urchin and deutero-

stome species to determine which embryonic stages exhibit the

closest transcriptomic proximity25 (Figures 7B and S6A). The

early blastula, gastrula, and prism stages that show the highest

sequence conservation are also the ones that have the lowest

transcriptomic divergence in the comparison of the two sea ur-

chins (P. lividus and S. purpuratus) and the comparison with

the cephalochordate amphioxus (Figure 7A).25,47,74 However,

sea urchins appear to show a higher level of conservation at

earlier stages (Figures 7B and S7A). This conservation can be ex-

plained by an earlier onset of major cell lineage specification at

the early blastula stage.12

Regulatory landmarks during sea urchin development
To determine which TFs control successive phases of sea urchin

development, we employed a footprinting approach to detect

the most likely occurrences of TF binding events in the ATAC-

seq signal at successive stages75 (Figure 7). Then, by using re-

constructed gene families, we identified 815 TFs in P. lividus

and assigned 568 of them to TFBSs derived from the JASPAR

database, which were later employed to analyze the footprint

of the ATAC-seq signal (Figure 7D; Table S10) that we compared

with their gene expression across developmental stages

(Figure S7A). To ascertain the validity of the regulatory interac-

tions deduced from our chromatin profiling data, we also
.

Rs in P. lividus.

idues (IQTREE LG4X+R model).

ously,whilepop2andpop3areexpressed inthePMCprecursors.Scalebar.30mm.

f pmar1, pop1,pop2, pop3, or pop2 fused to the repressor domain of Engrailed

on of PMCmarker genes such as Delta and alx1. Inset: ventral view. vv, vegetal
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Figure 6. Conservation of gene expression modules in deuterostomes

(A and B) Gene content conservation between cluster syn-expressed genes (mfuzz) during the development ofP. lividus and the sea urchinS. purpuratus (A) or the

cephalochordate B. lanceolatum (B), estimated using a hypergeometric test. The arrowheads underneath indicate whether the pair of clusters is homochronic

(black filled) or heterochronic (white filled). The side heatmaps indicate average expression for each mfuzz cluster as normalized Z score.

(C) GO terms overrepresented in cluster 18, which shows the highest conservation of ortholog content.

(D) TFmotif enrichment in peaks associatedwith genes belonging to each cluster in P. lividus, computed using a hypergeometric test (p < 0.01). Only clusters with

at least one significant TF motif (p < 0.05) are shown.
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reconstructed, for each stage, the global gene-regulatory

network (GRN) by leveraging chromatin accessibility in OCRs,

the assignment of OCRs to genes, and gene expression.76 The

resulting networks represent genes as vertices and regulatory in-

teractions as edges and can be interrogated to highlight a spe-

cific subnetwork. This analysis recovered, for instance, the en-

domesoderm specification GRN (Figure 7C)11 and the

skeletogenic GRN (Figure S7E)12 described previously for

S. purpuratus, validating the idea that the OCRs we identified

are indeed cis-regulatory modules that bind key TFs of these

GRNs.While a small number of loci appear to be transcribed dur-

ing cleavage stages (Figure S7A), we found that the onset of

large-scale zygotic genome activation is taking place at the

end of cleavage, in the early blastula stage, as pointed out pre-

viously77 (Figures 7D and S8B). Gene expression clustering

(WGCNA) identifies small sets of genes specifically expressed

in each of the cleavage stages, such as G-protein receptors

(Oprx1, 16-cell), ionic channels (Sc5a2, 60-cell), Toll-like recep-

tors (2-cell), or homeodomain genes (Figure S6D). However, zy-

gotic expression of TFs appears to only start at the 60-cell to late

cleavage stages and gradually increases to mid-blastula stage

(Figure S6E). Transcripts encoding TFs are present as maternal
10 Cell Genomics 3, 100295, April 12, 2023
messages and remain detectable in later stages. At the 16-cell

stage, most OCRs correspond to constitutively active and not

stage-specific elements (Figure 1C), with a limited ATAC signal

at TSS, confirming that zygotic expression is not yet taking place

(Figure S3C). Accordingly, the TFBSs enriched at the 16-cell

stage (Figures 7D and 7E) are also enriched in the early blastula

stage, with few of corresponding TFs showing detectable

expression at these stages (Figure S7A), which could indicate

that some chromatin regions are present in a relatively open

configuration before zygotic genome activation.

Conversely, the early blastula stage is characterized by the

enrichment in TFBSs for maternally expressed TFs such as

Ets4 and SoxB1 (Figures 7D and S7B). Interestingly, SoxB1

and Ets4 have been implicated as major determinants in regula-

tion of the expression of early-expressed genes, such as those

encoding the Hatching enzyme (He) and the SpAN/BP10 prote-

ase, whose transcripts start to accumulate in the ectoderm of the

embryo at the 8- to 16-cell stages.78–80 Consistent with this, we

detected Ets4 binding motifs in an OCR located in the vicinity of

the He2 gene (Figure 7E). These factors are therefore excellent

candidates for regulators involved in triggering onset of zygotic

transcription. Additional factors of the homeobox family (OTX2,
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Figure 7. cis-Regulatory landscape conservation during sea urchin development

(A) Sequence conservation scores in OCRs showing stage-specific activation (distinct from the TSS and consecutively expressed). Arrowheads indicate the

stages’ highest non-coding conservation. Const., constitutive. Dev1 and Dev2 correspond to populations of OCRs that show broad activation domains.

(legend continued on next page)
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PITX2, and MIX-1), nuclear receptor family (HNF4), and bZIP

family (CREB1 and Myc) also have their binding sites enriched

at the 16-cell and early blastula stages and may likely participate

in activation of the zygotic genome (Figure 1D).

Later developmental stages showed increased TF motifs for

developmental regulators expected to be active by mid-devel-

opment, such as Sox, Otx, or Gsc factors. For instance, ATAC-

seq footprints of SOXE, expressed in the left coelomic pouch

that gives rise to the rudiment, and PITX2, expressed in the right

coelomic pouch, are also enriched at the prism stage, consistent

with establishment of the left-right asymmetry of the larva at this

stage.81 Accessibility to FOX binding sites is restricted to the

gastrula stage and subsequent stages. At the prism and then

pluteus larva stage, we detected bindingmotifs for a set of circa-

dian-controlled factors, such as CLOCK and ARNT (see above),

HNF factor and bZIP factor, as well as CEBP-related factors. The

pluteus larva stage similarly shows fewer OCRs (Figure 1) and

limited enrichment of TFBSs. The most characteristic larva-spe-

cific factors are Ari5b, which plays a role in organ growth in ver-

tebrates, and Fuk-1, which bears similarity to NFATC2, which a

putative role in immune system activation in vertebrates. The

role of TFs at the successive developmental stages is confirmed

by analysis of their influence in the GRNs reconstructed at each

stage, as estimated by their prominence in the network architec-

ture or centrality (Figure 7D).

Our examination of chromatin occupancy and TF binding in-

forms on the mechanism of zygotic genome activation as well

as on the subsequent sequence of regulatory events coordi-

nating development, such as establishment of cell lineages,

segregation of germ layers, and activation of circadian gene

expression, and ultimately should help to reconstruct GRNs con-

trolling developmental processes.11

DISCUSSION

Sea urchins, as echinoderms, exhibit a unique and derived body

plan with pentaradial symmetry, which has originally been

related to a reshuffling of GRNs caused by an extensive gene or-

der change. This reshuffling was exemplified by the original

description of a rearranged Hox cluster in S. purpuratus.15,16

Here, we performed gene order comparison between the avail-

able sea urchin models and between sea urchin and amphioxi

and demonstrated that the chromosomal architecture of sea ur-

chins retained the ALGs inherited from a bilaterian ancestor.26,29

These linkage groups were extensively reshuffled after whole-

genome duplication in vertebrates or completely lost in tunicates

and nematodes. Interestingly, while chromosomal architecture is

very conserved, the local intrachromosomal gene order appears

to evolvemuch faster in sea urchins than in vertebrates (Figure 3).

While it could be tempting to link this observation with a faster
(B) Minimal Jensen-Shannon distance between staged transcriptomes of P. livid

minimal distance are highlighted by an arrowhead.

(C) Endomesoderm GRN recovered by regulatory network analysis at the late bla

(D) Enrichment scores in ATAC-seq footprints across the developmental stage

highlighted (MZT TFs), with arrowheads pointing to Ets4 and SoxB1.

(E) Regulatory activity around the He2 gene with RNA-seq (red) and ATAC-seq sig

several TFBS footprints for MZT TFs, including Ets4 and SoxB1.
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evolution of gene regulation in sea urchins, most developmental

and transcriptomics studies suggest conservation of GRNs and

developmental mechanisms between sea urchin models, such

as S. purpuratus, L. variegatus, and P. lividus.68,82 The relatively

limited number of high-quality echinoderm and invertebrate ge-

nomes available at distinct evolutionary distances makes it diffi-

cult to determine whether the evolution gene order in sea urchins

or in vertebrates constitutes the exception or the norm among bi-

laterians. This observation also suggests, more practically, that

many loci will have a different organization and gene order be-

tween models such as P. lividus and S. purpuratus; for instance,

the pmar1 gene locus (Figure 5A).

We also identified extensive echinoid-specific gene duplica-

tions and expansions and pinpointed that some novel echino-

derm and echinoid structures, such as tube feet and Aristotle’s

lantern, captured the expression of many of these recently

evolved genes. A similar enrichment of new genes has, for

instance, been witnessed with the mollusc radula63 or mollusc

shell.83 Specialization of gene expression after duplication is

similar to that observed for WGD duplicates in vertebrates or

other lineage-specific duplicates in chordates.25,50 We also

explored the origin of the pmar1 class of homeobox genes

involved in cell lineage determination in an echinoid-specific

fashion64 and identified a novel family of pmar1-like homeobox

genes, the pop genes, that arose in euechinoids and that share

with pmar1 the ability to promote formation of the skeletogenic

mesoderm. Remarkably, homeodomain genes acting at early

cleavage stages, such as Paired or TALE genes, have shown

the propensity to undergo lineage-specific duplication in other

animal lineages, such as mammals84 or spiralians,85 suggesting

a recurrent phenomenon during animal evolution.

Interestingly, by using RNA sequencing (RNA-seq) to monitor

gene expression and ATAC-seq to explore the open chromatin

domains, we were able to perform evolutionary comparisons of

gene expression profiles and gene-regulatory modules across

species. Our data suggest possible long-range conservation of

regulatory logic between sea urchins and chordates (Figure 6),

which is consistent with the idea of deeply conserved regulatory

mechanisms controlling animal development, although experi-

mental testing of these regulatory mechanisms will be required

to validate this idea.86,87 We showed that early development

(cleavage) was the most divergent stage at the gene expression

level, even between two sea urchin species that split 75 mya,

possibly suggesting that the dynamics of zygotic genome activa-

tion might vary across species (Figure 7).38 Finally, we confirmed

that tightly regulated and large-scale transcription of the zygotic

genome did not occur before the early blastula stage in P. lividus

(Figure 7).

In sum, we identified conserved principles of gene regulation

across deuterostomes in terms of genomic location and of
us, S. purpuratus, and B. lanceolatum. For each P. lividus stage, stages with

stula stage.

s of P. lividus. TFs playing a putative role in zygotic genome activation are

nals (blue), where regulatory elements located at the 50 end of the gene include
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activity of regulatory elements during development. We showed

that these gene-regulatory modules are maintained despite the

fast intrachromosomal gene order change in sea urchin ge-

nomes. The detected conservation of cis-regulatory modules

complements previous observations comparing vertebrates

and classic model systems like Drosophila or C. elegans and

suggests that, despite their derived body plan, the presence of

a larval stage and of mechanisms of early determination of em-

bryonic cell lineages, echinoderms preserved such principles.88

Limitations of the study
Our analysis of gene order in sea urchins is limited by the extent

of available genomes. With more echinoderm and invertebrate

genomes, we could generalize observed trends of intrachromo-

somal and interchromosomal gene order changes and deter-

mine which, of sea urchins or vertebrates, is representative of

the ancestral state. We also think that functional work targeting

some of the candidate genes proposed in this study to be ex-

pressed preferentially in urchin novelties would be important to

appreciate their role; for instance, in the water vascular system

or Aristotle’s lantern. Moreover, our characterization of the

accessible and active genomic region is limited to the ‘‘bulk’’

whole embryo and could be expanded across germ layers and

cell lineages using approaches such as single-cell RNA-seq

and ATAC-seq.
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acı́n, C., Pascual, M., and Turon, X. (2020). East is East andWest is West:

population genomics and hierarchical analyses reveal genetic structure

and adaptation footprints in the keystone species Paracentrotus lividus

(Echinoidea). Divers. Distrib. 26, 382–398. https://doi.org/10.1111/ddi.

13016.

38. Mongiardino Koch, N., Thompson, J.R., Hiley, A.S., McCowin, M.F.,

Armstrong, A.F., Coppard, S.E., Aguilera, F., Bronstein, O., Kroh, A.,

Mooi, R., and Rouse, G.W. (2022). Phylogenomic analyses of echinoid

diversification prompt a re-evaluation of their fossil record. Elife 11,

e72460. https://doi.org/10.7554/eLife.72460.

https://doi.org/10.1186/s13227-015-0039-x
https://doi.org/10.1186/s13227-015-0039-x
https://doi.org/10.1073/pnas.0705324104
https://doi.org/10.1126/science.1133609
https://doi.org/10.1126/science.1069883
https://doi.org/10.1073/pnas.0711220105
https://doi.org/10.1038/nrg.2017.51
https://doi.org/10.1038/nrg1726
https://doi.org/10.1073/pnas.96.4.1469
https://doi.org/10.1002/jez.b.21070
https://doi.org/10.1002/jez.b.21070
https://doi.org/10.1242/dev.127.21.4631
https://doi.org/10.1002/dvg.22840
https://doi.org/10.1371/journal.pbio.2003790
https://doi.org/10.1111/ede.12172
https://doi.org/10.1111/ede.12172
https://doi.org/10.1093/gbe/evaa101
https://doi.org/10.1038/s42003-020-1091-1
https://doi.org/10.1038/s42003-020-1091-1
https://doi.org/10.1073/pnas.97.9.4449
https://doi.org/10.1073/pnas.97.9.4449
https://doi.org/10.1038/nature06967
https://doi.org/10.1038/s41586-018-0734-6
https://doi.org/10.1038/s41586-018-0734-6
https://doi.org/10.1038/s41559-020-1156-z
https://doi.org/10.1126/science.294.5551.2506
https://doi.org/10.1038/nature16150
https://doi.org/10.1126/sciadv.abi5884
https://doi.org/10.1126/sciadv.abi5884
https://doi.org/10.1038/s41586-022-05636-7
https://doi.org/10.1038/s41586-022-05636-7
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref31
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref31
https://doi.org/10.1016/j.cub.2008.02.061
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref33
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref34
http://refhub.elsevier.com/S2666-979X(23)00061-7/sref34
https://doi.org/10.1080/14614103.2016.1235077
https://doi.org/10.1016/j.ecss.2014.11.023
https://doi.org/10.1111/ddi.13016
https://doi.org/10.1111/ddi.13016
https://doi.org/10.7554/eLife.72460


Article
ll

OPEN ACCESS
39. Lipani, C., Vitturi, R., Sconzo, G., and Barbata, G. (1996). Karyotype anal-

ysis of the sea urchin Paracentrotus lividus (Echinodermata): evidence for

a heteromorphic chromosome sex mechanism. Mar. Biol. 127, 67–72.

https://doi.org/10.1007/bf00993645.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Crtical commercial assays

TruSeq DNA library Illumina FC-121-2001

Nextera Mate-pair Kit Illumina FC-132-1001

TruSeq RNA Library Illumina RS-122-2001

TRIzol reagent Invitrogen 15596026

pGEM-T Easy Promega A1360

DIG RNA Labeling Kit (SP6/T7) Roche 11175025910

NBT/BCIP Roche 11681451001

Anti-Digoxigenin-AP, Fab fragments Roche 11093274910

mMessage mMachine kit Invitrogen AM1344

Nextera DNA Library prep Illumina FC-121-1030

Digitonin Promega G9441

NEBNext Ultra II Q5 Master Mix NEB M0544S

DNA Clean & Concentrator Kit-5 Zymo D4004

CUT&Tag-ITTM Assay Kit Activemotif 53160

Histone H3K27ac antibody (pAb) Activemotif 39134

SPRIselect Beckman Coulter B23318

Experimental models: organisms/strains

Paracentrotus lividus adult wild-type Collected from the wild,

bay of Naples

N/A

Paracentrotus lividus embryos

and larvae wild-type

Spawn in the lab from

adults collected in the

wild bay of Villefranche-sur-Mer

N/A

Software and algorithms

Meraculous (v2.2.2.2) Chapman et al.89 https://jgi.doe.gov/data-and-tools/

software-tools/meraculous/

Haplomerger (v2, 20151124 build) Huang et al.90 https://github.com/mapleforest/HaploMerger2

PBJelly (v15.8.24) English et al.91 https://sourceforge.net/projects/pb-jelly/

HiRise Putnam et al.92 https://github.com/DovetailGenomics/

HiRise_July2015_GR

Busco (v5.1.3) Sim~ao et al.93 https://busco.ezlab.org/

Trinity (2.11.0) Grabherr et al.94 https://github.com/trinityrnaseq/trinityrnaseq

GMAP Wu et al.95 http://research-pub.gene.com/gmap/

Portcullis Mapleson et al.96 https://github.com/EI-CoreBioinformatics/portcullis

Mikado (v1.2.1) Venturini et al.97 https://github.com/EI-CoreBioinformatics/mikado

Augustus (v3.3.3) Stanke et al.98 https://github.com/Gaius-Augustus/Augustus

FEELnc Wucher et al.99 https://github.com/tderrien/FEELnc

MMSeqs2 (12-113e3) Steinegger et al.100 https://github.com/soedinglab/MMseqs

Broccoli (v1.2) Derelle et al.101 https://github.com/broccolijs/broccoli

ete3 Huerta-Cepas et al.102 http://etetoolkit.org/

Msaprobs (v0.9.7) Liu et al.103 https://msaprobs.sourceforge.net/

homepage.htm

IQTREE (v2.1.1) Nguyen et al.104 http://www.iqtree.org/

Generax (v1.2.2) Morel et al.105 https://github.com/BenoitMorel/GeneRax

Bedtools/pybedtools Dale et al.106 https://daler.github.io/pybedtools/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

STAR (v2.5.2b) Dobin et al.107 https://github.com/alexdobin/STAR

Stringtie (v1.3.3b) Pertea et al.108 https://ccb.jhu.edu/software/stringtie/

Taco (v0.7.3) Niknafs et al.109 https://tacorna.github.io/

Trinity (v2.5.1) Grabherr et al.94 https://github.com/trinityrnaseq/trinityrnaseq/

Subread package (v1.6.3) Liao et al.110 https://subread.sourceforge.net/

WGCNA (v1.7.0) Langfelder et al.60 https://cran.r-project.org/web/packages/

WGCNA/

mfuzz (v2.54.0) Futschik et al.69 https://doi.org/10.18129/B9.bioc.Mfuzz

Generich (v0.6) N/A https://github.com/jsh58/Genrich

Phastcons Siepel et al.111 http://compgen.cshl.edu/phast/

Lastz N/A https://github.com/lastz/lastz

TOBIAS (v0.12.10) Bentsen et al.75 https://github.com/loosolab/TOBIAS

ANANSE Xu et al.76 https://github.com/vanheeringen-lab/

ANANSE

Deposited data

pop1, pop2 and pop3 transcripts This paper ON325581, ON325582, ON325583.

P. lividus genome This paper PRJEB25800

P. lividus RNA-seq and ATAC-seq This paper GEO: GSE202034

Other

S. purpuratus transcriptome Tu et al.112 PRJNA81157

B. lanceolatum transcriptome Marlétaz et al.25 PRJNA416866/GEO: GSE106430

S. pupuratus genome Sea Urchin Genome

Sequencing Consortium et al.10
PRJNA10736

L. variegatus genome Davidson et al.21 PRJNA657258
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, FerdinandMarlétaz (f.marletaz@

ucl.ac.uk).

Materials availability
Requests for clones and constructs of pmar and pop genes should be adressed to Thierry Lepage (Thierry.Lepage@unice.fr)

Data and code availability
The pop1, pop2 and pop3 transcripts have been deposited to NCBI under the accessions Genbank: ON325581, Genbank:

ON325582, Genbank: ON325583.

The genome (Genbank: GCA_940671915.1) and sequencing reads have been deposited to NCBI under the accession

PRJEB25800.

The RNA-seq and ATAC-seq have also been deposited to NCBI Gene Expression Omnibus (GEO) under the accession GEO:

GSE202034.

Other data files including genome assembly and annotation are available on zenodo (https://doi.org/10.5281/zenodo.7459274).

Code underlying the analyses is available on github: https://github.com/paracentrotus/genome.

METHOD DETAILS

DNA extraction and sequencing
DNA was extracted from sperm from a single male individual collected in Naples (Italy). Sperm cells were concentrated by centrifu-

gation, washed repeatedly, and subsequently embedded in 2% lowmelting agarose. Sperm cells were lysed in a solution of 1%SDS,

10mM Tris (pH 8) and 100mM EDTA and then resuspended in a solution of 0.2% N-laurylsarcosine, 2mM Tris (pH 9) and 0.13 mM

EDTA. DNA was released from the agarose blocks using agarase.
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Illumina sequencing libraries were prepared at Genoscope (Evry, France) using TruSeq kit for fragment library and Nextera Mate-

pair Kit for mate-pair libraries. These libraries were sequenced onMiSeq, HiSeq2500 and HiSeq2000 instruments at Genoscope (see

Table S1) and reads were quality trimmed using a custom script derived from the fastx toolkit. Long-insert Pacific bioscience libraries

were prepared and 20 SMRT cells were sequenced on an RSII instrument at the Genotoul plateforme (INRA, Toulouse, France) with

the P6C4 chemistry. Sequencing data was submitted to ENA under the master PRJEB25800 accession.

Genome assembly
Genome size was evaluated using the k-mer spectrum approach as described in.113 All occurences of 31-mer were counted in the

fragment data using Jellyfish.114 The haploid genome size was estimated at �845Mb. The presence of two well defined coverage

peaks, with the main one at half coverage was indicative of high levels of polymorphism (3%).

The Illumina data was assembled using Meraculous (v2.2.2.2) and using a k-mer of 91 and ‘diploid_mode = 2’ to enable the split

assembly of both haplotypes in stringent conditions.115 Briefly, Meraculous performs a de Brujin graph contig assembly after

excluding erroneous low frequency k-mers followed by subsequent greedy scaffolding rounds using mate-pair libraries and a min-

imum of 2 or 3 links to create a link between contigs. Finally, gaps in the assembly were closed using contig extension and paired-end

information. We obtained a 1394Mb diploid assembly with a large fraction of residual gaps (20.7%) (Table S2).

To fill the gaps, and improve the Illumina assembly, we performed gap-filling and local reassembly using the PBJelly tool91

(v15.8.24). PBJelly aligns the Pacbio reads to the assembly using the Blasr aligner designed to account for underlying read error pro-

file, then collects reads surrounding and spanning gaps and scaffold extremity regions and assemble themwith the ALLORA assem-

bler relying on a OLC (overlap-layout-consens) design. Resulting error-prone assembled sequences are used to fill gaps and extend

scaffolds. We used the parameters ‘-minMatch 8 -sdpTupleSize 8 -minPctIdentity 75 -bestn 1 -nCandidates 10 -maxScore�500’ for

blasr alignment. The resulting patched assembly has a reduced fraction of gaps (4.9%) and incorporates 1,475Mb of assembled DNA

for a 1,551Mb total size (Table S2).

To generate a haploid reference genome from our diploid assembly, we employed the Haplomerger (v2, 20151124 build), which

relies on a graph of reciprocal LASTZ alignments to extract the best path across haplotype scaffolds.116 Before reciprocal align-

ments, we masked repetitive regions in the diploid assembly with RepeatMasker using a custom repeat library (see below) and a

custom scoring matrix obtained with the script lastz_D_Wrapper.pl. We then applied module A aimed at detecting and splitting mis-

assembled scaffolds, and module B aimed at performing haplotype reconciliation. Finally, residual haplotype sequences smaller to

be processed by module A (<5000bp) were screened using module G relying on residual similarity to resolved haplotigs.

To further extend the contiguity of our haploid reference, we used long-range contact information from Chicago and HiC library

prepared by Dovetail Genomics (Santa Cruz, USA). The Chicago method relies on the reconstitution of synthetic chromatin in

controlled condition followed by chromatin conformation capture and evenly distributed contact information in the 150 kb range. Li-

brary preparation is described in detail in.92 Alternatively, HiC chromatin conformation capture provides contact information at a

broader range, and particularly helps reconstruct chromosomes which usually do not present much interactions in trans. Tissue

was crosslinked in 1%PFA, and chromatin subsequently extracted, immobilised on SPRI beads, washed and digested with DpnII.117

After end-labelling, proximity ligation was carried out using T4 DNA ligase and cross-linking reversed using Proteinase K, removed

from the beads and the DNA fragments were purified again on SPRI beads. Sequencing library was constructed using the NEB Ultra

library preparation kit (New England Biolabs, Ipswitch). Chicago and HiC libraries were sequenced for 476M and 210M paired-end

reads in 23 150bp mode on a HiSeq4000 instrument. Chicago and HiC data were processed through two distinct runs of the HiRise

scaffolder. The final assembly shows the following BUSCO statistics (v5.1.3) when using the Metazoa gene set: C:94.7%

[S:94.0%,D:0.7%],F:3.6%,M:1.7%,n:954.

Annotation
Transcripts assembledwithTrinity (seebelow)werealigned to thegenomeusingGMAP (versionof 2018-03-25).118 Thesealignmentsand

the merged stringtie assemblies were leveraged using Mikado (v1.2.1) to generate a high-quality reference transcriptome.97 A set of

curatedsplice-junctionsgenerated fromRNA-seqalignmentsusingPortcullis (v1.0.2)wasalsoprovided toMikado.96Putative fusion tran-

scripts were detected by Blast comparison against Swissprot and ORFs were annotated using Trans-decoder (Haas et al. 2008). Tran-

scripts derived from the reference transcriptome were selected to train the Augustus de novo gene prediction tool (Stanke et al. 2006).

Exon and intron positions derived from the mikado consensus transcriptome were converted into hints for Augustus gene prediction.

We annotated repetitive regions in the genome by constructing a repeat library using RepeatModeler (v1.0.11) that was subse-

quently used for masking with RepeatMasker (v4.0.7). Repeat landscape was subsequently inferred by computing Kimura

2-parameters distances with the consensus for each repeat category. Gene models with half or more of their exons overlapping

at 50%with repeats were discarded, yielding 41717 filtered genemodels. Alternative transcripts and UTRs were subsequently incor-

porated using the PASA pipeline (Haas et al. 2008). These gene models contain a total number of 4915 distinct PFAM domains.

Long non-coding RNAs
For lncRNA annotation, we used all RNA-seq data from P. lividus available in SRA archive (accessions: PRJEB10269, PRJNA392084,

PRJNA376650, PRJNA288758, PRJNA264358, 4787.4 M reads in total, 14.7 M reads per sample). After quality control with FastQC

v0.11.6119 and trimming with Trimmomatic v0.39 (LEADING:20 TRAILING:20 MINLEN:25 ILLUMINACLIP:adapters.fa:2:30:10
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SLIDINGWINDOW:10:20),120 we mapped the reads to the reference genome using HISAT2 v2.2.1121 and obtained a transcriptome

assembly for each sample using StringTie v2.1.4122 by providing our gene models as a reference annotation file. We obtained 175

GTF files corresponding to the individual assemblies which were merged to obtain a reference GTF using the merge option from

StringTie. The merged GTF was used to identify the candidate lncRNAs using FEELnc software99 in a three steps pipeline: i) filter

out transcripts shorter than 200ncl, monoexonic and overlapping protein-coding exons, ii) discard transcripts with coding-potential

and iii) classify the candidate lncRNAs according to their relative position in the genome. Given that there is no previous knowledge of

lncRNAs in P. lividus,we used two different strategies to compute the coding-potential: i) we took a set of mRNAs and shuffled them

while preserving 7-mer frequencies (shuffle approach), and ii) we provided as training set lncRNAs from a closely related species

(S. purpuratus, reference approach). The number of candidate lncRNA transcripts obtained was 32,147 and 32,107 genes for the

shuffle and reference approaches, respectively, with more than 99% overlap. After filtering the transcripts uniquely annotated by

a single approach, we obtained a list of 32,001 candidate lncRNAs genes (56,259 transcripts). Subsequently, we estimated the abun-

dance of the candidate lncRNAs in each SRA sample using the feature Counts function of the Rsubread package from Bio-

conductor110 and we classified genes according to their expression range using the filter ByExpr function from EdgeR package123

for R by setting the min.count parameter to 10. This allowed us to identify a high confidence lncRNAs set that includes genes that are

expressed in most of the samples, consisting of 5,087 lncRNA genes.

Synteny and gene family reconstruction
Tocomputepairwisesyntenycomparisons,weusedmutual-best-hitsbasedonMMSeqs2 (MMSeqs2/12-113e3)comparisonsbetween

proteomes after selecting for the longest protein for each locus. After reindexing of gene coordinates, we used Fisher’s exact test to

determine mutual enrichment of orthologues between chromosomes or scaffolds. To estimate the relationship between gene order

and divergence time, we estimated as the fraction of orthologues located in blocks of 2 or more consecutive genes in the same order

with no more than one interspersed gene (Figure 3). Corresponding python and R codes upload to https://github.com/paracentrotus/

urchinpaper.

We used Broccoli (v1.2) for gene family comparisons using the species specified in Table S5,101 and inferred clade specific gains

and losses by comparing the content of each family with that of a reference species tree using the ete3 library.102 To assess dupli-

cation within gene families, families with less than 500 genes and at least 5 genes in 3 species were subjected to phylogenetic recon-

struction: after alignment with Msaprobs (v0.9.7)103 and alignment trimming using clipkit (v0.1, option -m gappy),124 a tree was re-

constructed using IQTREE (v2.1.1) assuming a LG4X + R model. Then, Generax (v1.2.2) was used to perform genes and species

tree reconciliation and to detect duplication events in a maximum likelihood framework.105

Gene expression analyses
We extracted RNA for successive embryonic stages and several organs (Table S3) using Trizol reagent (Invitrogen). Strand-specific

RNA-seq libraries were prepared using the TruSeq RNA Library (Illumina) and sequenced in a 2x150bp layout with an average of

64.6M reads per sample. Reads were aligned to the genome using STAR (v2.5.2b) at an average rate of 65.64% of unique map-

ping.107 A transcriptome was assembled for each sample using Stringtie (v1.3.3b)108 and sample-specific transcriptome assemblies

were merged using Taco.109 The reads from all the samples were also assembled de novo using Trinity.94

Gene expression was quantified from reads aligned using STAR (v2.5.2b) and using featureCounts from the Subread package

(v1.6.3)110 and counts converted in FPKM.We also evaluate the coverage of OCRs for both strands using featureCounts to evaluation

their level of transcription on both strands.

We used WGCNA (v1.7.0) clustering for the full set of embryonic stages and organs. After filtering out genes with limited variance

and counts, then, the ‘softpower’ parameters were estimated and set at 13, and clustering was runwith a ‘signed’ network type.60 For

all clustering analyses, FPKMwere calculated and replicates if available weremerged to obtain a single gene expression value. Then,

we usedmfuzz (v2.54.0) clustering to compare subsets of 8 embryonic stages in sea urchin, amphioxus and zebrafish using datasets

for the two later as described in.25 After filtering genes with low expression or limited variability, expression values were normalised,

the fuzzifier parameters (m) was estimated and the optimal number of clusters was determined by computing with minimal distance

between cluster centroids (Dmin) for various numbers of clusters. To compare the evolutionary conservation of gene expression

modules, a hypergeometric test was performed on the number of genes belonging to distinct gene families shared between each

pair of alternate gene expression modules (accounting for possible many-to-many paralogy relationships between individual genes).

Gene ontology enrichments were computed using the topGOpackage using terms transferring fromPFAMannotation and Swissprot

best hits (evalue 1e-10).125 Comparisons of transcriptomic distances across embryonic stages and were computing as Jensen-

Shannon divergence and single-copy orthologues inferred using Broccoli as performed in.25 S. purpuratus data analyzed corre-

sponds to PRJNA81157 and Branchiostoma floridae to PRJNA416866.

ATAC-seq
ATAC-seq was performed following the Omni-ATAC protocol using Digitonin (Promega) in addition to NP40 and Tween in the cell lysis

buffer (Corces et al., 2017). Sea urchin eggs were fertilised in filtered sea water with 2 mM of Paraminobenzoic acid (Sigma) to prevent

hardening of the fertilisation envelope. The fertilization envelopewas then removedby repeatedfiltration ona nylonnet (70 mM). Embryos

at the appropriate stage were collected andwashed in NaCl 0.55M twice then dissociated in Calcium-Magnesium artificial sea water by
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energetic pipetting. For each time point, different numbers of nuclei were tested, typically 50,000, 150,000 and 250,000 and at least two

biological replicates generated Table S3). The integrity of the nuclei was checked onamicroscope after staining the nuclei withHoechst.

After tagmentation the libraries were purified with a Zymo DNA clean up kit then a QPCR was performed on an aliquot of the eluted li-

braries using the Ad1 andAd2.x primers and the correspondingCtwasdetermined for each sample.126 The librarieswere then amplified

at Ct+ 2 cycles. The quality of the libraries was checked on a 2% agarose gel to verify the size of the fragments and the nucleosome

phasing.

Reads obtained for each library were mapped using Bowtie2 (v2.4.1) with the parameters ‘–very-sensitive‘ and ‘-k 10‘127 and peak

calling for open chromatin region was performed using Generich (v0.6) available at https://github.com/jsh58/Genrich using ATAC

model (-j), keeping unpaired alignments (-y), removing PCR duplicates (-r) and excluding reads mapped to mitochondria (-e MT).

At this step, we pooled biological and technical replicates together as Generich analyses each replicate separately and then

combined them by summarising p values using Fisher’s method.

We then used pybed tools to generate a set of unified peaks from the peaks called at each stage, classify peaks according to the

activity during development and perform intersection with masked repetitive regions and conserved regions, as well as assigning

peaks to genes (see jupyter notebook). Unified OCRs were then classified as open at a given stage based on the intersection with

peaks called at each stage (Figure 1C). For comparative coverage analyses (ATAC-seq, Cut&Tag, eRNA, Figure S3D), a randomised

set of genome intervals of the same size distribution as the predicted OCRs was generated using bedtools shuffle.128

Conserved regions were calculated using Phastcons with the parameters ‘–target-coverage 0.25 –expected-length 12 –rho 0.40

from amulti-alignment of 3 echinoid genomes performed with Roast (ref) that started with Lastz alignment to P. lividus species using

parameters ‘–inner = 2000 –ydrop = 3400 –gapped thresh = 6000 –hspthresh = 22000 and the ‘HoxD55’ substitution matrix.

Footprinting analysis was performed using TOBIAS (v0.12.10) and the JASPAR binding motifs using the ‘–time-series‘ parameter

on the scored footprint bigwig files at successive stages, after correction yielding pairwise (Figure S8D) and overall (Figure 5D) enrich-

ment scores. We associated JASPAR motifs with sea urchin transcription factors by identifying the sea urchin genes present in the

same gene families as the human genes for which the TFBS were characterised. When multiple P. lividus genes were present in a

given gene family, we determine orthology relationships by selecting the urchin gene that had the most recent last common ancestor

with themotif-associated gene in the phylogenetic trees reconstructed for each gene family (Table S10). For enrichment analysis, the

number of TFBS in the population of peaks associated with the gene of interest (<150kb of the TSS) was contrasted with the

population of peaks associated with other genes in a hypergeometric test for all TFBS and subjected to BH correction for multiple

testing (e.g. Table S8).

Network reconstruction was performed using ANANSE76 from ATAC-seq aligned BAM and the ‘gimme.vertebrate.v5.0’ binding

motif database assigned to P. lividus TFs using gimme motif2factor script. Resulting network was reconstructed using the igraph

package in R retaining edges with probably above 90% quantile. were for plotting and computation of centrality (degree index).

Cut&Tag
The assay was performed using the CUT&Tag-ITTM Kit and H3K27ac antibody (Active Motif Ref 39135)). Dissociated cells were lysed

in a hypotonic buffer in the presence of NP40, Tween20 and Digitonin each at 0.1 % and nuclei were washed in Resuspension Buffer

(RSB) (RSB:10mMTris pH: 7,4, 10mMNaCl, 3mMMgCl2 and stored at -80�C in RSB containing 20%glycerol. For stages swimming

blastula, gastrula, prism and pluteus, 105 nuclei were used while for stage early blastula 15000 nuclei were used. Nuclei were thawed

and washed once in wash buffer (20 mM Hepes pH: 7.5, 150 mM NaCl, 0.5 mM spermidine, 1x EDTA free Protease inhibitor cocktail

and mixed with activated Concanavalin A beads and magnetized to remove liquid. Nuclei were then incubated with the primary anti-

body in Wash buffer containing digitonin at 0.05% for 2h at room temperature, washed in Wash buffer and incubated for 1h with

secondary antibody (guinea pig anti-rabbit) diluted in Wash buffer supplemented with digitonin at 0.05%. The beads were then

washed and resuspended in assembled proteinA-Tn5 transposomes diluted in wash buffer+ 300 mM NaCl for 1h. At the end of

the incubation, beads were washed with wash buffer supplemented with 300mMNaCl. After the wash, tagmentation was performed

by adding 125 ml of tagmentation buffer supplemented with 10 mM MgCl2 and continued for 1h at 37�C. Following tagmentation,

beads were magnetized, washed, and incubated for 1h at 37�C with proteinase K and SDS to digest the chromatin and release

DNA fragments. At the end of the incubation, beads were magnetized and DNA was purified using 625 ml DNA binding buffer.

Following purification, libraries were amplified by using 25 ml of DNA sample and 2.5 ml of a uniquely barcoded i5 primer and

2.5 ml of a uniquely barcoded i7 primer in a 50 ml PCR reaction with Q5 high-fidelity DNA polymerase. The program included gap-filling

at 72�C then 14 cycles at 98�C for 10 seconds and 63�C for 10 seconds. After PCR, clean-up was performed by adding 55 ml of SPRI

beads and eluting in 21 ml of DNA purification buffer. Libraries were then analyzed using the Agilent 4200 Tapestation instrument and

sequenced. Reads were aligned using bowtie2 with the parameters ‘–local –very-sensitive –no-mixed –no-discordant –phred33 -I 10

-X 700 -3 75’ and coverage calculated for previously defined ATAC peaks using BAMScale.129 Coverage density heatmaps for ATAC-

seq and Cut&Tag datasets were plotted using Deeptools ‘plotHeatmap’ function.130

In situ hybridization
The sequence of pop2 was retrieved from an EST library while the sequences of pop1 and pop3 were obtained from available tran-

scriptomes. For in situ hybridisation the full-length sequence of all three genes were cloned into pGemT. pop1 and pop2 plasmids

were linearised with NcoI and transcribed with SP6 polymerase. pop3 plasmid was linearised with SpeI and transcribed with T7
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polymerase. In situ hybridisation was performed using standard methods (Harland 1991) with Digoxigenin labelled RNA probes and

developed with chromogenic substrates NBT and BCIP. The Delta and alx1 probes have been described previously (Röttinger et al.

2004). Control and experimental embryos were developed for the same time in the same experiments. Embryos were imaged with an

Axio Imager M2 microscope.

Overexpression of mRNA
For overexpression studies, the open reading frame of each pop gene was amplified by PCR and cloned into the pCS2 vector at the

BamHI and XhoI sites. Capped mRNAs were synthesized from NotI-linearized templates using mMessage mMachine kit (Ambion)

and SP6 polymerase. After synthesis, capped RNAs were purified on Sephadex G50 columns and quantitated by spectrophotom-

etry. RNAs were mixed with Tetramethylrhodamine Dextran (10000 MW). pmar1 mRNA was injected at 30 mg/ml pop1, pop2 and

pop3 mRNAs were injected at concentrations in the range 30–100 mg/mL with similar effects.

QUANTIFICATION AND STATISTICAL ANALYSIS

Various statistical tests were used to calculate p values as indicated in themethods section, figure legend, or text, where appropriate.

Results were considered statistically significant when p < 0.05 or FDR<0.05 whenmultiple hypothesis correction was applied, unless

stated otherwise. Statistical analyses were conducted using R (v4.1.0).
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Figure S1. The genome of P. lividus, related to Figure 1. (A) K-mer spectrum for k=31 showing 
the two peaks characteristics of highly heterozygous genomes. (B) Repeat landscape showing the 
distribution of divergence (approximation for age) for distinct class of mobile and repetitive 
elements. (C) Size of different categories of gene features highlighting the comparatively large size 
of UTRs and introns in P. lividus. 
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Figure S2. Transcriptomic profiling of P. lividus embryonic stages, related to Figure 1 and 5. 
(A) PCA based on normalised counts of stages RNA-seq.(D) Temporal expression profile of 
selected developmental genes during the development of P. lividus. (C) Clusters of temporal 
expression profile (MFuzz) of lncRNAs with their averaged fold-changes in selected stages. (D) 
Expression of selected lncRNA that belong to clusters showing stage-specific expression profiles. 
(E) Alignment of Pmar1 and Pmar1-like (Pop) proteins showing the presence of conserved 
engrailed repressor motifs (eh1) and conserved regions outside the homeodomain (regions 
highlighted in black).
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Figure S3. Chromatin profiling of P. lividus embryonic stages, related to Figure 1. 

(A) PCA based on normalised counts of ATAC-seq data. (B) Validation of OCR classification 
(Figure 1C) by visualising normalised ATAC-seq read coverage for each stage in the unified OCR 
for regions showing dynamic activity during development. OCRs are clustered according to their 
coverage signal across the successive developmental stages to verify the accuracy of the 
intersection-based classification, which is summarised under the heatmap. The top-row of the 
heatmap and the legend on the right indicates at which stages unified OCR are overlapping with 
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stage-specific OCR.  A high coverage (red) indicates that the element is active while no coverage 
(blue) supports limited accessibility. (C) Profile of ATAC-seq signal around predicted OCR (peaks) 
for distinct location of OCR. (D) Distribution of coverage of ATAC-seq, Cut-and-tag K27Ac and 
transcription (RNA) for distinct OCR location inferred from ATAC-seq data, as well as a similar 
population of randomised regions of the same size distribution. (F) Transcription in OCR indicating 
occurence of bidirectional transcription for some of them. (G) Classification of OCR activity 
defined by 75% upper coverage quartile of OCR regions across the four stages for which we 
performed Cut-and-tag. 




Figure S4. Synteny comparison between representative bilaterians and sea urchins, related 
to Figure 2. ‘Oxford’ dotplots representing the genomic coordinates of orthologues in pairs of 
genomes. Dots located in pairs of chromosomes showing a significant mutual enrichment of 
orthologues (t-test <0.05) are colored by ancestral linkage group assignment (ALG) while others 
are colored in grey.   (A) Comparison of amphioxus (B. floridae) and purple sea urchin (S. 
purpuratus) (B) amphioxus and a bivalve mollusc,   the sea scallop (Pecten maximus) (C) the sea 
urchins P. lividus and L. variegatus and (D) the sea urchins P. lividus and S. purpuratus.  
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Figure S5. Expression of recently evolved sea urchin genes, related to Figure 4. (A) Inferred 
WGCNA modules with their normalised fold-change enrichment in gene expression datasets (with 
on the rightmost side, the description of the module expression profile), marplot indicate the 
phylostrata of genes assigned to each module according to their origin (middle) or and last 
duplication nodes (right). Expression of GPCR135  (B) and Kirrel (C), two expanded gene families 
in sea urchins. Few duplicates usually retain a strong and ubiquitous expression while other 
duplicates acquired a specialised expression profile. Stage and gene are arranged according to 
clustering of euclidean distances and ‘complete’ method in pheatmap. 


Module−trait relationships

−1 −0.5

0 0.5

1

mediumpurple4
darkviolet

darkseagreen4
coral2
white
blue2

mediumorchid
green

lightsteelblue
darkslateblue

floralwhite
antiquewhite4

blue4
skyblue2
coral1

darkolivegreen2
darkseagreen2
mediumpurple3

cyan
navajowhite
honeydew
lightyellow

brown
deeppink

lightsteelblue1
navajowhite1

lavenderblush1
salmon

darkgrey
maroon

pink
brown4
coral
coral4

firebrick4
darkorange2

grey60
brown2

lavenderblush3
palevioletred1

blueviolet
yellow2

lightpink2
salmon1
slateblue
green4

antiquewhite1
sienna2

plum
antiquewhite2

thistle3

Last duplication nodeOrigin (Phylostrata)
eggs
early_blastula
embryonic_gastrula
embryonic_blastula
embryonic
embryonic_gastrula
unclear_stable
embryonic_early
embryonic_early_red_blastula
swimming_blastula
blastula_mid
blastula
blastula_ext
early_gastrula
gastrula
swim_blastula_and_late_gastrula
late_gastrula_ext
late_gastrula
prism
embryonic_late_red_blastula
gut
lantern
tubefeet
tubefeet_and_lantern
prism_pluteus
pluteus_tubefeet
pluteus_bodywall
pluteus
larva_adult
larva_adult_no_ovary
gut_bodywall
bodywall_tubefeet
adult_organs
mesenchyme_blastula1
mesenchyme_blastula2
blastula_gastrula_pluteus_not_prism
blastula_gastrula_pluteus_not_prism
blastula_gastrula_pluteus_not_prism
mesenchyme_blastula_pluteus
32cells
60cells
Late_cleavage
4cells
16cells
2cells
8cells
ovaries
overies_and_lantern
adult_organs_not_kantern
red_gastrula
embryonic_early_ovaries

A

z-score

0 2500 5000 7500

Nb. genes
0 2000 4000 6000 8000

0h
_e

gg
s

2h
_2

ce
lls

3h
_4

ce
lls

4h
_8

ce
lls

4h
30

_1
6c

el
ls

5h
_3

2c
el

ls
5h

30
_6

0c
el

ls
6h

_L
at

e_
cl

ea
va

ge
6h

30
_e

ar
ly

_b
la
st
ul
a

7h
30

_b
la
st
ul
a

12
h_

sw
im

m
in

g_
bl
as
tu
la

18
h_

ea
rly

_m
es

en
ch

ym
e_
bl

as
tu

la
1

20
h_

ea
rly

_m
es

en
ch

ym
e_
bl
as
tu
la
2

21
h_

ea
rly

_g
as

tru
la

24
h_

la
te

_g
as

tru
la

36
h_

pr
is
m

48
h_

pl
ut

eu
s_

4_
ar
m
s

Ad
ul

t_
ov
ar
ie
s

Ad
ul

t_
gu

t
Ad

ul
t_

bo
dy
wa
ll

Ad
ul

t_
tu

be
fe
et

Ad
ul

t_
la

nt
er
n

Al
l_

Bl
as

tu
la

Al
l_

ga
st
ru
la

Ad
ul
t

P. lividus
Phylostrata

Echinozoa
Eleutherozoa
Ambulacraria
Echinodermata
Deuterostomia
Bilateria
Eumetazoa

Pluteus
Tubefeet
Bodyw

all
Lantern
Prism
Early M

esench Blastula
Late M

esench Blastula
G

ut
32-cell
Early G

astrula
Late G

atrula
Sw

im
m

ing Blastula
Early Blastula
Blastula
O

varies
2-cell
8-cell
16-cell
60-cell
eggs
Late_cleavage

PL17679

PL16169

PL33315

PL16486

PL33142

PL16118

PL29996

PL29436

PL30230

PL17029

PL17792

PL33954

PL16587

PL16308

PL16191

PL29304

PL34003

PL16534

PL35532

0

0.5

1

1.5

2

GPCR135 Kirrel

G
ut

Bodyw
all

Lantern
Pluteus
O

varies
Tubefeet
Early m

esench blastula
Late m

esench blastula
Prism
Late cleavage
16-cell
60-cell
eggs
8-cell
2-cell
32-cell
Early blastula
Blastula
Sw

im
m

ing blastula
Early gastrula
Late gastrula

PL16624
PL41649
PL16906
PL16357
PL16616
PL08773
PL27810
PL03461
PL33492
PL17259
PL01746
PL01466
PL17515
PL13767
PL16888
PL17595
PL22937
PL16731
PL17446
PL15365
PL04389
PL16398
PL27833
PL18932
PL15448
PL04398
PL16566
PL18926
PL04830
PL01363
PL13303
PL01162
PL27963
PL01328
PL01093
PL17499
PL16814
PL16654
PL34617
PL01141
PL16117
PL17138
PL33999
PL35072
PL25246
PL27164
PL00398
PL16478
PL39714
PL33979
PL11103
PL16536
PL30762
PL17371
PL17897
PL16897
PL16697
PL31016
PL01622
PL16827
PL00706
PL10357
PL17107
PL01200
PL23691
PL00950
PL04156
PL27239
PL27147
PL03578
PL16173
PL16759
PL40596
PL17761
PL16223

0

0.5

1

1.5

2

2.5log10(FPKM
+1)

log10(FPKM
+1)

CB



 


  

Figure S6 Conservation and temporality of gene expression, , related to Figure 7. (A-C) 
Transcriptomic distance (Jensen-Shannon distance) between staged transcriptomes of S. 
purpuratus (reference), P. lividus, (D) Expression of genes belonging to stage-specific expression 
clusters during cleavage stages (color label on the left). (E) Expression profiles throughout 
embryonic development of all 815 putative transcription factors of P. lividus showing the onset of 
zygotic expression around late cleavage to early blastula stages.  Stages and genes are arranged 
according to a tree inferred with euclidean distances and ‘complete’ method. 
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Figure S7. Transcription factor activity and gene regulatory networks during P. lividus 
development, related to Figure 7. (A) Expression of selected transcription factors with an 
enriched footprint in the same order as in Figure 7D. (B) Pairwise comparisons of footprint 
enrichment scores displayed as ‘volcano’ plots. Genes belonging to top centiles of fold-change 
are displayed in red. (C) Distribution of Network vertices degree (centrality) for non-TFs and TFs 
showing the high level of connectivity for some TFs. (D) Average centrality (z-score normalised) for 
various TF classes across developmental stages highlighting for instance the importance of Fox 
during mid-development (Blastula and Gastrula) and that of Sox during later development (Prism). 
(E) Skeletogenic GRN captured using Network reconstruction at the early blastula stage. 
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Table S1. Sequencing libraries generated, coverage based on 800Mb estimated genome 
size. All values are in base pairs (bp), related to Figure 1.


Table S2. Statistics for successive steps of genome assembly, related to Figure 1.


Library Nb. 
reads Insert layout Volume 

(Gb) Coverage* Accession

paired-end 111460000 427 300 66.9 72.1
ERR5621404,ERR5621405,E
RR5621406,ERR5621407,ER

R5621408
mate_2–4kb 63080000 2170 150 18.9 37.4 ERR5621409,ERR5621413,E

RR5621416
mate_4–6kb 71920000 3213 150 21.6 42.6 ERR5621410,ERR5621414,E

RR5621417
mate_6–8kb 65420000 4719 150 19.6 38.7 ERR5621411,ERR5621415,E

RR5621418
mate_8–12kb 68660000 6532 150 20.6 40 ERR5621412

Chicago library - 150 ERR5621724

HiC library - 150
Nb. 

reads N50 N95 Volume Coverage* Accession

PacBio RS2 1801459 12931 3881 14.6 ERR5621724,ERR5621726

Pliv_mrl91f Pliv_ml91_pj Pliv_ml91_pj_msk
_ref Pliv_PqN3S

note meraculous (k=91) mrl + pad + pbjelly 
+ haplomrg

after dovetail 
scaffolding

Nb. scaffolds 18,067 15,127 9,080 3,747

Size (Mb) 1,395 1,551 926 927

Min 2,000 1,810 504 504

Max 2,395,219 2,643,646 4,406,495 80,452,682

GC (%) 28 34 34 34

Gaps (%) 21.58% 4.91% 5.05% 5.16%

N50 (scaffold) 297,785 338,972 684,377 41,462,573

L50 (scaffold) 1,319 1,284 362 8

N90  (scaffold) 60,606 68,662 69,182 403,662

L90  (scaffold) 5,244 5,094 1,880 50

Nb. scaf >5kb 10,632 11,165 6,473 2,594

Nb. contig 252,802 80,116 47,676 48,618

contig size (Mb) 1,093.5 1,475.3 879.6 879.6

N50 (contig) 8,002 41,716 41,436 40,127



Table S3.  Stage and organ RNA-seq and mapping statistics, related to Figure 1. 

Name Reads (M) Aligned reads (M) % Uniquely aligned Name

E_S22 59 36.2 61.3% Eggs

2_S2 65 43.6 67.0% 2_cell

4_S3 70.3 46.7 66.5% 4_cell

8_S4 61.4 42 68.5% 8_cells

16_S5 71.2 47.5 66.6% 16_cells

32_S6 55.1 36.5 66.2% 32_cells

64_S7 57.8 38 65.7% 60_cells

128_S8 72.3 49.4 68.3% Late_cleavage

EB_S9 66 42.6 64.5% Early_blastula

B_S19 61.6 41.8 67.9% Blastula

SB_S11 68.3 44.2 64.7% Swimming_blastula
MB1_S1
2 72.4 45 62.2% Mesenchyme_blastula_1
MB2_S1
3 56.7 38.1 67.1% Mesenchyme_blastula_2

EG_S14 64.1 41.2 64.3% Early_gastrula

LG_S15 61.5 40.1 65.3% Late_gastrula
ID16_S1
6 72.4 42.4 58.6% Prism

P_S17 75.3 50.9 67.6% Pluteus

A_S18 75.6 52.9 70.0% Ovaries

B_S19 61.6 41.8 67.9% Gut

C_S20 35.2 23.2 66.0% Bodywall

D_S21 78.2 52.3 66.9% Tubefeet

E_S22 59 36.2 61.3% Lantern



Table S4. ATAC samples and QC statistics, related to Figure 1.


Sample Stage Replicate nb_reads mapped paired & 
mapped FRIP

TRLG107-7_16-cell_R1 16_cells R1 6.5E+07 82.82 75.63 15.9

TRLG106-10_16-cell_R2 16_cells R2 5.2E+07 75.07 67.56 18.8

TRLG83-19-EB_R1_150K Early 
Blastula R1 4.6E+07 82.28 75.7 37.1

TRLG82-30-EB_R1_100K Early 
Blastula R1 5.1E+07 81.82 75.53 36.1

TRLG95-25-EB_R2_250 Early 
Blastula R2 3.4E+07 81.03 74.16 37.1

TRLG94-32-EB_R2_100K Early 
Blastula R2 2.5E+07 81.61 74.21 38.2

TRLG87-2-LB_R1_150K Late 
Blastula R1 3.1E+07 81.47 74.5 44.7

TRLG86-8-LB_R1_100K Late 
Blastula R1 4.1E+07 80.45 73.67 44.3

TRLG98-11-LB_R2_150K Late 
Blastula R2 4E+07 81.83 74.9 44.9

TRLG97-26-LB_R2_50K Late 
Blastula R2 4.8E+07 81.06 74.47 45.8

TRLG102-13_G_R2_250K Gastrula R2 5.6E+07 81.5 74.44 46.9

TRLG101-28_G_R2_150K Gastrula R2 6.5E+07 81.36 74.61 47.7

TRLG90-3-G_R1_150K Gastrula R1 3.3E+07 78.59 72.1 38.4

TRLG89-9-G_R1_150K Gastrula R1 4.4E+07 78.55 72.14 38.1

TRLG92-23-prism_R1_150K Prism R1 4.1E+07 76.88 70.45 33.3

TRLG104-14_prism_R3_250K Prism R3 4.5E+07 79.67 72.42 43.7
TRLG103-29_Pluteus_R2_150
K Pluteus R2 4.9E+07 78.93 71.99 27.7

TRLG108-31_Pluteus_R1 Pluteus R1 7.5E+07 69.21 75.95 29.3



Table S5. Previously characterised cis-regulatory elements highlighted in ATAC-seq signal, related 
to Figure 1. 

Species Gene Position Reference doi

P. lividus He2 Scaffold_3428:305
42690-30543275

P. lividus Coup-TF Scaffold_218:2182
6148-21828063

Kalampoki & 
Flytzanis, PLOSone, 
2014

https://doi.org/10.1371/
journal.pone.0109274

P. lividus Hbox12 Scaffold_3434:230
49794-23051292

Cavalieri et al, Dev 
Biol 2008

https://doi.org/10.1016/
j.ydbio.2008.06.006

P. lividus Tub-alpha Scaffold_218:4411
450-4411667

Costa et al, 
PlosONE 2017

https://doi.org/10.1371/
journal.pone.0170969

P. lividus Early H2A Scaffold_3428:240
72199-24072268

Di Caro et al, JMB 
2004

https://doi.org/10.1016/
j.jmb.2004.07.101

P. lividus Otp Scaffold_3425:216
13834-21614630

Cavalieri et al, GEP 
2007

https://doi.org/10.1016/
j.modgep.2006.06.001

P. lividus HE Scaffold_3433:431
25712-43126373

Ghiglione et al, Eur. 
J. Biochem, 250 
(1997), pp. 502-513

https://doi.org/10.1111/
j.1432-1033.1997.0502y.x

P. lividus Nodal Scaffold_3433:217
97464-21797935

Range et al, 
Development 2007

https://doi.org/10.1242/
dev.007799

S. purpuratus Alx1
Scaffold_3426:16,
004,074-16,004,61
0

Damle and 
Davidson. 2011

https://doi.org/10.1016/
j.ydbio.2011.06.016

S. purpuratus Blimp1 Scaffold_218:2141
0623-21411768

Livi and Davidson 
2006, Gene 
expression patterns

https://doi.org/10.1016/
j.ydbio.2006.02.021

S. purpuratus wnt8 Scaffold_3433:225
30193-22530703

Minokawa, 
Wilkrayamanake 
and Davidson (2005) 
Developmental 
Biology

https://doi.org/10.1016/
j.ydbio.2005.09.047

S. purpuratus Delta Scaffold_174:5066
3006-50668434

Revilla-i-Domingo, 
Minokawa and 
Davidson (2004)

https://doi.org/10.1016/
j.ydbio.2004.07.008

S. purpuratus gcm Scaffold_3429:101
91255-10191775

Ransick and 
Davidson, 2006

http://doi.org/10.1016/
j.ydbio.2006.05.037

https://doi.org/10.1242/dev.007799


Table S6. Genomes and proteomes used for gene family reconstruction, related to Figure 4.


Species Version Accession

Nematostella vectensis ASM20922v1 GCF_000209225.1

Aurelia aurita ABSv1 GCA_004194415.1

Lingula anatina LinAna2.0 GCF_001039355.2

Lottia gigantea GCF_000327385.1

Patinopecten yessoensis ASM211388v2 GCF_002113885.1

Capitella teleta Capca1 GCA_000328365.1

Drosophila melanogaster BDGP6.22 GCA_000001215.4

Tribolium  castaneum Tcas5.2 GCA_000002335.3

Limulus_polyphemus 2.1.2 GCF_000517525.1

Saccoglossus kowalevskii Skow_1.1 GCA_000003605.1

Ptychodera flava v1.0.14 GCA_001465055.1

Lytechinus variegatus Lvar_3.0 GCF_018143015.1

Paracentrotus lividus Parliv1

Strongylocentrotus purpuratus Spur_5.0 GCA_000002235.4

Apostichus japonicus ASM275485v1 GCA_002754855.1

Acanthaster planci Okinawa v1.0 (2015) GCF_001949145.1

Patiria miniata Pmin_1.0 GCA_000285935.1

Anneissia japonica Jap-2015-1 GCF_011630105.1

Branchiostoma floridae Bfl_VNyyK GCA_000003815.2

Branchiostoma lanceolatum Bl71nemr GCA_900088365.1

Ciona intestinalis KH GCF_000224145.3

Callorhinchus milii Callorhinchus_milii-6.1.3 GCA_000165045.2

Homo sapiens GRCh38.p13 GCA_000001405.28

Lepisosteus oculatus LepOcu1 GCA_000242695.1



Table S9. TFBS associated with recently duplicated genes, related to Figure 4. 


TF Background number Foreground number p-value

NR2F1 4376 874 0.000156

TP73 2392 492 0.000510

TFAP2A 1275 275 0.000816

ELK1 1165 251 0.001357

TP53 1367 289 0.001661

NR1D2 1712 353 0.002312

HNF4A 11090 2070 0.002596

Brachyury 936 203 0.002670

PU.1 892 194 0.002902

THRB 4839 932 0.003065

ZBTB4 813 178 0.003244

CREM 1825 371 0.003857

ATF2 7818 1470 0.004521

RFX7 2650 522 0.005907

HEY1 3995 770 0.005994

FLI1 989 209 0.006127

SMAD3 3767 726 0.007363

ATF1 3943 758 0.007565

HNF4G 3572 689 0.008267

MEF2C 2961 575 0.009716


	XGEN100295_proof_v3i4.pdf
	Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes
	Introduction
	Results
	The genome and developmental regulatory landscape of P. lividus
	Opposite trends of genomic architectural changes in sea urchins and vertebrates
	The expression of recently evolved sea urchin genes
	The origin of pmar/hbox12 genes
	Conservation and divergence of gene expression modules across deuterostomes
	Regulatory landmarks during sea urchin development

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	DNA extraction and sequencing
	Genome assembly
	Annotation
	Long non-coding RNAs
	Synteny and gene family reconstruction
	Gene expression analyses
	ATAC-seq
	Cut&Tag
	In situ hybridization
	Overexpression of mRNA

	Quantification and statistical analysis






